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Developments in Diagnostics Research SCECMWF

Abstract

Over the years, data assimilation and forecast schemestialed into very complex systems. For
example, the ECMWEF data assimilation system now handles/darmge range of space and surface-
based meteorological observations, combining these wiith information of the atmospheric state
and using a comprehensive linearised forecast model taretisat the observations are incorpo-
rated in a dynamically consistent way. Meanwhile the ECMWifetast model itself represents ever
more physical processes, with ever increasing compleaityl, is integrated at ever higher resolu-
tion. Recognising that any analysis or forecast is actwaflyobabilistic one, ECMWF continues to
incorporate representations of uncertainty into all iteéast components. Efficient and coordinated
diagnosis of such a complex system is a necessity.

Diagnostics has always been an active area of research aetbgment at ECMWEF. Presently,
ECMWF has a small nucleus of scientists dedicated to didgsos/ho have a broad understanding
of the global circulation and an overview of the assimilatand forecasting systems. Their unify-
ing role will become ever more important as progress leadsjtably, to more fragmentation and
specialisation within the overall task of producing forgtsa However diagnostic work is not only
about getting an overview, because all researchers needdoqge ever more detailed diagnostics
within their own particular fields. These trends raise thestion of whether we will need to enhance
communication, coordination and collaboration acrosdrthéitional section boundaries in future.
In order to address this issue, and to produce this repoftpaking Group on Diagnostics’ (WGD)
has been established at ECMWF.

In this report, a diagnostics framework is introduced whiahlights key diagnosis areas and their
links. From each area, one or two ‘strategic’ diagnosti¢s@or techniques) are highlighted. These
tools are ‘strategic’ in that they are likely to be develofedher and will inform future system
developments. In order to demonstrate the utility of acsesgion collaborative work, these tools
have been used to collectively address a long-standindggorofior the ECMWF forecasting systems:
that of the over-active Asian monsoon. This case-studyigesva structural blue-print for future
across-section projects focused on other forecastinggmsband on the assessment of new model
cycles.

In discussing the above, together with future diagnostjoirements, this paper shows where ECMWF
stands at present in terms of diagnostic work and propostatagy that will ensure it meets the
challenges of the future.
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1 Introduction

1.1 What do we mean by ‘Diagnostics’?

To some, ‘Diagnostics’ is about a knowledge of the real wdldorenz energy cycles, equatorial wave
dispersion diagrams, etc). For others, Diagnostics is tath@uin-depth analysis of a particular case-
study (the analysis of the UK'’s ‘October storm’ of 1987, faample). For a third group, Diagnostics is
the investigation of observation, analysis, or forecgstesn error. Although seemingly very different,
all these interpretations embody the concept of understgnd his understanding goes beyond simple
metrics of the circulation or the monitoring of scores. Whihe Diagnostics work of an operational
forecast centre such as ECMWEF will fall most naturally inte tatter ‘diagnosis of error’ category,
metrics of the real world often form a good basis for assgsgiis error. In addition, single forecast
failures often necessitate the need for the diagnosis efsaglies and these often feature in the ‘daily
report’. Nevertheless, there is an emphasis on the ‘diagobdsrror’ and this will be somewhat different
from what some readers will be familiar to.

1.2 Why do we need diagnostic research?

Standard geophysical textbooks contain many examplesghdstic techniques (predominantly circu-
lation metrics) and one may ask whether there is a need fihrdludiagnostic research. In fact the need
is great. A few key reasons are that

e The increasing accuracy of forecast systems (and obsemgatmeans that residual errors are
smaller than ever before. More precise diagnostic toolseayeired to quantify these errors.

e The volume of observations assimilated has increased rexg@lly’ over recent decades and
will continue to increase in the future. Sophisticated saie required to assess data quality and
the redundancy of information in order to prioritise effoon the most promising observations.

e Forecast models represent increasing numbers of physicdlrficro-physical) processes. The
scope for interactions between these processes is inogeasd new diagnostic tools that can
identify remaining model errors in the face of such intamacs are required.

e Asresolution increases in the future, the model will mote an‘grey zone’ where non-hydrostatic
effects begin to be important and convective processes bedie explicitly resolved. Diagnostics
that target this grey zone (and beyond) will become necgssar

e The growing use of probabilistic forecasts has led to thiugion of uncertainty estimates in all
aspects of the forecast system. This brings with it the amirgy need for careful diagnosis of the
relationship between predicted uncertainty (ensembleasprand actual error.

e 4D-Var incorporates both model and observational aspantbtools are increasingly required to
diagnose their respective contributions.

1.3 The Working Group on Diagnostics

This paper discusses the present state of diagnostics aM#EE Mecent advances, and strategies for
the future. In order to address these topics, a Working Gauiagnostics (WGD) was recently
established at ECMWF. The WGD comprises representatioes &l sections in the Research division
and the Meteorological Operations section. It has beenyathb of the dedicated diagnostics research
scientists. The idea being that these representativessaraluits of information between the WGD
and their respective sections. The first task of the WGD walefime clearly its roles and these can be
summarised as the:
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1. Over-sight of collaborative projects

e Diagnosis of existing assimilation or forecasting probdem
e Diagnosis of major new model cycles

2. Strategic coordination of diagnostic developments

e Highlighting opportunities for new diagnostic tools of comon interest
e Making existing diagnostic tools more widely usable
e Ensuring sufficient computing and storage resources fgndistics

3. Across-section communication of information and result

e Through representatives to their sections

e Using a central diagnostics web page

e By coordination with the special topics of the OD/RD meeting
e With seminars on tools and collaborative projects

The next sub-section highlights the areas within the ol&ask of forecasting where there is scope for
diagnosis and, therefore, diagnostic tools. Diagnostrsat always be unified in a seamless way, but
they can sometimes all be applied to the same forecastirtggmno Hence the following sub-section
will introduce a key and long-standing problem of the ECMVFetast system. This problem (that of
the over-active Asian monsoon) will form the basis of a threa story, that provides a unifying theme
in this paper.

