
PGI® 2011 Compilers and Tools
Fortran 2003, CUDA Fortran,

CUDA C for X86, PGI Accelerator

3 NOV 10

Dave Norton
dave.norton@pgroup.com

norton@hpfa.com
www.hpfa.com

14th Workshop on the Use of High Performance

Computing in Meteorology

mailto:mathew.colgrove@pgroup.com

PGI Workstation / Server / CDK
Linux, Windows, MacOS, 64-bit, 32-bit, AMD, Intel, Nvidia

Compilers and Graphical Tools

Self-contained OpenMP/MPI/Accelerator

Parallel SW Development Solution

pgprofMPI/OpenMP/ACC profiler PGPROF®

MPI/OpenMP debugger

ANSI/ISO C++

C99, K&R C , #pragma acc

gcc Extensions , CUDA C

Fortran 95, F2003, !$acc,

CUDA Fortran

Language

pgdbgPGDBG®

pgCCPGC++®

pgccPGCC®

pgfortranPGFORTRAN™

CommandCompiler

PGI® Compilers & Tools Positioning

 HPC-focused Compilers & Tools technologies

 State of the art local, global and inter-procedural optimizations

 Automatic vectorization and SIMD/SSE code generation

 Support of OpenMP 3.0 standard

 Automatic loop parallelization

 Profile-guided optimization

 PGI Unified Binary technology to target different ‘flavors’ of same architecture or
heterogeneous architectures

 Graphical tools to Debug/Profile multithreaded/multiprocess hybrid applications

 Compilers & tools dedicated to scientific computing, where utilization of latest
architecture features and speed on generated code is #1 criteria

 GPU/Accelerator Compilers & Tools

 CUDA Fortran, and PGI Accelerator compilers for Nvidia

 CUDA C compilers for PGI Accelerator for X86 and MIC

Multicore X64 Performance vs
Intel

SPEC® and SPECfp® are registered trademarks of the Standard Performance Evaluation Corporation (SPEC) (www.spec.org)

Competitive benchmark results stated above reflect results performed by The Portland Group during the week of November 8th, 2009.

The Intel Nehalem system used is a Dell R610 using 2 Intel Xeon X5550 with 24GB DDR3-1333. The AMD Istanbul system is a kit built 2 Opteron 2431

system with 32GB DDR2-800. Since this system is not generally available, the AMD results should be considered estimates.

SPECfp2006 est. 23.7

SPECfp2006 est. 22.3

SPECfp2006 37.6

SPECfp2006 38.1

http://www.spec.org/

PGI Milestones

• 1989 PGI Formed

• 1991 Pipelining i860
Compiler

• Intel Paragon support

• 1994 Parallel i860 Compiler

• 1996 ASCI Red TFLOPS
Compiler

• 1997 Linux/x86 Compiler

• 1998 OpenMP for Linux/x86

• 1999 SSE/SIMD Auto-
vectorization

• 2001 VLIW ST100 Compiler

• 2003 64-bit Linux/x86
Compiler

• 2004 ASCI Red Storm
Compiler

• 2005 PGI Unified Binary

• 2006 PGI Visual Fortran

• 2007 64-bit MacOS Compiler

• 2008 PGI Accelerator
Compiler

• 2009 CUDA Fortran

• 2011 CUDA C for x64 and
MIC

PGI
®

2011 Features

 PGI Accelerator™ Programming Model

 High-level, Portable, Directive-based Fortran & C extensions (no C++, yet)

 Supported on NVIDIA CUDA GPUs

 PGI CUDA Fortran

 Extended PGI Fortran, co-defined by PGI and NVIDIA

 Lower-level explicit NVIDIA CUDA GPU programming

 PGI CUDA C for x64 and MIC

 Demonstration of CUDA C for x64 at SC 2010 in New Orleans

 Mixing of CUDA C, CUDA Fortran and PGI Accelerator directives

 Compiler Enhancements

 F2003 – object oriented features

 Latest EDG 4.1 C++ front-end – more g++/VC++ compatible, zero cost
exception handling (-zc_eh)

 AVX code generation, code generator tuning

 PGPROF Enhancements

 Uniform performance profiling across Linux, MacOS and Windows

 x64+GPU performance profiling

 Updated Graphical User Interface (GUI)

Fortran 2003 Features in
Current PGI Compiler Release

IEEE_EXCEPTIONS module IEEE_ARITHMETIC module Allocatable Array Extensions

ISO_C_Binding c_f_pointer c_f_procpointer

c_associated Enumerators Procedure Pointers

Interface procedure Pass and Nopass Attribute allocatable scalars

move_alloc() Pointer Reshaping Square brackets

volatile attribute and stmt IMPORT statement iso_fortran_env module

Access to environment Length of names and statements

Optional Kind to Intrinsics Asynchronous I/O' Wait Statement

PENDING specifier for INQUIRE Access = 'stream‟

POS specifier for INQUIRE IOSTAT kind in all i/o stmts SIZE kind in read/write stmts

