

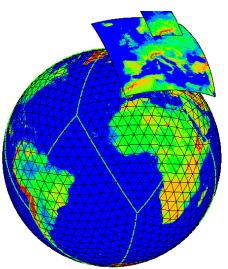
Future Trends in High Performance Computing at DWD

Ulrich Schättler Deutscher Wetterdienst Research and Development Elisabeth Krenzien Deutscher Wetterdienst Technical Infrastructure

Contents

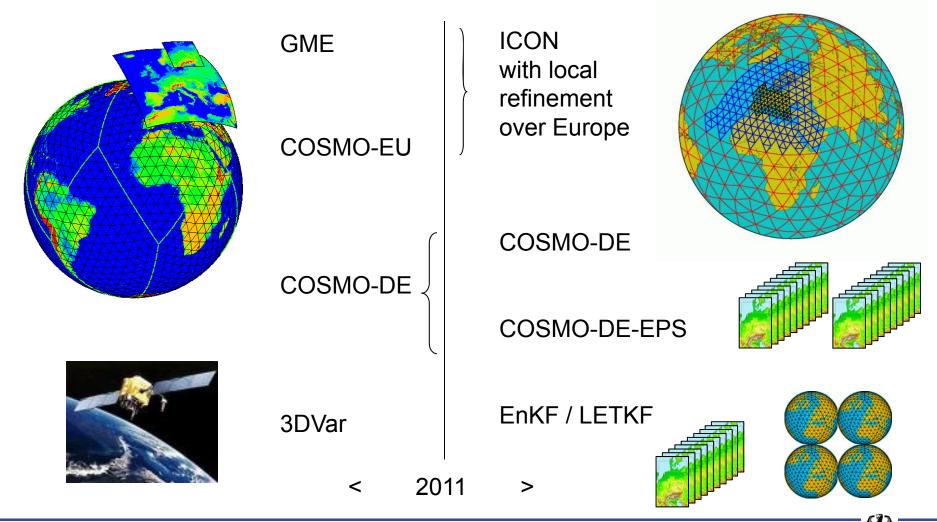
- ➔ HPC at DWD
- ➔ The new global model ICON
- Developments for the COSMO-Model
- Data Assimilation
- ➔ Computing Resources

HPC at DWD



Main Parallel Models currently in use at DWD

➔ COSMO-Model


- This is the regional model used by different communities for a variety of applications (COSMO for NWP, COSMO-CLM, COSMO-ART)
- DWD runs 2 applications: COSMO-EU and COSMO-DE
- In the past, the COSMO-Model accounted for >80% of the total computing time
- o ➔ GME
 - First operational global model based on a triangular grid
 - Runs now with about 30 km resolution and needs a higher percentage of the available computing time
- → 3DVar
 - → Replaced the OI in 2008 to allow direct assimilation of remote sensing data

Upcoming Changes to the NWP System

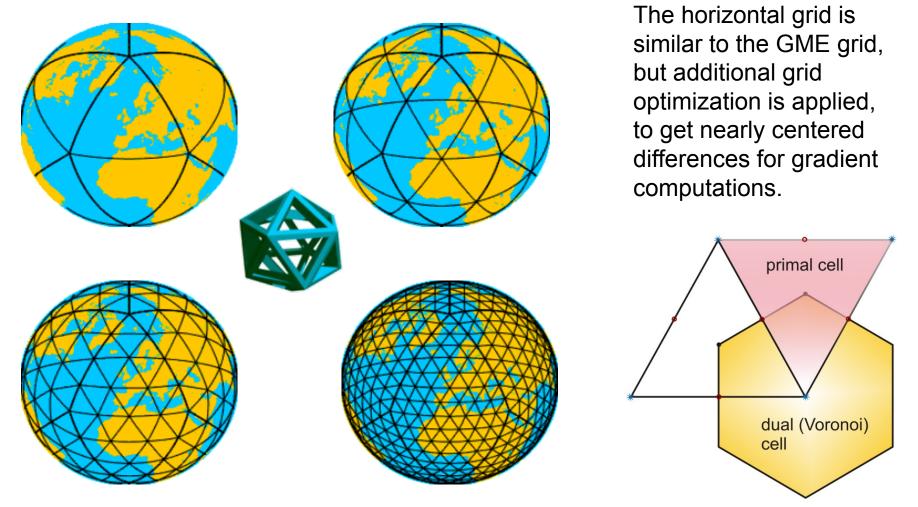
The new Global Model ICON

Common Development of the Max-Planck-Institut für Meteorologie, Hamburg, and the Deutscher Wetterdienst