1.4 The scope for Diagnostics at ECMWF

Figurel presents a schematic diagram of the forecasting systemrifdieistic, ensemble, atmosphere-
only or coupled, and at all lead-times). For example, theehadd observations are combined in the
analysis. The word ‘analysis’ refers to the process of datamilation (deterministic or ensemble) and
also the analyses themselves. The analysis is the ‘cogl-fetere model and observations ‘collide’
and the scope for diagnosis is immense and growing. Thedéfivy box summarises, in broad strokes,
these possibilities for diagnosis. For example, it is gaesio monitor the quality of the observations
through a comparison with the first-guess (FG) forecast aitidl @ther observations. Through data
denial experiments and through adjoint techniques it isiptes to diagnose the impact of different
sets of observations on the quality of the forecast. Meafysisancrements can indicate systematic
model error associated with ‘fast’ processes. An essettimponent of 4D-Var is the linearised model,
and the natural place to diagnose its ability to approxintaefull non-linear model is within the data
assimilation. Complementary diagnostics are possibleimthe re-analysis, particularly because of its
focus on long timeseries and climate-related trends. Cadsgra within the ensemble data assimilation,
of analysis uncertainty and analysis error gives usefarimftion about the representation of stochastic
processes within the model.

The analysis is used to initiate the forecast. The word tas# refers to the forecast process and also
the forecast products themselves. The correspondingwyélix again summarises the scope for diag-
nosis when comparing the forecast with the analysed antdsgroed ‘truth’. For example, the impact
of physics changes on forecast error can be diagnosed. Dyalaeieconnections and their interactions
with the physics can also be assessed. Errors associatetheiitoupled (ocean-atmosphere) processes
can be diagnosed here too. Hindcasts initiated from th@aérses (which involve a single model cycle)
offer scope for distinguishing flow-dependent changestiordrom forecast system improvements. As
with the ensemble data assimilation, discrepancies betersemble forecast spread and error can give
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Development

T

Observation Monitoring Physics Impacts
Observation Impact Dynamics—Physics Interactions
Fast Model Error Coupled Processes
Linear Model Error Flow-Dependent Error
Re-Analysis Forecast Uncertainty
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Figure 1: Diagnostics framework showing the key aspectslied in forecasting. ‘Forecasting’ includes de-
terministic and probabilistic forecasts at all ranges, apdth atmosphere and ocean components. The ‘model’
includes both non-linear and linear versions. Possit@itfor diagnosis are summarised in the yellow boxes. These
include diagnosis of the analysis (data assimilation) amré¢ast. There is a direct correspondence between the
labels in these yellow boxes and the subsections of seztion

information about the representation of stochastic psE®sand aid in diagnosing reasons for proba-
bilistic forecast ‘busts’. ‘Diagnostic Verification’ ingtles aspects traditionally thought of as ‘Forecast
Verification’, but which can provide useful, additional,derstanding of forecast error. For example,
tracking statistics can lead to useful understanding ofesyatic errors in the speed and intensity of
cyclonic features, and will become increasingly importanattempts to diagnose problems with rare,
mobile, severe weather events. Conditional sampling basgmbor weather verification scores is help-
ing to focus diagnostic attention towards key forecastrsrro

Within each diagnosis area of the framework presented in Fthere will be several diagnostic ap-
proaches and tools. It is not useful to discuss them all hregreéat detail. Instead, a few ‘strategic’
tools, that will be developed further, that will be key touté developments, and that demonstrate the
breadth and depth of ECMWF'’s diagnostic work will be diseusand applied. Wherever possible, the
application will be to the key issue of the over-active manso

1.5 A key forecasting problem — the over-active Asian summemonsoon

The over-active Asian monsoon has been a long-standing festECMWF'’s forecasting systems. The
fact that it is a long-standing issue suggests it is a har@leno to solve, perhaps involving interac-
tions over multiple timescales, perhaps with a remote, eméegly unconnected root cause. Hence it
makes a good candidate for a collaborative project spanmiagy sections within ECMWF (and be-
yond: ECMWEF also has a collaborative project with the UK Méiffice). Figure2 introduces the
problem by showing results that span a large range of didigreo®as, including observations, analyses,
medium-, monthly-, and seasonal-ranges, and researchirexmation.

The top row (Fig2a—c) shows observed 1991-2007 GP@HI¢r et al, 2003 precipitation climatolo-

gies for June (left), July (middle) and August (right), restively. Each month displays broadly the
same pattern of precipitation with maxima centred over thstwoasts of India and Burma/Myanmar
and on the Equator. Precipitation over land areas generakimises in July. All panels below the top
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Figure 2: Asian summer monsoon precipitation climatolsgi@ mm day?) based on the 17 years 1991-2007.
(a)—(c) ‘Observed’ GPCP for June, July and August, respetyi All other fields are anomalies relative to GPCP.
(d)—(f) ERA Interim based on the precipitation accumulateel first 12 hours of the 0 and 12 UTC forecasts using
model cycle 31R2. (g)—(i) At a lead-time of 5 days based oudaists (5 members once a week) using model cycle
35R2 with persisted SST. (j)—(I) as (g)—(i) but at lead-8r2—18 days with coupled model from day 10. (m)—(0)
Climatology of the coupled seasonal-forecast model sfaote 1 May (months 2, 3 and 4, respectively) using
model cycle 36R1. (p)—(r) As (m)—(0) but for the uncoupledehat T 159 started from 1 November (months 8,
9 and 10, respectively). (s)—(u) As (p)—(r) but at the mugjnér resolution of 12047.
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row show differences with this GPCP data for the same thregtim@and the same set of years.

Short-range (12h) precipitation forecasts from ERA-limere-analyses (Figzd—f) are sometimes used
as an alternative for observed precipitation but note thatlhdian Peninsula is somewhat drier than
GPCP, with more precipitation over the seas surroundingPgrensula and over the Himalayas.

At the longer (medium-range) lead-time of 5 days (Fig-i) re-forecasts using the recent cycle 35R2
at resolution T399 demonstrate how the over-predictionretipitation over the ocean gets worse and
begins to encroach over the land regions. Note the intercsgided precipitation bias on the western

coast of India, particularly in July. Note also that a dryshieas developed over Bangladesh. Averaged
over the lead-times 12-18 days (F&j-1), the biases seen at day 5 generally become even stronger

Figure2(m)—(0) show results from coupled model integrationsatiged on 1 May (for the years 1991—
2007) using cycle 36R1 at atmospheric resolution T159. hregd, precipitation biases over the ocean
are reduced but Bangladesh remains dry.

Figure2(p)—(r) show results for atmosphere-only 13-month simaitet initialised on 1 November using
cycle 36R1 at resolution T159. Comparison with the coupked.(2m-o0) and D+12-18 uncoupled
(Fig. 2j-1) results demonstrate that coupling reduces the pitatiph biases over the oceans and that,
without this coupling, biases continue to increase wittd{gme. The implication is probably that
coupling sweeps an atmospheric problem under the oceariget.