Allow NAMELIST w/internal file IEEE_ARITHMETIC large arrays

Classes Type Extension(not polymorphic) polymorphic entities

type uses CONTAINS declaration Inheritance

EXTENDS_TYPE_OF intrinsic SAME_TYPE_AS intrinsic Typed allocation

Fortran 2003 Features in
Current PGI Compiler Release

READ blank specifier READ pad specifier WRITE delim specifer

NEW_LINE intrinsic IS_IOSTAT_END intrinsic IS_IOSTAT_EOR intrinsic

SYSTEM_CLOCK COUNT_RATE is real abstract interfaces

Type-bound procedures PASS attribute NOPASS attribute

NON_OVERRIDABLE attribute PRIVATE and PUBLIC attributes

PRIVATE statement for type bound procedures deferred type-bound procedures

ABSTRACT types i/o keyword encoding

Decimal comma for i/o, dc, dp ASYNCHRONOUS attribute and stmt

IEEE_FEATURES module Max, Min take character

errmsg on allocate/deallocate Mixed component accessibility

Sourced allocation (non-polymorphic) Associate Construct

Sourced allocation (polymorphic types)

Fortran 2003 Object Oriented
Features

generic type-bound procedures 11.0

select type construct 11.0

unlimited polymorphic entities 11.0

typed allocation for unlimited polymorphic entities 11.0

sourced allocation for unlimited polymorphic entities 11.0

deferred type parameters

(requires MRC 15.2 & MRC 16.2.1) 11.x

select type construct for unlimited polymorphic entities11.x

parameterized derived types (MRC 16.2.1) 11.x

final procedures 11.x

Compiler Release

Fortran 2003 I/O Features

i/o of inf and nan (fs#3962) 11.0

round i/o specifier, ru,rd,etc. 11.0

non-default derived type I/O 11.x

non-default derived type I/O (type-bound procedures) 11.x

recursive I/O w/external file 11.x

recursive I/O w/internal file 11.x

SIGN= Specifier 11.0

NEXTREC, NUMBER, RECL, SIZE kind 11.0

DECIMAL in INQUIRE stmt 11.0

F2003 NAMELIST group entities 11.0

Fortran 2003 I/O Features
Compiler Release

Fortran 2003 Remaining Features

deferred-character-length 11.0

generic & derived type the same 11.0

sourced allocation (deferred character) 11.0

PROTECTED attribute and stmt 11.0

stop stmt warns about FP exc. 11.0

rename user-defined operators 11.0

array constructor syntax 11.0

structure constructors 11.0

SELECTED_CHAR_KIND intrinsic 11.0

Compiler Release

RAPS Fortran 2003 Status
Code Name Feature Status, FS, Comments

tr15581-1 Allocatable array arguments PASSES

tr15581-2 Allocatable function results PASSES

tr15581-3 Allocatable array components PASSES

access Module access control PASSES

import Import specified PASSES

allocate_1 Allocate enhancements Doesn't compile - uses F2008 feature

array_1 Array constructors PASSES

constants Complex constants PASSES

intrinsics_1 Intrinsic enhanments PASSES

iomsg IOMSG specifier PASSES

move_alloc Intrinsic movealloc PASSES

realloc Allocatable array assignment PASSES, NOTE: needs Mallocatable=03

pointer_assign Pointer remapping PASSES

pointer_intent Pointer intent PASSES

procptr_1 Procedure pointer PASSES

procptr_2 Abstract interface PASSES

value Value attribute PASSES

ifs_mk2.tar cg minimization of quadradic cost PASSES with rewrite

test_01 ISO fortran environment PASSES

test_02 IEEE arithmetic PASSES

test_03 Enumerator example PASSES

test_04 ISO binding example PASSES

pthread Pthread example PASSES (Linux)

linked_list Unlimited polymorphism Doesn't compile FS#17055 (11.0)

AVX Support in 11.0

The next generation of processors from both Intel and AMD
will support AVX instructions.

AVX doubles the width of the floating point registers to 256
bits and adds 3 operand instructions resulting in more
then a 2X decrease in assembly language instructions in
performance critical sections of code

AVX are vector instructions where one instruction operates
on 8 sp, or 4 dp words at the same time, effectively
doubling the performance of the CPU.