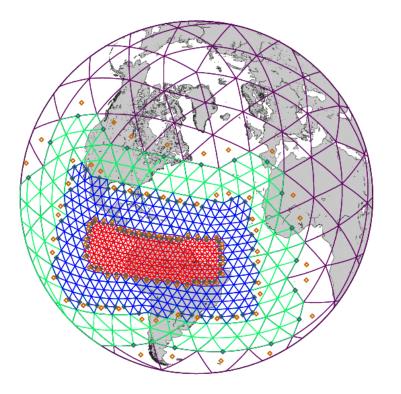
Material provided by G. Zängl and the ICON colleagues from DWD and MPI Hamburg

Main Goals of the ICON Project

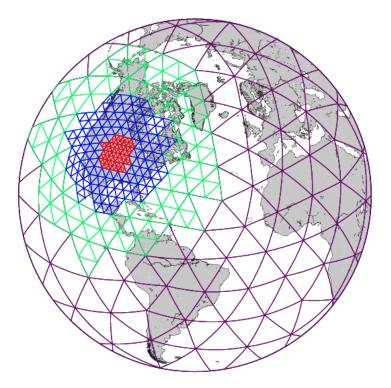
- Centralize Know-how in the field of *global modelling* at DWD and the Max-Planck-Institute (MPI-M) in Hamburg.
- Develop a non-hydrostatic global model with static local zooming option (ICON: ICOsahedral Non-hydrostatic; <u>http://www.icon.enes.org/</u>).
- → At DWD: Replace global model GME and regional model COSMO-EU by ICON with a high-resolution window over Europe. Establish a library of scale-adaptive physical parameterization schemes (to be used in ICON and COSMO-DE).
- At MPI-M: Use ICON as dynamical core of an Earth System Model (COSMOS); replace regional climate model REMO. Develop an ocean model based on ICON grid structures and operators.
- ➔ DWD and MPI-M: Contribute to operational seasonal prediction in the framework of the Multi-Model Seasonal Prediction System EURO-SIP at ECMWF).
- ➔ First investigations for that project date back to 2003/04.



- → Applicability on a wide range of scales in space and time → "seamless prediction"
- → (Static) mesh refinement and limited area model (LAM) option
- ➔ Scale adaptive physical parameterizations
- Conservation of mass (chemistry, convection resolving), energy?
- Scalability and efficiency on massively parallel computer systems with more than 10,000 cores
- → Operators of at least 2nd order accuracy
- Planned pre-operational start in 2H2011 with a resolution of about 20/10/5 km