The final row (Fig.2s—u) show uncoupled results identical to the previous rotvab@a much higher

resolution (T2047). These simulations were conducted witide’Athena’ project that utilised surplus
computing power in the United States. It can be seen thaebiastually get worse. Clearly, without
any special tuning or physics adjustments, raw resoluiarot a solution to the over-active monsoon.

In as much as the forecast panels are more yellow and redhibgrate blue and purple, this problem is
referred to here as the ‘over-active’ Asian summer monsoon.

In section2, the diagnostic tools of each of the areas highlighted in Figill be discussed and, where
appropriate, applied to the Asian monsoon problem. It shbel noted that the monsoon project is a
‘work-in-progress’, and used here primarily as a conveniehicle to demonstrate our diagnostic tools,
and as a means of establishing a blue-print for future cotketive projects. A summary of the monsoon
project, together with initial diagnostics of the new cy8®R4 are given in sectioB. A discussion of
lessons learnt and proposed future strategies is presensedtion4.

2 Diagnostic tools

This section discusses ongoing diagnostic research tasivn the 12 areas identified in Fifj. As
discussed above, some consistency is achieved by applidaggastic tools to the ‘over-active Asian
monsoon’ problem wherever possible.

2.1 Observation Monitoring

Observation monitoring is a key component of the ECMWF disgic system. Many diagnostics are
based on departures of the First Guess (FG) and analysisfimobservations (so called ‘innovations’
or ‘departures’), as calculated during the assimilatioocpss. Statistics on these provide a powerful
basis for the characterisation of observation, assiroitatr model aspects.

The generation and plotting of observation statistics iregua high degree of flexibility, provided by
the OBSTAT-tool developed at ECMWEF. Such flexibility is imfant to allow diagnosis from many
perspectives: temporal, geographical, vertical colummg land sea, data usage flags, observation angles,
etc. Currently, all satellite observations presented éathalysis system are monitored and published on
the weld.

http://www.ecmwf.int/products/forecasts/d/chartshitoring/satellite
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Monitoring of observation departures plays a role upstreawh downstream of the data assimilation
process. Its use can be broadly grouped into three areas:

e Characterisation of observations and their observaticgratprs, including observation biases
(Geer et al. 2010, performance of quality controlKfzeminski et al. 2009, bias correction
(Auligné and McNally 2007), and the specification of observation errdbegroziers et al2005
Bormann and Baue201Q Bormann et al.2010, etc. ECMWF frequently provides important
input to the calibration/validation of new satellite m@s$ (u et al, 2010.

e Monitoring of the temporal stability of the observationsensure that only consistently good
quality data is used in operations. Data anomalies are t@etemitomatically, and these may
trigger corrective action. The routine monitoring stétistare of great interest also externally for
data providers and other NWP centres.

e Highlighting of model problems which will be apparent, fosiance, through consistent system-
atic non-zero FG departures for several observatibtealy, 2008. In the future, this will be
extended to comparisons between all assimilated obsengaéind forecasts at different ranges.

An example of relevance to the monsoon problem is the mangaof Indian radiosonde data. For
many years, temperature reports from these radiosondegjeaerally been blacklisted in the ECMWF
operational data assimilation because of their appareonsistency and low quality, as inferred from
FG departures. See for example in F3ghe monthly-mean (solid) and standard-deviation (dasbéd)
first-guess departures for Thiruvananthpuram, southetia jprior to 2009. As part of a programme to
update the Indian radiosonde network, the sonde-type udddravananthpuram was recently changed.
First-guess departures in Figfrom early 2009 onwards show a remarkable improvement. rEsiglt
confirms the previous working hypothesis that the main gnoblvas with the radiosondes, and not with
the model (first-guess). It also justifies removing the biatikg from Indian radiosonde temperatures as
the sondes are updated. Presently temperatures from Hhlratliosondes are assimilated at ECMWF.
This assimilation will allow residual model errors to betbetdiagnosed in this critical monsoon region.

— 100hPa ---100hPa —— 500hPa =---500hPa

Figure 3: Monthly-mean (solid) and standard-deviationgad) of first-guess departures (radiosonde observed
temperature minus first-guess) at 500 hPa (red) and 100 hRee)ldor Thiruvananthpuram, southern India
(77°E,&N). Units are K.

Of particular diagnostic importance is the ability to crab&ck observations from different observing
systems that observe similar aspects of the atmosphera. hElps, to disentangle biases seen in FG
departures into contributions from observations or the FG.

For example, monitoring of mean FG-departures for the TadgRainfall Measuring Mission (TRMM)
Microwave Imager (TMI) highlighted a 46-day oscillationttvia peak-to-peak amplitude of up to 3 K
in brightness temperature, linked to the precession of th@ter crossing time of the TRMM orbit.
FG departures for similar instruments (SSMI and AMSR-E) dostow the same characteristics, so the
bias must come from the TMI instrument itself. Further as&lghows that the cause is most likely solar
heating of the main reflector of TMI. This reflector is not afpet reflector, so the instrument measures a
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combination of Earth emission and the physical temperaifitiee reflectorGeer et al(2010 estimate
that the variation of the reflector temperature, as thelgateloves in and out of the Earth’s shadow, is
up to 70 K. Based on this physical understanding of the bids,dossible to correct for it in the data
assimilation, giving more accurate results.

The Indian summer monsoon provides an example where FGtdegmsuggest model problems. Fig-
ure 4(a) shows surface wind vectors as diagnosed from ASCATesoatieter data together with SSMI
channel 3 brightness temperatures, that are positivekeleded with lower-tropospheric~850 hPa)
humidity. An important component of the Indian monsoonuiation is a strong low level southwest-
erly wind over the Arabian Sea. The humidities and surfacedwiin this oceanic region are crucial
for sustaining the monsoon precipitation. Figd(d) shows atmospheric motion vector (AMV) winds
at around 950 hPa based on infrared and visible imagery, landshows radiosonde specific humidity
observations at 850 hPa. This AMV wind information is compémtary to the ASCAT observations
and shows a similar monsoon circulation. The radiosonda idanainly land-based and thus disjoint
from the SSMI microwave observations.

a) ASCAT and SSMI observations b) AMV and radiosonde observations
R 80m/s :
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c) ASCAT and SSMI FG departures d) AMV and radiosonde departures
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Figure 4: Mean June—August 2009 observation diagnostitsS@MI channel 3 microwave brightness temper-
ature (positively correlated with specific humidities~a850 hPa) and surface winds as diagnosed from ASCAT
scatterometer data. (b) Radiosonde specific humiditie$@t#a and atmospheric motion vector winds-&50
hPa. (c) As (a) but for FG departures (observation minus §tstss) averaged over all OUTC and 12UTC ‘DCDA’
analyses. (d) As (b) but for but for FG departures. Note thrasg observation biases have been accounted for
by the variational bias correction schemiede and Uppala2009 and that no vectors have been plotted in (b)
and (c) over the Bay of Bengal due to relatively poor data cage (where there were no observations within a
2° grid-box for more than 70% of the 12-hour assimilation wing.

