
Making the WeatherMaking the Weather
VisualVisual, , FlexiFlexible and ble and OnlineOnline

Jozef Matula, jozef.matula@iblsoft.comJozef Matula, jozef.matula@iblsoft.com

OverviewOverview

• Using Python for Web Services in Visual Weather

• Lessons learned about WMS and tiling and making it effective

• The status and future of IBL web related products

DEVELOPMENT OF PYTHONDEVELOPMENT OF PYTHON
WEB SERVICES IN VISUAL WEATHERWEB SERVICES IN VISUAL WEATHER

Simple & easy

Python Web Services in Visual WeatherPython Web Services in Visual Weather

• Use of Visual Weather’s Python API together with
scripting allow rapid development and instant
deployment of web services in mod_python style

import IBL.Kernel; from IBL.Net import apache
def getSYNOPTemperature(req, station):
e = K.Expression(

"@station v6[5,2] Fsynop_latest$sv52$C")
e.setArgument("station", K.mkStation(station))
tSYNOP = e.eval()
req.write(str(tSYNOP["temperature"].

toValue(K.u.T_CELS)))
return apache.OK

http://my-server/service/getTemperature?station=LZIB

Python WS Python WS -- a real examplea real example
https://ogcie.iblsoft.com/ria/helpers/distance?places=

EPSG:4326[48;19]+EPSG:4326[49;20]+EPSG:4326[48;19]

import math
import IBL.Geo as G

def __parseCoord(s_coord):
a = s_coord.split('[', 2)
s_crs = a[0]
s_xy = a[1].rstrip(']')
(prj, tr) = \
G.CRSFactory.getInstance().\

createProjectionWindow(\
s_crs, 1, -1, 1, 1)

if prj is None:
raise Exception(\
"Unsupported CRS"+s_crs)

a = s_xy.split(';', 2)
return prj.xy2lp(
tr * G.Coord(float(a[0]), float(a[1])))

def distance(req, places):
a_points = places.split(" ")
f_distance = 0
lastCoord = None
for s_coord in a_points:

if lastCoord is None:
lastCoord = __parseCoord(s_coord)

else:
c = __parseCoord(s_coord)

f_distance += \
lastCoord.distance(c)

lastCoord = c
return str(f_distance)

MAKING WMS USE EFFECTIVEMAKING WMS USE EFFECTIVE
Scalability vs.

Scalability vs. effectivityScalability vs. effectivity

• Scalability becomes a buzzword if it means that the
software scales only with your wallet

• Consider - that 1 server should “feed”
– 10 forecasters working
– 10 “actions” per minute
BUT:
– A map may have multiple layers - times 5
– Animations - times 15

Total: 7500 req/h = 2 req/s
Expected response time 1-3s!

WMS caching?WMS caching?

• Rendering a WMS image takes time T - assuming
200ms composed of:
– Data retrieval
– Data reprojecting and display
– Rasterisation
– Encoding final image

• Caching means, skipping all the phases and returning
final image - typically 1-10ms

• Caching assumes high probability of exactly same
request BUT in WMS the BBOX can have infinite
number of variables (due to zooming, panning, etc.)

Image tiling in theoryImage tiling in theory

• http://www.maptiler.org/google-maps-coordinates-
tile-bounds-projection

• Step 1. Define the “World extent”

• Step 2. Split the World into tiles
(usually squared 256x256px)

• Step 3. Build a “pyramid” of tiles (1 tile
as very top zoom level). For example
split each tile into 4 sub-tiles

WMS tilingWMS tiling

• Why tiling?
It’s well accepted theory that tiling is the only
way how to make WMS scalable.

• Tiling separates world view into finite number of
“tiles”.

• Various tiling WMS extension proposals...
• Finally went for yet another - for the back-end web

service for the UK MetOffice Invent project -
GetGTile request - mimics the Google Maps API-like
tiling via WMS GetMap like interface.

• Note: Tiling requires not only CRS but also maximum
extent BBOX!

Tiling Tiling -- The success storiesThe success stories

• Google Maps, MS Virtual Earth, Yahoo! Maps and
others:
– Due to stateless protocol very distributable &

cache-able even in browser
• BUT: They have just 4 “solid layers”

Disk space neededDisk space needed

• Imagine:
– 100 layers x 20 vertical levels
– 10 time steps
– Average 3 styles per layer
– Only 6 “QuadTree” zoom levels

1+4+16+256+1024+4096 = 5397 tiles
– Only PNGs (JPEG is not transparent)
– Average tile size 20kB

40kB

13kB

10kBTotal 630GB
I almost forgot - each 6 hours!

PROBLEMS WITH TILINGPROBLEMS WITH TILING
Real life

Major problems with tiling we facedMajor problems with tiling we faced

• Tiles have to be generated on-demand

• Problems related to tiles rendering (such as edge
effects)

• Time consistency issues

• Tile invalidation

Edge effects Edge effects -- Symbol cuttingSymbol cutting

Grid of tiles is not parallel underlying data \grid

If interpolation is performed on reduced grid than at
the edge the isoline is “extrapolated”.