Codes should be compiled with –fast for vectorization and
–Minfo to get compiler feedback

PGI compiled codes can made use of the Intel AVX
simulator

HPC Hardware Trends
Today: Clusters of Multicore x86

Tomorrow? Clusters of Multicore x86 + Accelerators

J
u
n
-

N
o
v
-

J
u
n
-

N
o
v
-

J
u
n
-

N
o
v
-

J
u
n
-

N
o
v
-

J
u
n
-

N
o
v
-

J
u
n
-

N
o
v
-

J
u
n
-

N
o
v
-

J
u
n
-

N
o
v
-

J
u
n
-

N
o
v
-

J
u
n
-

N
o
v
-

J
u
n
-

N
o
v
-

J
u
n
-

N
o
v
-

J
u
n
-

N
o
v
-

J
u
n
-

N
o
v
-

J
u
n
-

N
o
v
-

J
u
n
-

N
o
v
-

J
u
n
-

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

Custom

RISC/UNIX

Vector

Itanium

64-bit x86

32-bit x86

Top

500

PGI CUDA C for Multi-core x86

Will track NVIDIA‟s definition and evolution of the
CUDA C language for GPUs moving forward

 Implementation will proceed in phases

 Phase 1 prototype demonstration at SC10 in New Orleans (November)

 Phase 2 first production release in Q2 2011 with most CUDA C
functionality; not a performance release

 Phase 3 performance release in Q4 2011 leveraging multi-core and
SSE/AVX to implement low-overhead native parallel/SIMD execution

Will eventually support execution of Device kernels
on NVIDIA CUDA-enabled GPUs as well

 PGI Unified Binary technology will enable one binary
that uses NVIDIA GPUs when present or defaults to
multi-core x86 if no GPU is present

PGI CUDA C/Fortran

Optimization / Parallelization

Optimized

Host Code

PGI CUDA Compilers for
Multi-core x86 & NVIDIA GPUs

Massively Parallel

GPU Kernels

Parallel

Multi-core Kernels

…

Optimized CUDA C for Multi-core x86

 Process CUDA C as a native parallel programming
language for multi-core x86

 Inline Device kernel functions, translate chevron
syntax to parallel/vector loops, use multiple cores and
SSE/AVX instructions

 Execute each CUDA thread block using a single host
core, eliminate synchronization where possible

 Host Code: all PGI optimizations for Intel/AMD host
code will be supported

 Performance Goal: Well-structured CUDA C for multi-
core x86 programs approach the efficiency of the same
algorithm written in OpenMP

 NVIDIA TESLA C1060/C2050

 Lots of available performance ~1 TFlops peak SP

 Programming is a challenge

 Getting high performance is lots of work

 NVIDIA CUDA programming model and C for
CUDA simplify GPGPU programming

• Much easier than OpenGL/DirectX, still challenging

 PGI‟s CUDA Fortran provides an a Fortran
based analog to CUDA C

 PGI‟s Accelerator Directive compilers for C and
Fortran provide a higher level, OpenMP style of
programming NVIDIA GPU‟s.

Tesla C1060
Commodity Multicore x86 + Commodity Manycore GPUs

4 – 24 CPU Cores 240 GPU/Accelerator Cores

Tesla C2050 “Fermi”

4 – 24 CPU Cores 448/480/512 GPU/Accelerator Cores

Keys to performance on GPUs

 Lots of MIMD (Multiple Instruction, Multiple Data)
parallelism to fill the multiprocessors

 Lots of SIMD (Single Instruction, Multiple Data) parallelism
to fill cores on a multiprocessor

 High compute intensity (flops to memory access ratio)

Minimize data movement between host and GPU

Make use of memory hierarchy on the GPU

 Local memory (thread registers)

 Shared memory (local to an SM)

 Constant memory (less necessary on the Fermi because of
hardware cache)

Make ample use of pinned memory on the host

CUDA Fortran Programming

 Host code

 Optional: select a GPU

 Allocate device memory

 Copy data to device memory

 Launch kernel(s)

 Copy data from device memory

 Deallocate device memory

 Device code

 Scalar thread code, limited operations

 Implicitly parallel

33

Fortran VADD on Host

subroutine host_vadd(A,B,C,N)

real(4) :: A(N), B(N), C(N)

integer :: N

integer :: i

do i = 1,N

C(i) = A(i) + B(i)

enddo

end subroutine

34

subroutine vadd(A, B, C)

use kmod

real(4), dimension(:) :: A, B, C

real(4), device, allocatable, dimension(:):: &

Ad, Bd, Cd

integer :: N

N = size(A, 1)

allocate(Ad(N), Bd(N), Cd(N))

Ad = A(1:N)

Bd = B(1:N)

call vaddkernel<<<(N+31)/32,32>>>(Ad, Bd, Cd, N)