The mean FG departures for the ASCAT surface winds and SSMritropospheric humidities are
shown in Fig.4(c) while mean FG departures for the AMV winds and radiosdmaimidities are shown
in Fig. 4(d). The ASCAT and AMV wind departures both indicate thateslied southwesterly winds
are weaker than in the FG, and thus point to a model problene riiéan observation departures for
SSMl indicate a drier atmosphere (below 700) close to thdidraPeninsula than in the FG. At present,
there is little other observational data to compare withS8BMI over the ocean (AMSR-E uses the same
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instrumentation and cannot be considered independeng .radiosonde data, on the other hand, show
higher observed humidities over the southern Indian Patartean in the FG.

Another example where FG departures point to model biasg$elp to characterise these are strato-
spheric temperatures. Various observations provideosjpaeric temperature informatioe.g, ra-
diosondes, bending angles from GPS-RO, satellite radsafroen AMSU-A, AIRS, and IASI) and
therefore highlight the system’s performance for stratesic temperatures. Consistent biases in mean
FG departures or consistent bias corrections are frequésihd for these observations, pointing to
model biases in the stratosphere.

For many satellite observations, the bias correctionsyaadlwith the variational bias correctioe.q.
Deg 2004) also provide an important diagnostic. Ideally, these bimeections should correct for obser-
vation or observation operator biases. However, in praditservation bias corrections can also correct
for forecast model biases or biases resulting from quabitytrol errors €.g. cloud contamination, see
Auligné and McNally 2007). To identify the former again requires careful cross-exetion of bias
corrections and FG departures for different observatipesy The latter implies a sub-optimal use of
the observations. Monitoring of observation bias cormwiwill become even more complex with the
further development of weak constraint 4D-Var&émolet 20073, to ensure an adequate separation
between observation and model bias in the assimilation.

Development of observation-based diagnostics will camjrin step with the extended use of observa-
tions in the assimilation system. For instance, enhancadacterisation of existing observations and
model aspects will be possible with upcoming satellite ok@®ns such as the ADM-Aeolus mission
which will provide unprecedented wind profile informatiaorh space. Also the growing use of satel-
lite data in cloud and rain-affected areas will continue hallenge the ability of the forecast model
to represent these adequately, with growing demands onptiwfisation of the background and ob-
servation errors and biases involved in their assimilatibimally, assimilated observations (including
satellite radiances) are expected to be increasingly usddriecast verification, especially for humidity,
complementing analysis-based verification.

2.2 Observation impact

Data assimilation systems provide an estimate of the athevgpstate by combining meteorological
observations with a prior background first-guess forec¢aking into account estimated observation and
background error.

Figure5 shows the mean analysis increments (analysis minus 12H@®fiorecast) of specific humidity
and wind vectors at 850 hPa averaged from June to August 20@@neral agreement with the ASCAT
and AMV FG departures (Figic,d), the assimilation of observations tends to decreasavtsterly
component of the wind and, over the Bay of Bengal, increasedtitherly component. In agreement
with the SSMI FG departures (Figc), moisture is removed to the east of the Arabian Peninsudaia
agreement with the radiosonde FG departures @d}y.it is added over the southern Indian Peninsula.

The influence in the analysis of each observation can be cmumluring the assimilation process.
In particular, the ‘degree of freedom for signal’ (hereafdS, Tukey, 1972 Velleman and Welsch
1981 Wahba et al. 1995 Purser and Huandl993 quantifies the number of statistically independent
directions constrained by each observati@ardinali et al. 2004). Results can be gathered together —
for example by observation type. The DFS depends on theresbigccuracy of the observations and
background as well as on the model itself that is used as & spattime propagator. The DFS is also
affected by the number of assimilated observations — theembservations from a specific instrument
that are assimilated, the larger the DFS of that instruméhbe: Figure6 (green bars) shows the DFS,
as a percentage of the total, over the monsoon regi88-45N and 3%E-11CFE and for June 2009.
The observation types providing the most information ar&15@3%), I1ASI (15%), AMSR-E (10%),
AMSU-A (10%), AIRS (8%) and GPS-RO(6%). All the remainingt@léypes contribute less than 5%
of the total DFS.

Technical Memorandum No. 637 9
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Unit = 0.01g/kg

25 65 -65 -25 -

Figure 5: Mean June—August 2009 analysis increment in 8%0d@ecific humidity (shaded) and horizontal wind
averaged over OUTC and 12UTC ‘DCDA’ analyses. A statistieat has been performed and bold colours and
black vectors indicate that the mean value is significanffgiént from zero at the 5% level.

Recently, adjoint based observation sensitivity techesqgiave been used to measure the observation
contribution to the forecast error (see, for examplaker and Daley2000, Cardinali and Buizzg2004
Morneau et al.2006 Zhu and Gelarp2008. The observation impact is evaluated with respect to a
scalar function representing the short-range forecast €nere a global dry energy norm). As with
the observation influence in the analysis, the observaticecast error contribution (FEC) is computed
for each measurement assimilated, and can also be gatheddbérvation type.Gardinali 2009 see
also SAC paper 2009). The DFS and FEC are different but telgg@ntities. They are, in fact, both
functions of the background and observation accuraciestancthodel. FEC, additionally, depends on
the forecast error. In an optimal and unbiased system itge@ed that the FEC should be similar to the
DFS, since the information extracted from the observattning the assimilation procedure should be
propagated by the model into the forecast. Loss of foreosgact of a particular observation type with
respect to the DFS can be then attributed to model errorsasintodel bias.

Figure6 (black bars) also shows the FEC as a percentage of the tothEfsame observation groupings.
It can be seen that, for some observation types, FEC is antiaéle the DFS. These include AMSR-E,
SSMI and HIRS, IASI, AIRS and SCAT (scatterometer) data. bled comparisons for the sounding
observation types indicate that the channels most affestethe ones providing information on temper-
ature and, to a certain extent, humidity fields below 700 mBaghown). The loss of impact on forecast
error is believed to be caused by the presence of model eitlogr random or systematic, in the lower
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Figure 6: Degree of freedom for signal (DFS, green) and fagg@rror contribution (FEC) to D+1 forecast error
(black) for different observation types assimilated in &xtended Indian summer monsoon region’@et5N
and 3%W-110W).
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troposphere.