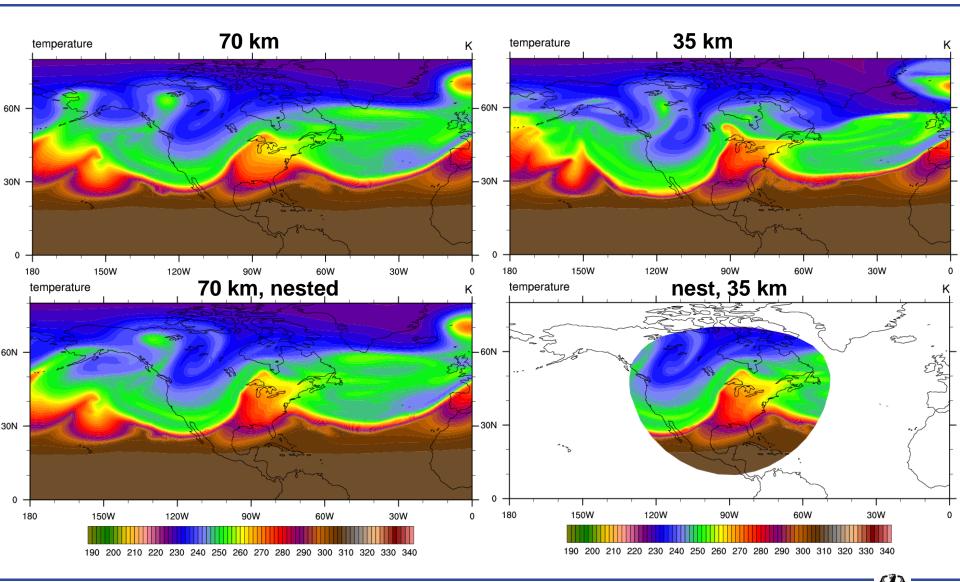
The Horizontal Grid



Static Mesh Refinement

latitude-longitude windows

circular windows


Baroclinic Wave Test with Moisture

- Modified baroclinic wave case of Jablonowski-Williamson (2008) test suite with moisture and Seifert-Beheng (2001) cloud microphysics parameterization (one-moment version; QC, QI, QR, QS)
- Initial moisture field: RH=70% below 700 hPa, 60% between 500 and 700 hPa, 25% above 500 hPa; QV max. 17.5 g/kg to limit convective instability in tropics
- ➔ Transport schemes for moisture variables:
 - → Horizontal: Miura 2nd order with flux limiter
 - → Vertical: 3rd-order PPM with slope limiter
- ➔ Grid resolutions 70 km and 35 km, 35 vertical levels
- The next picture shows the temperature at the lowest model level after 14 days

03.11.2010

12

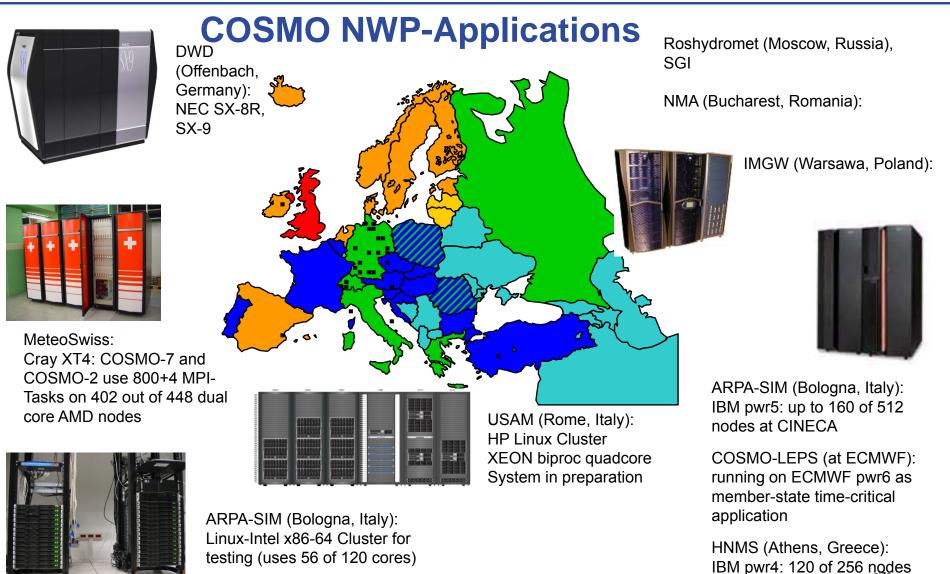
Interesting Computational Issues

- → The implementation uses the hybrid programming model MPI + OpenMP
- ➔ ICON is implemented using indirect addressing
- → Times for a 10 day forecast: 70 km resolution (81920 grid points); 60 vertical levels; non-hydrostatic dynamical core with cloud microphysics and convection scheme; ∆t = 150s for dynamical core and 600s for humidity advection and physics.

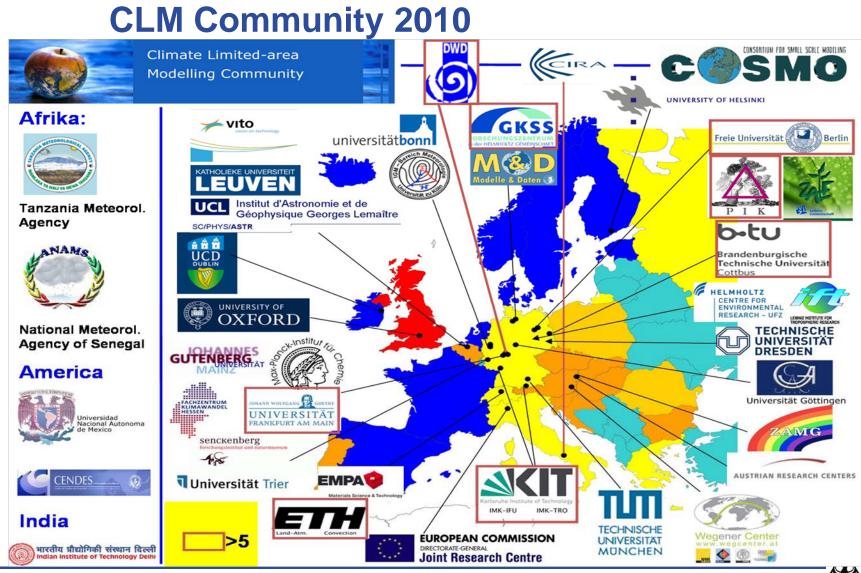
Time (in seconds)	NEC SX-9 8 procs (only OpenMP)	IBM pwr6 32 procs (only MPI)
without radiation	442	2286
with radiation (∆t=30 min)	2035	7080

NOTE: The numbers are just for demonstrating that something is running. They are not meant for a comparison between machines.