C(1:N) = Cd

deallocate(Ad, Bd, Cd)

end subroutine

Allocate device memory

Copy data to device

Launch a kernel

Copy data back from
device

Deallocate device memory

Elements of CUDA Fortran - Host

35

Declare device array

module kmod

use cudafor

contains

attributes(global) subroutine vaddkernel(A,B,C,N)

real(4), device :: A(N), B(N), C(N)

integer, value :: N

integer :: i

i = (blockidx%x-1)*32 + threadidx%x

if(i <= N) C(i) = A(i) + B(I)

end subroutine

end module

global means kernel
callable from the CPU

device attribute implied

value vs. Fortran default

blockidx from 1..(N+31)/32

threadidx from 1..32

array bounds test

Elements of CUDA Fortran - Kernel

37

CUDA Fortran Language

 Host code

 Declaring and allocating device memory

 Moving data to and from device memory

 Pinned memory

 Launching kernels

 Kernel code

 Attributes clause

 Kernel subroutines, device subprograms

 Shared memory

 What is and what is not allowed in a kernel

 CUDA Runtime API

38

Declaring Device Data

 Variables / arrays with device attribute are allocated in device

memory

 real, device, allocatable :: a(:)

 real, allocatable :: a(:)

attributes(device) :: a

 In a host subroutine or function

 device allocatables and automatics may be declared

 device variables and arrays may be passed to other host

subroutines or functions (explicit interface)

 device variables and arrays may be passed to kernel subroutines

39

Declaring Device Data

 Variables / arrays with device attribute are allocated in device

memory

module mm

real, device, allocatable :: a(:)

real, device :: x, y(10)

real, constant :: c1, c2(10)

integer, device :: n

contains

attributes(global) subroutine s(b)

...

 Module data must be fixed size, or allocatable (10.5 or later)

40

Pinned Memory

 Pinned attribute for host data

real, pinned, allocatable :: x(:,:)

real, device, allocatable :: a(:,:)

allocate(a(1:n,1:m), x(1:n,1:m))

...

a(1:n,1:m) = x(1:n,1:m) ! copies to device

....

x(1:n,1:m) = a(1:n,1:m) ! copies from device

deallocate(a, b)

 Downsides

 Limited amount of pinned memory on the host

 May not succeed in getting pinned memory

41

Allocating Device Data

 Fortran allocate / deallocate statement

real, device, allocatable :: a(:,:), b

allocate(a(1:n,1:m), b)

....

deallocate(a, b)

 arrays or variables with device attribute are allocated in device

memory

 Allocate is done by the host subprogram

 Memory is not virtual, you can run out

 Device memory is shared among users / processes, you can have

deadlock

 STAT=ivar clause to catch and test for errors

42

Copying Data to / from Device

 Assignment statements

real, device, allocatable :: a(:,:), b

allocate(a(1:n,1:m), b)

a(1:n,1:m) = x(1:n,1:m) ! copies to device

b = 99.0

....

x(1:n,1:m) = a(1:n,1:m) ! copies from device

y = b

deallocate(a, b)

 Data copy may be noncontiguous, but will then be slower

(multiple DMAs)

 Data copy to / from pinned memory will be faster

43

Using the API

use cudafor

real, allocatable, device :: a(:)

real :: b(10), b2(2), c(10)

. . .

istat = cudaMalloc(a, 10)

istat = cudaMemcpy(a, b, 10)

istat = cudaMemcpy(a(2), b2, 2)

istat = cudaMemcpy(c, a, 10)

istat = cudaFree(a)

44

Launching Kernels

 Subroutine call with chevron syntax for launch configuration

call vaddkernel <<< (N+31)/32, 32 >>> (A, B, C, N)

type(dim3) :: g, b

g = dim3((N+31)/32, 1, 1)

b = dim3(32, 1, 1)

call vaddkernel <<< g, b >>> (A, B, C, N)

 Interface must be explicit

 In the same module as the host subprogram

 In a module that the host subprogram uses

 Declared in an interface block

45

Launching Kernels

 Subroutine call with chevron syntax for launch configuration

call vaddkernel <<< (N+31)/32, 32 >>> (A, B, C, N)

type(dim3) :: g, b

g = dim3((N+31)/32, 1, 1)

b = dim3(32, 1, 1)

call vaddkernel <<< g, b >>> (A, B, C, N)

 launch configuration

 <<< grid, block >>>

 grid, block may be scalar integer expression, or type(dim3)

variable

 The launch is asynchronous

 host program continues, may issue other launches

46

Writing a CUDA Fortran Kernel (1)

 global attribute on the subroutine statement

attributes(global) subroutine kernel (A, B, C, N)

 May declare scalars, fixed size arrays in local memory.