Maps of FEC for different observation types are very usefulighlight areas where observations lead
to forecast improvement. Over the monsoon region, the SSIBATT and AMV show a beneficial
impact over the Indian Ocean (not shown). To investigatectienges caused by the assimilation of
these observations, Observation System Experiments (@8&$e performed.

Over the years, OSEs have been the traditional tool for astign data impactBRouttier and Kelly
200% Lord et al, 2004 English et al. 2004). Usually OSEs are performed by removing subsets of
observations from the assimilation system and then comgamalyses and forecasts against a control
experiment that includes all the observations. The valub@bbservation is, in this case, assessed by
comparing analysis performance and comparing forecdsuskig different statistical indices. Several
independent experiments need to be performed for quite penigds, generally a few months. Here
results are discussed in terms of analysis differencesdmgtvassimilations for June 2009 with and
without SSMI (‘all-sky’ Geer et al.2010 data.

a) SSMI impact on relative humidity %
12

I6

2
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18°N  16°N  14°N  12°N 10°N 8N 6°N  4°N  2°N  O°N

b) sSmIimpact on zonal wind ms-1

-0.09

-0.35

Figure 7: Zonal average (3B-71°E) cross-section of the mean differences between anaksésiment with and
without assimilation of SSMI data for June 2009: (a) relathumidity (%) and (b) u component of wind (M)

Figure7(a) shows a latitude—height cross-section, averaged beektabian Sea (S&-71°E), of anal-
ysis differences in relative humidity (experiment with SB&inus experiment without SSMI). The as-
similation of these radiances is seen to decrease thevestaimidity in the troposphere (below 500hPa)
by up to 6%. The inclusion of SSMI data appears also to sthemganalysed surface winds and reduce
them aloft by up to 0.35 ms (Fig. 7b). The surface results may be partly due to a ‘direct’ lirk trie
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observation operator, which is also dependent to some el@grehanges in surface emissivity (that can
be brought about by the action of the surface wind on waveseaspray). The results aloft indicate the
indirect impact of humidity on wind via interactions withthe forecast model. Other OSEs performed
with and without AMV Radnoti et al.2010 and SCAT observations indicate that these observations
also lead to a similar magnitude of zonal wind reduction @fawn).

The previous sectior2(1) highlighted systematic differences between some obsernvéypes and the
model. In particular, the data depicts a drier and less sg#enonsoon circulation. Here it is shown that
these differences are reflected in the mean analysis inatsmdoreover, differences between the DFS
and FEC clearly indicate a loss of information during the eiqatopagation, mainly, on humidity and
temperature, supporting a model error problem and poirtGragtropospheric bias.

2.3 Fast model error

In this section the focus is on the diagnosis of model ertaasdevelop very early on in the forecast. At
these timescales, errors originating from different ptgigprocesses have had little time to interact with
each other, particularly remotely via the resolved flow bsb @ossibly through direct local interaction.

Figure8(a) shows mean 850 hPa forecast error at a lead-time of 5 daygpécific humidity and hor-
izontal wind. Errors in both fields are large relative to theam field ¢.f. Fig. 4a,b). For example,

mean wind errors of 3ms over the Arabian Sea compare to mean total winds d®ms*, and mean

humidity errors of 1gkg! compare to mean total humidities ©fl3gkg L. Local statistical significance
is indicated by the bold shading and black vectors. In génixalow-level flow is too westerly and too
zonal over the Arabian Sea and Bay of Bengal, with too muchidlityroff the Arabian Peninsula and
in the Bay of Bengal. Figur8(b) shows the mean errors at a lead-time of 1 day. In genémlsame

features are evident — they are weaker in magnitude butlgiatistically significant. This growth of
error magnitude with lead-time also points to a model pnobiather than to observation bias.

a) Error at D+5

Figure 8: Mean June—August 2009 OUTC forecast error in 858 $ecific humidity and horizontal wind relative
to operational analyses. (a) At a lead-time of 5 days. (b) Agaal-time of 1 day. Units for q are 0.1gkf A
statistical test has been performed and bold colours andd@ctors indicate that the mean value is significantly
different from zero at the 5% level.
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In general, above the planetary boundary layer, pattersgstématic error evolve more with lead-time
than indicated in Fig8(a,b) and they also tend to loose their statistical signmifieaRodwell and Jung
2010. Maintaining statistical significance in error diagnostin the face of improving assimilation and
forecast systems can be thought of as key to the whole emgndsis problem. Without a reasonable
signal-to-noise ratio, one cannot be sure that the errogaf tet alone identify its cause. These re-
sults give credibility to the assertion that errors are logsgnosed at very short lead-times (or indeed
during the first time-step in the work ¢flinker and Sardeshmuki992), before the interactions via
the dynamics have taken place and before the state of thensysis drifted from the ‘true state’ to-
wards the model’'s manifold. With the introduction of 4D-Macent work Rodwell and Palme2007,
Rodwell and Jung2008h has suggested that the optimal period over-which to disgeoror is the data
assimilation window. In this case, mean forecast error ¢timmated through the difference between the
forecast and a verifying analysis) is the same as (minusjntb@n analysis increment. (Note the cor-
respondence, except for sign, between the mean analysisrieat (Fig5) and the D+1 forecast error
Fig. 8b).

Mean forecast error represents an imbalance in model paerdencies. Figurg(a—d) show specific-
humidity tendencies at 850 hPa due to the explicit dynamidical diffusion (including surface fluxes)
and gravity-wave-drag, convection, and large-scale pitation, respectively. (Note that it is best to
avoid the first model time-step as this is structurally défe, and so tendencies shown in Fgare
accumulated over the lead-times 1-13hr and over the OUTQ20d C forecasts). The fact that their
sum (Fig.9e) is so similar to (minus) the analysis increment (Bigconfirms that these are the dominant
processes acting on specific humidity. Hence, if model ésrthre cause for the analysis increments, one
or more of these processes is at fault. Future work on the ooonwill look more closely at processes
within the planetary boundary layer and will hopefully picer a fuller understanding of this model
problem.

