
ODB: past, present and future

Or ODB scalability over the past decade…

There are two constants about content and data: it
will change, and it will grow…

Scalability: a new challenge for handling
observations in meteorological models?

Slide 2ODB: past, present and future

Outline

What you need to know about ODB…
Current observation data flow at ECMWF
ODB usage in our 4D-Var system
ODB debut
Switching from vector to scalar architecture
ODB IO strategy
Any hope for the future?
Conclusions

Slide 3ODB: past, present and future

What you need to know about ODB…
ODB stands for Observational DataBase

Developments were started by Sami Saarinen in 1998 in replacement
of the old CMA (Central Memory Array) file structure

ODB is a hierarchical database, a format and a software library:
- With a data definition language to describe what data items belong to

the database (and their data types and how they are related to each
other)

- And a query language ODB/SQL (subset of ANSI SQL) to query and
return a subset of data which satisfies certain user specified
conditions.

- Data can be stored in a distributed fashion (by pools)

- Managing, manipulating, and analyzing data can be done in parallel
(MPI/OpenMP)

It has the option of being an incore database, but can be used as file
based as well

Slide 4ODB: past, present and future

Example of an ODB database on disk

> ls ECMA.iasi
1/ 141/ 183/ 218/ 265/ 43/ 85/ ECMA.iomap
107/ 145/ 193/ 225/ 266/ 49/ 97/ ECMA.sch
110/ 15/ 197/ 239/ 267/ 56/ 99/ IOASSIGN@
113/ 155/ 211/ 241/ 272/ 57/ ECMA.IOASSIGN
121/ 164/ 212/ 25/ 281/ 71/ ECMA.dd
127/ 169/ 217/ 253/ 29/ 73/ ECMA.flags

Metadata

Pool directories

> ls ECMA.iasi/1
index sat radiance modsurf update_2
desc poolmask cloud_sink surfemiss_body update_3
errstat body hdr update_1 timeslot_index

Slide 5ODB: past, present and future

What is a table?

ODB: past, present and future Slide 6

A table is a file containing a list of attributes such as lat, lon,
obsvalue, an_depar, etc. Each of them has a meaningful and
unique ODB name, with a short description, and with units or a
range of possible values.
We have about 800 different ODB columns defined in our
databases but each observation group has its own list of valid
ODB attributes (between 60 and 100)

Current observation data flow at ECMWF

IFS 4DVar

Slide 7ODB: past, present and future

ODB usage in our 4D-Var system

ECMA (Extended CMA):

- All observations
- About 25 ECMAs (one per

Observation group)
- ≈ 2000 retrievals per thread in the

first trajectory
CCMA (Compressed CMA):

- Active observations after IFS
screening (< 10% of ECMAs)

- ≈ 5000 retrievals per thread in
ifsmin

Data randomly distributed
among pools
Both are incore databases to
improve efficiency

We use two main ODBs:

Slide 8ODB: past, present and future

ODB debut
ODB became operational on our VPP5000 in 2000 (CY22R3, T319, 50
vertical levels). Our 4DVar system was running on 16 MPI tasks.

ODB IO strategy was fairly simple: each MPI task reads/writes a portion
of database and owns ODB data pools in a round-Robin fashion

MPI#1 MPI#2 MPI#3 MPI#4

HIRS

CONV

AMSUA
…

ODB retrievals scale well but this simple ODB IO
strategy doesn't…

Slide 9ODB: past, present and future

Switching from vector to scalar architecture

To improve performance and better scale on platforms with
increasing number of processors:

- Only a subset of pools is selected to perform I/O (read/write ODB on
disk).

- Similar files (tables) are then concatenated together (reduces the total
number of files).

- ODB I/O pools distribute data to other processors via MPI
communications

The number of I/O pools is fully configurable via environment
variables

- At least every ODB_IO_GRPSIZE -MPI-task performs I/O -- up to a
certain file size limit (MB) defined by the parameter ODB_IO_FILESIZE

Slide 10ODB: past, present and future

Parallel I/O strategy

MPI#2 MPI#4

HIRS

CONV

AMSUA

…

MPI#1 MPI#3

…

Slide 11ODB: past, present and future

A loop over tables and for each table:

Walltime goes from 663 s to 550 s for the first trajectory (15%
improvement)

ODB-I/O strategy: recent optimizations

Slide 12ODB: past, present and future

(T1279,
48 nodes)

STORE STORE
optimized

Step WALLTIME
(seconds)

Size
(GB)

of files WALLTIME
(seconds)

Traj_0 20.70 20.0 922 9.82

It was first identified that MPI communications were costly
when storing the database (because we write about 20GB…).

John Hague has improved message passing involved when
writing the database: we collect what has to be written and
send/receive larger MPI messages.