 May declare shared memory arrays

 Limited amount of shared memory available

 shared among all threads in the same thread block

real, shared :: sm(16,16)

 Data types allowed

 integer(1,2,4,8), logical(1,2,4,8), real(4,8), complex(4,8),

character(len=1)

 Derived types

47

Writing a CUDA Fortran Kernel (2)

 Predefined variables

 blockidx, threadidx, griddim, blockdim, warpsize

 Executable statements in a kernel

 assignment

 do, if, goto, case

 call (to device subprogram, must be inlined)

 intrinsic function call (inlined)

 where, forall

48

Modules and Scoping

 attributes(global) subroutine kernel in a module

 can directly access device data in the same module

 can call device subroutines / functions in the same module

 attributes(device) subroutine / function in a module

 can directly access device data in the same module

 can call device subroutines / functions in the same module

 implicitly private

 attributes(global) subroutine kernel outside of a module

 cannot directly access any global device data (just arguments)

 host subprograms

 can call any kernel in any module or outside module

 can access module data in any module

 can call CUDA C kernels as well (explicit interface)
49

Building a CUDA Fortran Program

 pgfortran –Mcuda a.f90

 pgfortran –Mcuda[=[emu|cc10|cc11|cc12|cc13|cc20]]

 pgfortran a.cuf

.cuf suffix implies CUDA Fortran (free form)

.CUF suffix runs preprocessor

-Mfixed for F77-style fixed format

 Must use –Mcuda when linking from object files

 Must have appropriate gcc for preprocessor (Linux, Mac OSX)

 CL, NVCC tools bundled with compiler

50

CUDA C vs CUDA Fortran

 CUDA C

 supports texture memory

 supports Runtime API

 supports Driver API

 cudaMalloc, cudaFree

 cudaMemcpy

 OpenGL interoperability

 Direct3D interoperability

 arrays zero-based

 threadidx/blockidx 0-based

 unbound pointers

 pinned allocate routines

 CUDA Fortran

 no texture memory

 supports Runtime API

 no support for Driver API

 allocate, deallocate

 assignments

 no OpenGL interoperability

 no Direct3D interoperability

 arrays one-based

 threadidx/blockidx 1-based

 allocatable are device/host

 pinned attribute

51

Interoperability with CUDA C

 CUDA Fortran uses the Runtime API

 use cudafor gets interfaces to the runtime API routines

 CUDA C can use Runtime API (cuda...) or Driver API (cu...)

 CUDA Fortran calling CUDA C kernels

 explicit interface (interface block), add BIND(C)

interface

attributes(global) subroutine saxpy(a,x,y,n) bind(c)

real, device :: x(*), y(*)

real, value :: a

integer, value :: n

end subroutine

end interface

call saxpy<<<grid,block>>>(aa, xx, yy, nn)

52

Interoperability with CUDA C

 CUDA C calling CUDA Fortran kernels

 Runtime API

 make sure the name is right

module_subroutine_ or subroutine_

 check value vs. reference arguments

extern __global__ void saxpy_(float a,

float* x, float* y, int n);

…

saxpy_(a, x, y, n);

attributes(global) subroutine saxpy(a,x,y,n)

real, value :: a

real :: x(*), y(*)

integer, value :: n

53

Interoperability with CUDA C

 CUDA Fortran kernels can be linked with nvcc

 The kernels look to nvcc just like CUDA C kernels

 CUDA C kernels can be linked with pgfortran

 remember –Mcuda flag when linking object files

 This CUDA Fortran release uses CUDA 2.3 by default.

 CUDA 3.0 is available in 10.4 or later (-Mcuda=cuda3.0)

 CUDA 3.1 is available in 10.8 or later (-Mcuda=cuda3.1)

54

Simple Matrix Multiply
for an x64 Host

do j = 1, m
do k = 1, p
do i = 1,n
a(i,j) = a(i,j) + b(i,k)*c(k,j)

enddo
enddo

enddo

The PGI Accelerator Programming Model

!$omp parallel do
do j = 1, m
do k = 1, p
do i = 1,n
a(i,j) = a(i,j) + b(i,k)*c(k,j)

enddo
enddo

enddo

Parallel Matrix Multiply
for a Multi-core x64 Host

!$acc region
do j = 1, m

do k = 1, p
do i = 1,n

a(i,j) = a(i,j) + b(i,k)*c(k,j)
enddo

enddo
enddo

!$acc end region

PGI Directive-based Matrix
Multiply for x64+GPU

PGI Accelerator
Compilers

void saxpy (float a,

float *restrict x,

float *restrict y, int n){

#pragma acc region

{

for (int i=1; i<n; i++)

x[i] = a*x[i] + y[i];

}

}

saxpy:

…

movl (%rbx), %eax

movl %eax, -4(%rbp)

call __pg_cu_init

. . .

call __pg_cu_alloc

…

call __pg_cu_uploadp

…

call __pg_cu_paramset

…

call __pg_cu_launch

…

Call __pg_cu_downloadp

…

Host x86 Code
GPU/Accelerator Code

static __constant__ struct{

int tc1;

float* _y;

float* _x;

float _a;

}a2;

extern "C" __global__ void

pgi_kernel_2() {

int i1, i1s, ibx, itx;

ibx = blockIdx.x;

itx = threadIdx.x;

for(i1s = ibx*256; i1s < a2.tc1; i1s += gridDim.x*256){

i1 = itx + i1s;

if(i1 < a2.tc1){

a2._x[i1] = (a2._y[i1]+(a2._x[i1]*a2._a));

}

}

}

+

Unified HPC

Application

compile

link

execute … with no change to existing makefiles, scripts,

programming environment, etc

Important Terms

 Accelerator Directive

 in C: #pragma acc ...

 in Fortran: !$acc ...