More generally, it can be seen that the diagnosis of andlysiements and initial tendencies provides an
approach to model development that is very complementaiyettraditional ‘bottom-up’ methodology
where individual parametrizations are improved in isolatiThe analysis increments / initial tendencies
approach has several useful attributes:

e |t assesses model error at states close to the true state.

e Errors are more readily identified (and more statisticadtipsicant) before interactions have taken
place.

e Possible causes for the error are suggested.
e It can be used to prioritise model development work.

e It provides process-oriented metrics (useful in the clenmbjection contexiRodwell and Palmer
2007

The future challenge for the development of ‘Initial Tendes’ is to get it to fully connect with the
model development process. To help this approach become widely adopted at ECMWF, better
user-support and an easy-to-use way of ‘driving’ this dasgic tool will be provided in future. Note,
however, that an interesting poor-man’s approach to Initieecast error is already being used as a
complementary tool in the development of the ECMWF landesir scheme. In this approach, 36-
hour forecast errors in 2m temperature have been deducednfimdel with modified land-surface, but
initialised-by and verified-against the operational asisly If such forecast ‘errors’ are reduced almost
everywhere (as they have been) then there is less need taakela full assimilation experiment to
confirm the benefits of the modification.

In the medium-term, ECMWF aims to introduce ‘Weak-consirdiD-Var data assimilation into the
Troposphere (it is already present in the StratosphereakMenstraint 4D-Var takes account of model
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a) Dynamics b) Vertical diffusion
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Figure 9: Mean July 2009 model process tendencies betweetest lead-times 1 and 13 hours in 850 hPa specific
humidity (gkg-1day 1) averaged over OUTC and 12UTC forecasts from: (a) the eitglimamics, (b) vertical
diffusion (including surface fluxes) and gravity wave drég,the convection, (d) the large-scale precipitation,
and (e) the total over all the above process tendencies. #stital test has been performed and bold colours
indicate that the mean value is significantly different froero at the 5% level. Regions where the 850 hPa surface
dipped below the surface (orography) sometime during thetimeave been blanked-out.

‘drift’ within the data assimilation window (th&#-term of Tremolet 20078. In future, therefore, it will
be important to use#’ instead of (or in combination with) any residual mean arselyncrement when
diagnosing model error.

The ‘seamless’ traceability of forecast error signals flomg lead-times to shorter lead-times, initial
tendency errors and, ultimately, to comparisons with olz&ms is highly useful. The main motivation
behind the development of the on-line ‘Diagnostics ExpiofRodwell and Jung20083 was to make
this seamless traceability readily accessible to all. Afspnt, the Explorer contains over 1 million
diagnostic plots of the operational, esuite and ERA-intesystems. As discussed above, a good signal-
to-noise ratio is essential for error diagnosis and scssitzdil significance is indicated wherever possible.
Note that the Diagnostics Explorer does not produce plotdesmand since complete flexibility would
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require on-line access to several years of twice-daily 4lddieCurrently, this does not present any great
limitation, but the strategy may need to be revised in future

2.4 Linear model error

The tangent-linear model and its adjoint are essential oomts of the variational assimilation system.
Furthermore, they are used to compute the singular vectbishvprovide initial perturbations for the
EPS. The development of tangent-linear versions of compsrad the forecast model (say a parameter-
isation scheme or an observation operator) proceeds inaetages that require a range of diagnostics.
Tompkins and Janisko2004) andLopez and Morea(2005 describe some of the diagnostics that are
being used routinely at ECMWF to monitor and help furtheraliep the tangent-linear model. These
are briefly summarised here and then an additional new d&igrimased on the computation of singular
vectors is described.

Most nonlinear parameterisation schemes require somdicaiatins before they are suitable for lineari-
sation. Strong nonlinearities, for instance those arifiiog switches, require regularisation. Similarly,
highly-nonlinear functions require smoothing and someupbations need to be artificially reduced or
even set to zero. Otherwise, the tangent-linear model woelthit excessive growth and would poorly
approximate finite differences of nonlinear integratio@her modifications may be required for rea-
sons of computational efficiency. The modified nonlineaesth is sometimes referred to as simplified
scheme to acknowledge the differences from the full noalirseheme since some physical processes
included in the latter scheme are often not representeceitirtbarised version. As a standard proce-
dure in this step, the errors of medium-range and extenalegerforecasts with the simplified nonlinear
scheme are compared to the errors obtained with forecdsts the full nonlinear scheme.

In the next step, the tangent-linear and adjoint versiotiseo§implified nonlinear scheme are developed.
A prerequisite before proceeding to further tests, is tacktibe numerical correctness of the tangent-
linear and adjoint code.

The main diagnostic technique for the linearised model isr@alysis of nonlinear residuals of a first
order Taylor approximation of finite difference. The resitfucan be studied for single time steps for
individual parameterisation schemes and for the evolubiotine entire model over the 12-hour assim-
ilation window. These tests can include a range of pertiobamplitudes and can test whether the
residual is sensitive to the perturbation sign (for detsdlse.g.Lopez and Moreal2005.

The analysis of discrepancies between linear and nonliceaputations has recently been extended
by comparing analysis increments produced by low-resmiutiinimisations using the linearised model
with those evolved with the full high-resolution non-limeaodel in 4D-Var trajectories ppez 2010.
Performing this comparison in observation space permésrtblusion of observation operators in the
diagnostic.

The systematic diagnosis of nonlinear residuals from tisedirder Taylor formula can also exhibit spu-
rious growth in the full nonlinear forecast model (see Set.2in the Head of Research Department’s
progress report at the 37th Session of the SAC in 2008).

As a final test and before starting a meteorological evalnabf a new tangent-linear scheme in 4D-
Var, the leading global singular vectors are computed forigewange of meteorological situations.
The singular vectors are computed for an optimisation tifrit2ch and at the resolution of the 4D-Var
inner loop (T.255, 91 levels). The typical growth of the leading singulacter at this resolution and
optimisation time is about one order of magnitude in termgheftotal energy norm. However, if the
tangent-linear version of a parameterisation is used thiasufficiently regularised the growth can be
significantly increased. As an example, Figaiesshows the growth of the leading singular vectors for
the tangent-linear model with and without the tangentadieersion of the non-orographic gravity wave
drag (GWD) scheme described yr et al. (2010. Using the tangent model with moist processes,
vertical mixing and orographic GWD, the leading 12-hougsilar vector grows typically one order of
magnitude. With the non-orographic GWD scheme without leigations the structure of the leading
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singular vector changes in many cases and the growth is wpotortders of magnitude larger in some
cases. Regularisations of the tangent-linear non-orbggapWD scheme have been developed and
refined by adapting those parts of the scheme that are rabf®iar the excessive growth of those
structures identified by the leading singular vectors (¢8@ the Section on tangent-linear and adjoint
physics in the 2010 progress report). The leading singudatov computed with the regularised non-
orographic GWD scheme does not exhibit the excessive growth
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Figure 10: Final total energy norm of the leading 12-hour lgéb singular vector computed with three different
tangent-linear models: (i, black) including dynamics, tieal mixing, moist processes and orographic gravity
wave drag, (ii, red) same configuration as (i) but in additiith the non-regularised non-orographic gravity

wave drag scheme, (iii, blue) as configuration (i) but theutagised non-orographic gravity wave drag scheme.
At initial time, the total energy norm of all singular vecsas one. A range of different meteorological situations
is sampled by computing the leading singular vector for 4§esaspanning one year.