Developments for the COSMO-Model

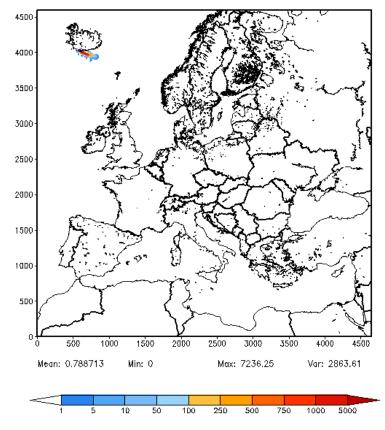

Past Developments

- ➔ There were major changes to the COSMO-Model in the last years
 - → Going to the convection-permitting scale with (2-3 km resolution) affected nearly all components of the model (dynamics, physics, assimilation)
 - The EPS based on COSMO-DE is about to start operational this month! COSMO-DE-EPS was the application for which a new computer system was purchased in 2008/09
 - Because of the growing user community, there is now a much wider range of applications: climate applications, an online-coupled aerosols and reactive tracers module (COSMO-ART)
 - → And therefore much more resources are necessary for User Support
- Due to lack of time there was no re-consideration of the parallel implementation (Fortran + MPI)



16

14th Workshop on HPC in Meteorology



Eruption of Volcano Eyjafjalla

2010041412 - 15 m^-6 - vv=000 - ca. 800 m

- ➔ Collaboration of
 - → KIT: providing COSMO-ART
 - DLR: Flights of "Falcon" to measure ash concentrations
 - DWD: provided forecasts where significant concentrations could be found
- DWD provided the "framework" that these simulations could be done at all
- Setting up regular runs of COSMO-EU including COSMO-ART took only 2 days.

But what about...

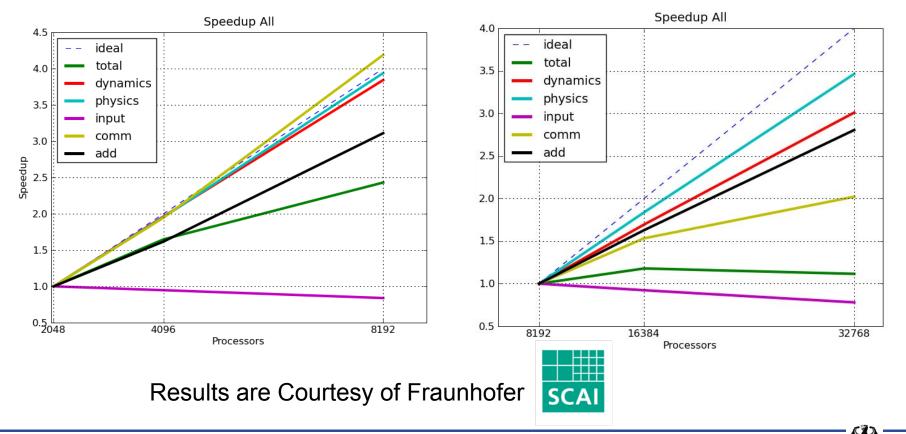
- ➔ High Performance Computing?
- ➔ Scalability?
- ➔ Efficiency?

The COSMO-Model on existing Computers

→ 21 hours COSMO-DE forecast

	NEC SX-9	IBM pwr6
	8 Procs	256 Procs
Computations Dynamics	729.59	570.44
Computations Physics	506.18	220.45
Communications	115.61	207.69
I/O	124.43	108.40
% of I/O and Comm.	15	25

➔ Code efficiency


- → NEC SX-9: 13 % of peak
- → IBM pwr6: about 5-6 % of peak
- → Cray XT4: about 2-3 % of peak

Scalability of COSMO-Europe on IBM BlueGene: 1500 \times 1500 \times 50, 2.8 km, 3 h, no output

Today this is an "artificial" application

Problems of the COSMO-Code

- I/O: Accessing the disks and the global communication involved heavily disturb scalability
- The message passing within a time step includes one global communication. This might be the reason of the degradation on more than 16384 processors
- The efficiency of the code is not satisfying, due to the memory boundedness of the code
 - → NEC SX-9: 13 % of peak
 - → IBM pwr6: about 5-6 % of peak
 - → Cray XT4: about 2-3 % of peak