 Region

 structured block (single entry/single exit)

 in C: surrounded by braces {}

 in Fortran: surrounded by begin/end directives

 Compute Region

 Region with loops targeted for accelerator

 Kernel

 Code executed on accelerator

 Kernel executes on a multidimensional rectangular parallel domain

Performance Goals

 Data movement between Host and Accelerator

 Minimize amount of data moved, number of data moves,

frequency of data moves

 Maximize bandwidth of data moves

 Optimize data allocation in device memory

 Parallelism on Accelerator

 Lots of MIMD parallelism to fill the multiprocessors

 Lots of SIMD parallelism to fill cores on a multiprocessor

 Lots more MIMD parallelism to fill multithreading parallelism

and hide long device memory latency

Performance Goals (2)

 Data movement between device memory and cores

 Minimize frequency of data movement

 Optimize strides – stride-1 in vector dimension

 Optimize alignment – 16-word aligned in vector dimension

 Store array blocks in data cache (CUDA “shared” memory)

Other goals?

 Minimize register usage?

 Small kernels vs large kernels?

 Minimize instruction count

 Minimize synchronization points

Program Execution Model

 Host

 executes most of the program

 allocates accelerator memory

 initiates data copy from host memory to accelerator

 sends kernel code to accelerator

 queues kernels for execution on accelerator

 waits for kernel completion

 initiates data copy from accelerator to host memory

 deallocates accelerator memory

 Accelerator

 executes kernels, one after another

 concurrently, may transfer data between host and accelerator

Getting Started
 Install a CUDA-enabled NVIDIA GPU

 Install latest CUDA-enabled NVIDIA driver

 Install the PGI 10.0 or later Compilers

 Test connection to GPU

pgaccelinfo ; pgcpuid

 Try sample programs

cd testdir

cp /opt/pgi/linux86-64/10.8/etc/samples .

make f1.exe c1.exe

Building Accelerator Programs

 pgfortran –ta=nvidia a.f90

 pgcc –ta=nvidia a.c

 Sub-options, host option:
 -ta=nvidia:{analysis | nofma | keepbin | keepptx |

keepgpu | maxregcount:<n> | cc10 |

cc11 | cc13 | cc20 | fastmath | mul24 |

cuda2.3| cuda3.0 | cuda3.1 | time}

 -ta=host

 Build for GPU or host execution with –ta=nvidia,host

 Enable compiler feedback with –Minfo or –Minfo=accel

 Must have appropriate gcc for preprocessor (Linux,OSX)

 CL, NVCC tools bundled with compiler, cross-dev environment

PGI Accelerator
Directives and Pragmas

PGI Accelerator Directives

 C

 #pragma acc directive-name [clause [[,]clause]... \

continuation to next line

 Fortran

 Fortran 90 free form

!$acc directive-name [clause [[,]clause]... &

continuation to next line

 Fortran 77 fixed form

!$acc directive-name [clause [[,]clause]...

!$acc* continuation to next line

Accelerator Compute Region

 C

#pragma acc region

{

for(i = 0; i < n; ++i) r[i] = a[i]*2.0f;

}

 Fortran

!$acc region

do i = 1,n

r(i) = a(i) * 2.0

enddo

!$acc end region

Compute Region Clauses
conditional execution

 C

#pragma acc region if(n > 100)

{

for(i = 0; i < n; ++i) r[i] = a[i]*2.0f;

}

 Fortran

!$acc region if(n.gt.100)

do i = 1,n

r(i) = a(i) * 2.0

enddo

!$acc end region

Compute Region Clauses
data copy clauses

 C

#pragma acc region copyin(a)

{

for(i = 0; i < n; ++i) r[i] = a[i]*2.0f;

}

 Fortran

!$acc region copyin(a)

do i = 1,n

r(i) = a(i) * 2.0

enddo

!$acc end region

Compute Region Clauses
data copy clauses – array sections

 C

#pragma acc region copyin(a[0:n-1])

{

for(i = 0; i < n; ++i) r[i] = a[i]*2.0f;

}

 Fortran

!$acc region copyin(a(1:n))

do i = 1,n

r(i) = a(i) * 2.0

enddo

!$acc end region

Compute Region Clauses
data copy clauses - multiple

 C

#pragma acc region copyin(a[0:n-1]) copyout(r)

{

for(i = 0; i < n; ++i) r[i] = a[i]*2.0f;

}

 Fortran

!$acc region copyin(a(1:n)) copyout(r)

do i = 1,n

r(i) = a(i) * 2.0

enddo

!$acc end region

Compute Region Clauses
data copy clauses – multi-D arrays

 C
#pragma acc region copyin(a[0:n-1][0:m-1])