Edge effects Edge effects -- NonNon--matching of isolinesmatching of isolines

Edge effect solutionsEdge effect solutions

• Ideally we could render the image for the whole
zoom level and just cut it into tiles.

• BUT we considered:
– For higher zoom levels the whole image resolution

is huge.
– For some data types such observations - rendering

of tiles is very effective because it requires only
limited set of data, therefore it makes sense think
of some tricks to really cheat this effects.

Solution Solution -- Isoline edge effectsIsoline edge effects

Finally cut off the
rendering margin

Rendering the
isolines with a
“margin”
ideally that big
as the
surrounding
tiles.
This works well
with
observation
decluttering
too.

Sure, this increases the
rendering time.

Solutions Solutions -- Windbarb edge effectsWindbarb edge effects

1. Use rendering
margin and draw
“all” symbols

2. or interpolate
wind into regular
grid matching the
reference system
of tiles and trick
the size of
windbarbs to fit
to the tile.

MultiMulti--tile renderingtile rendering

• Data retrieval and
reprojection is costly.

• Once you retrieve
data for the tile
request it’s “cheap”
to render
“surrounding” tiles.

• This make single tile
request expensive

• This also reduces the
tile edge effects

Cut off the
rendering margin

Store ALL tiles in the cache

Browser caching and time consistencyBrowser caching and time consistency

• Cache in any browser is designed for “resources”

http://khm0.google.com/kh/
v=62&x=560&y=355&z=10&s=Gal

• To utilise this, each tile have to be turned into such
resource (in the REST terminology):
– URL expresses time-independent unique identifier

This mostly implies that time related default
assumptions SHOULD NOT be taken (such as best
model run time or default validity time)

– Proper HTTP headers have to used
(GET request, Cache-Control)

InterInter--tile time consistencytile time consistency

• What if the data change between rendering of tiles?
(new observation data arrives, data amendments)

This is an issue without any simple solution.

• Can be solved only by introducing some
state/transaction mechanism to the tile requests.
e.g. rendering of observations in “time snapshots”,
but this complicates the client’s access significantly.

• Then it’s much easier to use traditional WMS GetMap
request with CPU penalty on the server side.

MetOffice MetOffice ““InventInvent”” TestsTests

Cost of a map requestCost of a map request

• Is the tile based access to a map quicker than
GetMap request?

It depends...
• Tiling produces lot of requests increasing high

network latency.
• Tiling in longer term view reduces server CPU load

significantly.
• Simple (and fast and tuned) WMS layers can provide

comparable performance to tiling
(200ms == 20 tiles * 10ms)
This is visible in animations of simple layers such as
radar.

VISUAL, FLEXI, ONLINEVISUAL, FLEXI, ONLINE
The web synergie of

Visual Weather OGC WS statusVisual Weather OGC WS status

• WMS 1.1.0-1.3.0:
– GetGTile extension
...&REQUEST=GetGTile&LAYER=MSGIR&
CRS=EPSG:900913&
TILEZOOM=4&TILEROW=5&TILECOL=7

– GetLegendGraphic
• WCS 1.0.0 for grid data
• WFS 1.0.0-1.1.0 for any observed or derived data,

ability to define custom feature types.
https://ogcie.iblsoft.com/obs?

SERVICE=WFS&REQUEST=GetCapabilities
• WFS-T 1.0.0-1.1.0 for weather features

Latest TAF for EGLF via WFSLatest TAF for EGLF via WFS
• https://ogcie.iblsoft.com/obs?SERVICE=WFS&

VERSION=1.1.0&REQUEST=GetFeature&
TYPENAME=TAFReportLatest&ICAO=EGLF

<wfs:FeatureCollection …>
<gml:featureMember>

<TAFReportLatest>
<ICAO>EGLF</ICAO>
<country>EG</country>
<issueTime>2010-06-03T06:27:00</issueTime>
<reportText>

EGLF 030627Z 0306/0315 09008KT 9000 NSC BECMG 0306/0309 CAVOK=
</reportText>
<gml:location>

<gml:Point>
<gml:pos srsName="EPSG:4326">-0.78000000000000236 51.280000000000001</gml:pos>

</gml:Point>
</gml:location>
<valid>true</valid>
<validFrom>2010-06-03T06:00:00</validFrom>
<validTo>2010-06-03T15:00:00</validTo>

</TAFReportLatest>
</gml:featureMember>

</wfs:FeatureCollection>

WMS, WFS, WCS?
Python WSs

Dozens of bespoke
protocols/methods
(REST & JSON)O

GCO
GC

User

Components for Web Portals General forecastin
g app.

Major Components & ProtocolsMajor Components & Protocols

Key protocol decisions (taken)Key protocol decisions (taken)

• OGC WMS - to access any imagery:
– Tiled for all “time-constant” data
– Traditional WMS for all time-varying data

• OGS WFS - to access all “object” data (aka SQL
table) - for example:
– Weather Features
– Observations
– But also Station Catalogue, and may be NWP data

• Python bespoke Web Services - for anything else
• Security: HTTPS & Basic Auth
• http://code.google.com/p/flexiweather

Thank you
for your attention!

Questions?

Thank youThank you
for your attention!for your attention!

Questions?Questions?

	2010-06-03-IBL-web.ppsx