Tackling the Problems

➔ In Switzerland, a national HP2C initiative has been started, to prepare scientific software for emerging massively parallel architectures. One subproject deals with the COSMO-CLM

Regional Climate and Weather Modeling on the Next Generations High-Performance Computers: Towards Cloud-Resolving Simulations

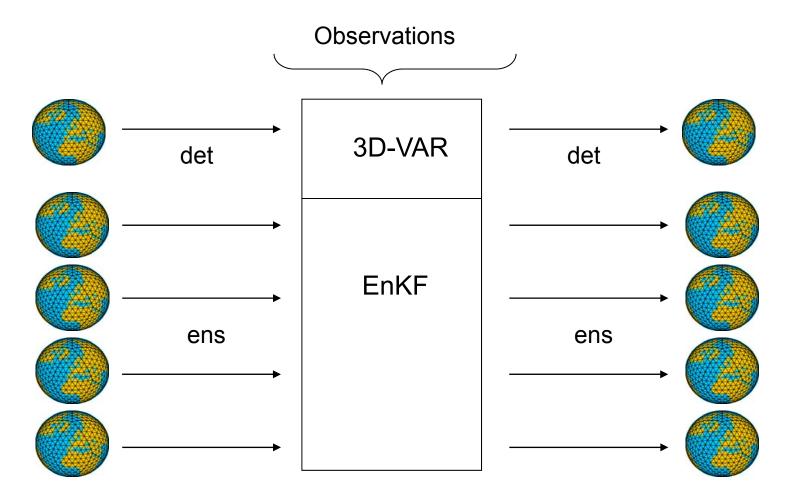
→ COSMO accompanies this project with a *Priority Project*

Performance on Massively Parallel Architectures

Until end of 2012 we hope to improve not only the scalability of the model but also work on the memory bandwidth problem

With traditional optimizations? Also with using GPUs?

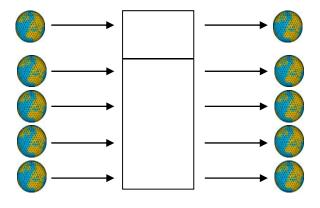
More information about HP2C will be given later this morning by Philippe Steiner (MeteoSwiss) and Angelo Mangili, Michele de Lorenzi (CSCS)


Data Assimilation

Thanks to H. Anlauf and the Assimilation-Colleagues

An Ensemble DA Framework / EnKF

- ➔ 3D-Var was introduced to directly assimilate remote sensing data
- It is now extended to include an ensemble component with the Ensemble Kalman Filter
- ➔ The COSMO-Model will use a "pure" version, the LETKF (Local Ensemble Transform Kalman Filter)
- → The LETKF and the 3D-Var code share a common code basis
- Due to NEC compiler constraints, only a Fortran95 code can be used, although the code is rather object oriented (use of derived types)
- The developers have a strong interest to use Fortran2003/08 features (at least: allocatable components in derived types)



3D-Var and EnKF: Performance Issues

- → Today, the 3D-Var has 8 minutes (at most) to produce an analysis
- On the NEC SX-9, it uses 24 processors (with a degree of vectorization of about 90 %)
- ➔ It is a pure MPI implementation
- ➔ To run an EnKF system, a lot of I/O is necessary (for the current implementation). This has to be avoided somehow
- To run the EPS system, 8 minutes will most probably not be enough

Computing Resources

Future Computing Resources

Evolving Computer Architectures

Is Moore's law still true? The number of transistors per square inch on integrated circuits doubles every 12 – 18 – 24 (?) months.

NFC SX-9

What is increasing, is the number of cores IBM pwr5 and the theoretical peak performance:

> But this does not mean, that scientists can run the same code once and forever on all available computer platforms and get an ever increasing performance!

Cray T3E

Conclusion

- → The new models / applications are requiring more computer resources
- ➔ Right now DWD takes first steps to prepare the next procurement
- ➔ Up to now, the COSMO-Model is the main application of DWD
- → With the introduction of ensemble systems for data assimilation and with the introduction of the new nonhydrostatic global model ICON, the computing time will be distributed more evenly between the applications
- → Therefore we are about to build benchmarks also for the other models
- Today a new COSMO_RAPS_5.0 benchmark is already available
- ➔ Benchmarks for ICON and data assimilation will follow in due time
- ➔ Be aware: These benchmarks might use Fortran2003/08 concepts

Model systems are changing

Computer systems / architectures are changing

The real challenge always was and still will be to bring both together

Thank you very much for your

attention