{

for(i = 1; i < n-1; ++i)

for(j = 1; j < m-1; ++j)

r[i][j] = a[i][j]*2.0f;

}

 Fortran

!$acc region copyin(a(1:m,1:n))

do i = 2,n-1

do j = 2,m-1

r(j,i) = a(j,i) * 2.0

enddo

enddo

!$acc end region

Compute Region Clauses
data copy clauses – bidirectional copy

 C

#pragma acc region copyin(a[0:n-1][0:m-1]) \

copy(r[0:n-1][0:m-1])

{

for(i = 1; i < n-1; ++i)

for(j = 1; j < m-1; ++j)

r[i][j] = a[i][j]*2.0f;

}

 Fortran

!$acc region copyin(a(1:m,1:n)) copy(r(:,:))

do i = 2,n-1

do j = 2,m-1

r(j,i) = a(j,i) * 2.0

enddo

enddo

!$acc end region

Compute Region Clauses
device local data

!$acc region copyin(a(1:m,1:n)) local(r)

do times = 1,niters

do i = 2,n-1

do j = 2,m-1

r(j,i) = 0.25*(a(j-1,i)+a(j,i-1)+a(j+1,i)+a(j,i+1))

enddo

enddo

do i = 2,n-1

do j = 2,m-1

a(j,i) = r(j,i)

enddo

enddo

enddo

!$acc end region

Compute Region Clauses
device local data – array sections

!$acc region copyin(a(1:m,1:n)) local(r(2:m-1,2:n-1))

do times = 1, niters

do i = 2,n-1

do j = 2,m-1

r(j,i) = 0.25*(a(j-1,i)+a(j,i-1)+a(j+1,i)+a(j,i+1))

enddo

enddo

do i = 2,n-1

do j = 2,m-1

a(j,i) = r(j,i)

enddo

enddo

enddo

!$acc end region

Compute Region Clauses
when does data copy actually occur?

 C
#pragma acc region copyin(a[0:n-1][0:m-1])

/* data copied to Accelerator here */

{

for(i = 1; i < n-1; ++i)

for(j = 1; j < m-1; ++j)

r[i][j] = a[i][j]*2.0f;

} /* data copied to Host here */

 Fortran

!$acc region copyin(a(1:m,1:n))

! data copied to Accelerator here

do i = 2,n-1

do j = 2,m-1

r(j,i) = a(j,i) * 2.0

enddo

enddo

! data copied to Host here

!$acc end region

What can appear in an
Accelerator Compute Region?

 Arithmetic

 C: int, float, double

 F: integer, real, double precision, complex

 Loops, IFs

 Kernel loops must be rectangular: trip count is invariant

 Obstacles with C

 unbound pointers – use restrict keyword, or –Msafeptr, or

–Mipa=fast

 default is double – use float constants (0.0f), or –Mfcon, and float

intrinsics

 Obstacles with Fortran

 Fortran pointer attribute is not supported

Supported C Intrinsics

 C: #include <accelmath.h>

tanhftanf

sqrtfsinhfsinfpowf

log10flogffminffmaxf

fabsfexpfcoshfcosf

atan2fatanfasinfacosf

tanhtan

sqrtsinhsinpow

log10logfminfmax

fabsexpcoshcos

atan2atanasinacos

Supported Fortran Intrinsics

tanhtansqrtsinh

sinsignrealnot

nintmodminmax

log10logiorint

ieoriandexpdble

coshcosatan2atan

asinaintacosabs

Device Resident Data

 Accelerator data region

 moves data, like a compute region

 compute regions within a data region will not need to move that

data

 subprogram argument passing may include hidden pointers to

accelerator copies

 Implicit data region for each function, subroutine,

program

 Leave data on the device between accelerator compute

regions, even across subroutine boundaries

Accelerator Data Region

 C
#pragma acc data region

{

...

}

 Fortran
!$acc data region

...

!$acc end data region

 May be nested and may contain compute

regions

 May not be nested within a compute region

Data Region Clauses

 Data allocation clauses
 copy(list)

 copyin(list)

 copyout(list)

 local(list)

 Data in the lists must be distinct (data in only one list)

 May not be in a data allocate clause for an enclosing data region

 Data update clauses
 updatein(list)

 updateout(list)

 Data must be in a data allocate clause for an enclosing data

region

Accelerator Data Region

 !$acc data region copy(a)

...

!$acc region copyin(b)

do i = 1,n

a(i) = a(i) * b(i)

enddo

!$acc end region

...

!$acc end data region

 copy, copyin, copyout, local clauses allowed on data

region

Implicit Data Region

 subroutine sub(a)

real a(:)

!$acc copy(a)

...