2.5 Re-Analysis

The current ECMWF reanalysis, ERA-Interim, produced datal®89 onwards and is how running
in near real time. As with any reanalysis it is important tonibar the production of the analyses
and forecasts in order to ensure the data is of the highestif@gjuality. In reanalysis, as compared
with NWP, the emphasis is on the temporal consistency of #éie and as a consequence many of the
diagnostics emphasise the time dimension, égdee and Uppalg2009.

Reanalysis produces various diagnostics aimed spedjfiagathonitoring the assimilation and forecast
system. Some are standard diagnostics, such as those @doldpu©BSTAT (see sectio®.1). Others
are specific to ERA. These include timeseries of analysferdifices (ERA-Interim minus operations),
forecast errors (at T+12, 24 and 120) and analysis incresnétinospheric circulation indices and bud-
gets of mass, moisture, ozone, energy and angular momeméuaisa diagnosed, both for the purpose
of studying the atmosphere scientifically and as a meangthigilumonitoring the data. There are plans
to greatly increase the range of these diagnostics andasertae amount displayed on the external web

site?.

Similar issues with analysis increments as discussed itinss@.2 and 2.3 are found for the Indian

2http:/lwww.ecmwf.int/products/forecasts/d/inspeatatog/research/eraclim/timon
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summer monsoon. Here, an example of a diagnostic is givdaretizentially assesses the temporally
varying quality of the analysed divergent winds in the tospiwhich is also of relevance to the monsoon.
The divergent wind has long been known to be one of the griestiesces of uncertainty in atmospheric
analysesBoer and Sargent985. Furthermore, it is well known that the quality of tropicaialyses
has a great impact on the perceived skill of tropical forecaghe diagnostic is based on the hemispheric
and vertical integral of the continuity equation. This stathat the tendency in hemispheric dry mass
should be equal to the hemispheric dry mass convergence.

Assuming hydrostatic balance, the northern hemispheyi@imass ) can be calculated by inte-
grating the dry densityd) by height ¢) from the surface YFQ to the top-of-the-atmospherd QA),
and by areaA) over the Northern HemisphersliH):

TOA 1 1 ap
- :/ pdzdA= _/ /(1—q)— dn dA | €Y
NH JSFC g./NH Jo an

whereq is specific humidity)j is the hybrid model-level coordinate, apds pressure.
The integrated continuity equation can be written as

dmNH / /-TOAdp 1/ /l dp % -TOA
= — dzdA= —= O-/ v(il-gq)— dn dA = vdzdl , (2
ot NH /sFc Ot gJ/neT Jo v q)dn f EQ.JsFc p @

wherev is the horizontal wind. The second equality @) €mbodies the continuity equation. The
final equality in ) embodies the divergence theorem and emphasises how thepienic dry mass
convergence is dependent on the cross-equatorial masgftiuthe last termy is the meridional wind
at the equatof=Q, andl is distance along the equator).

The Northern Hemisphere mass tendency can thus be estifinateanodel level analysis data in two
ways. The first ‘mass tendency’ method uses the third terni)in-(and takes differences between
consecutive analyses. This is plotted in Fida for ERA-40 (black) and ERA-Interim (red). Because
the atmosphere is largely hydrostatic, this tendency estiris probably well constrained by surface
pressure observations. Indeed there is very good agredmeémeen the ERA-40 and ERA-Interim
curves (the ERA-Interim curve lies on top of the ERA-40 cirvim addition, the globally-integrated
mass tendency is very small, as it should be (not shown).

The second method uses the third term2) &nd is plotted in Figllb (note the different y-axis scale).
The ‘mass convergence’ estimate is an order of magnituderdadhan the ‘mass tendency’ estimate —
and non-zero averages over long periods in the mass comeergee clearly erroneous. Equatid@) (
shows that the ‘mass convergence’ estimate depends ondheed density and meridional wind at the
equator. The implication is that these may not be so welltcaimed by the observations. Indeed, the
divergent wind is not well observed globallgraversen et a(2007) point this out and furthermore note
that if mass transports are wrong, this also leads to ertenkeat and momentum fluxes.

The fact that discrepancies are much smaller in ERA-Inte¢hiam in ERA-40 is probably because ob-
servations are better able to constrain the cross-egabtoéss-flux within 4D-Var — due to enhanced
internal consistency between temperature and wind fieldsd-bacause ERA-Interim uses a more re-
cent model cycle. That the mass convergence improves wiid ith ERA-Interim (Fig.11b) indicates
reduced observation bias and/or increased observatiarags with time in the tropics. Nevertheless,
this budget study highlights continued uncertainties ialgsed tropical winds and/or densities.

There is potential to do further work on the subject of massseovation and the continuity equation.
For example, the evaluation of the dry mass convergence @shrourly analyses involves temporally
sub-sampling this field which can lead to large errors (seggHaimberger et al.2001). These errors
can be avoided by accumulating the forecast convergenbe i & at every time step, which would also
enable the treatment of the continuity equation in the faseto be studied. The diagnostic could also
be applied to ECMWF’s operational analyses and could be tssedmpare the realism of ECMWF's
analysed tropical winds with those of other forecastingresn
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Figure 11: Time series of the Northern Hemisphere dry masigeu(kgn?day 1): (a) mass tendency and (b)
mass convergence.

2.6 Analysis uncertainty

With the introduction of Cycle 36R2, ECMWF runs operatidyain ensemble of variational data assimi-
lations (EDAIsaksen et al2010 based on the explicit perturbation of the observatiors,sseface tem-
perature and model physics tendencies. The backgroures steg implicitly perturbed because they are
evolved from the perturbed analysis fields and include theaherror parametrization term (‘Stochasti-
cally Perturbed Parametrization Tendencies’ method, SR#Ter et al.2009. Standard deviations of
the EDA analyses and background forecast fields providmatts of the analysis and background errors
(Fisher 2003. These error estimates can then be used, respectivetheamitialisation of the ECMWF
ensemble prediction system (ERjizza et al, 2008, and to provide flow-dependent background-error
variances to the operational deterministic 4D-Var (inaepment of the current quasi-static background
error estimates derived from the ‘randomisation’ techaigtisher and Courtierl995 Fisher 2003).
The estimation of analysis and forecast errors through h& #ariances is affected by the small en-
semble size (currently 10 members) and by systematic eartsisig from approximations in the rep-
resentation of observation error covariances and modet,&nd typically lead to an under-dispersive
ensembleFisher 2007). In this context the capacity to diagnose the magnitudatjadistribution and
temporal evolution of the EDA under/over-dispersivenems give us insights into the accuracy of the
prescribed observation error covariances and the behawidhie model error parameterizations.