ODB_IO_FILESIZE=32, ODB_IO_GRPSIZE=$NPES_AN
Message passing I/O included in the timings

Cost for loading/storing ECMAs/CCMAs

(T1279,
48 nodes)

LOAD STORE

Step WALLTIME
(seconds)

Size
(GB)

of files WALLTIME
(seconds)

Traj_0 6.33 2.45 166 9.82 + 2.25

Min_0 (T159) 1.71 1.8 88 2.59

Traj_1 2.45 1.9 91 2.29

Min_1 (T255) 1.75 2.0 94 2.46

Traj_2 2.38 2.1 97 3.58

Min_2 (T255) 2.48 2.2 99 3.96

Traj_3 22.33 + 7.66 19.4+2.3 928+102 17.76 + 1.55

ODB_IO_FILESIZE=32, ODB_IO_GRPSIZE=$NPES_AN
Message passing I/O included in the timings

Slide 13ODB: past, present and future

traj_0: impact of ODB_IO_FILESIZE on ECMAs

ODB_IO_FILESIZE LOAD
WALLTIME
(seconds)

of files STORE
WALLTIME
(seconds)

of
files

8 7.65 414 22.66 2514

16 6.45 240 25.97 1723

32 6.33 166 9.82 928

64 11.91 130 17.23 587

128 12.36 118 20.35 448

We load about 3 GB and store about 20 GB in the first
trajectory

Runs done with T1279 on 48 nodes
ODB_IO_FILESIZE=32 is optimal on our current

supercomputer (Power 6)
Slide 14ODB: past, present and future

Any hope for the future?
The bottlenecks are the first and the last trajectories in our
4D-Var where ECMAs are involved.
Poor performance of ODB I/O in traj_3 may show that we may
have reached some limits…Tools to monitor I/Os like those
developed by John and Oliver would help us to better
understand what is going on.
However, the best way to improve I/Os is to reduce I/Os…
We need to better organise our databases (ECMA/CCMA) to
avoid unecessary I/Os:

- create readonly tables and use ODB_WRITE_TABLES

- use ODB_CONSIDER_TABLES to load in memory only the necessary
tables for a given step

Change our strategy: do not try to load the entire database at
the beginning or store the entire database at the end (i.e. try
to overlap I/Os with computations)

ODB: past, present and future Slide 15

New strategies for the first trajectory

The first trajectory is very expensive because of the
screening (about 150 millions observations used): only 10%
retained for the assimilation.

Screening of observations may not be needed at high-
resolution (Scientists have to tell us)

Therefore, it may become cheaper to run several
"trajectories", as soon as data is available to eliminate as
much data as possible when we start our 4D-Var.

Slide 16ODB: past, present and future

Other scope for improvement

The last trajectory is even more expensive than the first one
because it involves all observations. About 20 Gb have to be
loaded in memory!
Could we run two last trajectories?

- One with CCMA only (this one would be in the critical path)
- Another for ECMA-CCMA which would not be in the critical

path (for diagnostics only)
Use vertical partitioning for each step (traj_0, ifsmin_0, etc.) i.e.
write in different files (tables) and create an "incremental
ECMA/CCMA". This approach is successfully used for our
ensemble kalman filter suite (Mats Hamrud)

ODB: past, present and future Slide 17

Is scalability the only issue?

And what happens if we can make it?
- We will use more and more observations…

- We will write more and more feedback information from our
assimilation system…

And what do we do with GBs of observation feedbacks?
Scientists write ODBs to monitor observations and
analyze data

- The final goal is to improve our forecasting system…

How do we store this feedback information? What tools,
visualization facilities do we offer to users?

ODB: past, present and future Slide 18

Current observation data flow at ECMWF

ODB: past, present and future Slide 19

IFS 4DVar

Proposed observation data flow at ECMWF

ODB: past, present and future Slide 20

(6 PB of data)

IFS 4DVar
/ HPC

Proposed framework for Observation handling

ODB: past, present and future Slide 21

ODB API
PODB API

OHDAP

K
F

4D
VA

R

…

A
R

PE
G

E

IF
S

… …

…

M
A

R
S

M
et

vi
ew

O
B

ST
AT

M
ag

ic
s+

+

…

Generic
Data Assimilation

Methods

Models

ODB Parameter Database

Observation Handling
for Data Assimilation

Purposes

Conclusion

The ODB software will still evolve: a new C++ library is
under development (Peter Kuchta). We believe that an
object-oriented approach will help to improve the
scalability of both ODB and its usage in IFS
Diagnostic tools (to monitor I/Os, debug, analyze runtime
applications, etc.) are necessary
As well as tools for scientists to analyze, visualize and
monitor feedback data (ODB-tools, MARS, obstat,
magics++, metview, etc.)
Optimizations will be a common effort between
scientists, analysts, computer vendors, etc.
It can’t be the work of a single man/woman!!!

Slide 22ODB: past, present and future

Questions?

With many thanks to John Hague, Peter Kuchta
and Manuel Fuentes

	�ODB: past, present and future
	There are two constants about content and data: it will change, and it will grow…
	Outline
	What you need to know about ODB…
	Slide Number 5
	What is a table?
	Slide Number 7
	ODB usage in our 4D-Var system
	ODB debut
	Switching from vector to scalar architecture
	Slide Number 11
	ODB-I/O strategy: recent optimizations
	Cost for loading/storing ECMAs/CCMAs
	Slide Number 14
	Any hope for the future?
	New strategies for the first trajectory
	Other scope for improvement
	Is scalability the only issue?
	Current observation data flow at ECMWF
	Proposed observation data flow at ECMWF
	Proposed framework for Observation handling
	Conclusion
	Questions?��With many thanks to John Hague, Peter Kuchta and Manuel Fuentes