!$acc region copyin(b)

do i = 1,n

a(i) = a(i) * b(i)

enddo

!$acc end region

...

end subroutine

 copy, copyin, copyout, local data directives allowed

 list may include any variable or array

Update directive

 !$acc data region copyin(a), local(b)

call getvalues(b)

!$acc updatein(b)

!$acc region

do i = 1,n

a(i) = a(i) * b(i)

enddo

!$acc end region

!$acc updateout(a)

call outputvalues(a)

!$acc end data region

 Executable directive to copy data to/from device-resident arrays

Data Region Clauses
Mirroring Fortran Allocatables on the Device

 Fortran mirror clause for allocatable arrays

 float, dimension(:), allocatable :: a

!$acc data region mirror(a)

allocate(a(1:n))

!$acc region copyin(b)

do i = 1,n

a(i) = b(i) * 2.0

enddo

!$acc end region

...

deallocate(a)

!$acc end data region

 Mirrored arrays will match allocation state on host and

accelerator

Data Region Clauses
Passing Device Copies as Arguments

subroutine sub(a, b)

real :: a(:), b(:)

!$acc reflected(a)

!$acc region copyin(b)

do i = 1,n

a(i) = a(i) * b(i)

enddo

!$acc end region

...

end subroutine

subroutine bus(x, y)

real :: x(:), y(:)

!$acc data region copy(x)

call sub(x, y)

...

Passing Device Copies

 REFLECTED clause only available in Fortran

 List of argument arrays

 Caller must have a visible device copy at the call site

 Subprogram interface must be explicit

 interface block or module

 Compiler will pass a hidden argument corresponding

to the device copy

*NOTE: MIRROR & REFLECTED are not supported in

PGI 10.8! They are expected to be available in PGI 2011

PGI Accelerator Region Clauses
Summary

PGI 10.0

PGI 10.0

Est PGI 11.0

Est PGI 11.0

PGI 10.0

PGI 10.0

PGI 10.0

PGI 10.0

PGI 10.0

Availability

compute, data, executableupdatein(list)

compute, data, declarationcopy (list)

compute, data, declarationcopyin (list)

compute, data, declarationcopyout (list)

compute, data, declarationlocal (list)

data, decl (Fortran)mirror (list)

compute, data, decl (Fortran)reflected(list)

compute, data, executableupdateout(list)

computeif (cond)

Region ScopeClause

PGI Accelerator
Loop Mapping Clauses

Summary

loop PGI 10.0 kernel

loopPGI 10.0private (list)

loopEst. PGI 11.0cache (list)

Est. PGI 11.0

PGI 10.0

PGI 10.0

PGI 10.0

PGI 10.0

Availability

loopunroll (width)

loopvector [(width)]

loopseq [(width)]

loopparallel [(width)]

loophost [(width)]

ScopeClause

Understanding & Using
Compiler Feedback

Programmer Productivity:
Compiler-to-Programmer Feedback

HPC

Code
PGI

Compiler

x64

CCFF

Trace PGPROF

HPC

User

Acc

+

Directives, Options, RESTRUCTURING

Restructuring for

Accelerators is More

Difficult than it was

for Vectors

Performance

Compiler Feedback Messages

 Data related

 Generating copyin(b(1:n,1:m))

 Generating copyout(b(2:n-1,2:m-1))

 Generating copy(a(1:n,1:n))

 Generating local(c(1:n,1:n))

 Loop or kernel related

 Loop is parallelizable

 Accelerator kernel generated

 Barriers to GPU code generation

 No parallel kernels found, accelerator region ignored

 Loop carried dependence due to exposed use of ... prevents parallelization

 Parallelization would require privatization of array ...

Compiler Messages Continued

Memory optimization related

 Cached references to size [18x18] block of „b‟

 Non-stride-1 memory accesses for „a‟

Availability and
Additional Information

 PGI Accelerator Programming Model – supported for
x64+NVIDIA targets in the PGI 2010 Fortran and C
compilers; see www.pgroup.com/accelerate for a
detailed specification of the PGI Accelerator model, an
FAQ, and related articles and white papers

 CUDA Fortran – supported on NVIDIA GPUs in PGI
2010 Fortran 95/03 compiler; see
http://www.pgroup.com/resources/cudafortran.htm for a
detailed specification

 Other GPU and Accelerator Targets – are being
studied by PGI, and may be supported in the future as
the necessary low-level software infrastructure (e.g.
OpenCL) becomes more widely available

http://www.pgroup.com/accelerate
http://www.pgroup.com/resources/cudafortran.htm

Where to get help

• PGI Customer Support - trs@pgroup.com

• PGI User's Forum -
http://www.pgroup.com/userforum/index.php

• PGI Articles -
http://www.pgroup.com/resources/articles.htm
http://www.pgroup.com/resources/accel.htm

• PGI User's Guide -
http://www.pgroup.com/doc/pgiug.pdf

• CUDA Fortran Reference Guide -
http://www.pgroup.com/doc/pgicudafortug.pdf