A useful diagnostic is the spread-error plot, an exampleho€iwis given in Figl2. These are obtained
by binning the EDA spread (here the standard deviation 09theur forecast) into deciles and plotting
the mean spread for each bin against the correspondinghreai-square error (here the error of the
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9-hour forecast relative to the deterministic 4D-Var assly- considered to be the best estimate of the
truth). For a reliable EDA, these curves should lie on thgalieal (dashed black line). Fifj2 shows two
such curves based on the monsoon regioRE4505E, O°N-30°N] (green) and on the South Atlantic
sub-tropical anticyclone region [BQ/-0°E, 3°S-’N] (red) during August 2008. The relative flatness
of both curves indicates that the spread is not a perfechatir of error in these regions.

Zonal wind - model level 78 (850 hPa)
2 T T T T T T
I

L Il Asian Monsoon ’ 4
Bl Subtropical Anticyclone R4

Ensemble mean RMSE (m/s)

Ensemble StDev (m/s)

Figure 12: Spread-Error diagram for zonal wind (9 at model level 78 (about 850 hPa) for the Asian monsoon
region [45°E-10%°E, O°N-3(’N] (green), and the South Atlantic subtropical anticycloegion [6CPW-CPE, 3(°S-
0°N] (red). The spread is of the 9-hour EDA forecasts (binnéd deciles). The corresponding RMSE is of the
EDA 9-hour ensemble mean forecast relative to the detestigrD-Var analysis. Results are based on data from
August 2008.

Because these curves condense a lot of information, thdim ose is for monitoring the EDA as a
whole. However, they could help in formulating sensitivityperiments to understand, for example, the
reasons for differences between regions — which could declmodel error, assumed observation and
background error covariances, data coverage etc.

2.7 Physics impacts

The model physics comprises processes such as radiatigst, coavection, clouds and grid-scale mi-
crophysics, boundary-layer turbulence, and surface psase Whenever possible each physical process
(scheme) is evaluated both separately and in the contetve @frttire IFS model framework. The specific
modelling ‘tools’ used to evaluate the individual procesagainst observational data include:

e Diagnostic or prognostic off-line versions of the differeghemes.

e A single-column model version of the IFS that is forced byestied or analysed large-scale
tendencies and/or surface fluxes.

e So-called ‘DDH'’ files of high temporal resolution opera@model output for a predefined set
of locations.

e A climate diagnostics package, consisting of a 4-memberrahke of 1-year integrations at reso-
lution T 159, that is optimised to allow for quick testing and turnaro.
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Each scheme is compared against relevant observatioredetst For example, radiation and cloud
schemes are compared against radiative fluxes and cloudgisoftom ground based stations (ARM,
BSRN) and satellites (CERES, Cloudsat/Calipsa)y(Ahlgrimm and Khler, 201Q Morcrette et al,
2008. For the future, it is also planned to include datasets thataxdress aerosol-cloud-radiation
interactions.

The surface scheme is compared against data from flux toserfsice stations and measurements of
river discharge over specified basins. As discussed inose2i8, short-range forecast error is also used
to assess changes to the surface scheme.

The convection and boundary-layer turbulence schemesnaittie single column model can initially
be compared against data collected during specific field ang, e.g. GATE and TOGA-COARE
(Willett et al., 2008 Bechtold et al. 2004) for convection and GABLS, BOMEX, ASTEX, DYCOMS
(e.g.Zhu et al, 2005 for the boundary layer. However, due to strong interactigh wlouds, radiation
and the dynamics it is imperative to assess, at an early,st@geonvection and boundary-layer schemes
within the full three-dimensional model.

Increasingly popular datasets used for physics validdtiolude satellite imagery from geostationary
satellites (infrared and water vapour bands) and pretipitalata from both space-borne platforresy
TRMM) and ground-based radars (OPERA and NEXRAD data séisj.the radar data comparison
is mainly between derived rain rates (and not radar refléesy and model output. For geostationary
imagery, a model-to-satellite approach has been choserewfoe given spectral bands, the radiation
that would be measured by the satellite is deduced from tdigied model state.

An example of the model-to-satellite approach is given igsFL3(a,b) which show, for 31 July 2009
at OOUTC, infrared brightness temperatures in the gth3dand from MTSAT and the IFS analysis,
respectively. These brightness temperatures approxiyniatect cloud-top temperature. In general,
cloud top temperatures appear to be reasonably well peedit the combination of forecast model and
observation operator. Fig.3(c) shows monthly mean D+5 errors in OOUTC brightness teatpegs
for July 2009 based on the operational forecasts. Since MTiSAot continuously archived at present,
the analysis is used here as a surrogate for the observationarily to demonstrate the diagnostic
approach. However, consistent with F&fg), these mean ‘errors’ clearly indicate too much coneecti
over the Indian Ocean (cold brightness temperature eramw)oo little cloud and convection over the
Bangladesh region (warm brightness temperature errors).

2.8 Dynamics-physics interactions

In this section the focus is on the diagnosis of atmosphelgforecasts beyond the short-range. When
diagnosing medium-range and longer forecasts, challeages from the fact that different dynamical
and physical processes have time to interact (possiblyimearly), which makes it increasingly difficult
to distinguish cause and effect.

Most of the diagnostic research in this area is based on thlicapion and development of techniques
that can be summarised by the expression ‘targeted nurhexiparimentation’. By routinely applying
a hierarchy of models with varying degrees of complexityt (vithin the framework of the same IFS
cycle) the aim is to better understand the impact of modetgbs. The most important techniques, with
strong strategic relevance, will be discussed in the fahgw

2.8.1 Sensitivity experiments

The monitoring of the climate of the model plays a centra¢ riol the diagnostics work of ECMWEF.
For each new model cycle, long integrations with the IFS amied out and various aspects of the
model climate and its variability are assessed (see aldmsex7). These experiments are augmented
by additional sensitivity experiments in which the impattselected physics changes are studied in
further detail. A comprehensive study has been recentlypteted Jung et al.20109. Furthermore,
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a MTSAT observed b IFS analysis
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Figure 13: Infrared brightness temperatures for 31 July 2Q@UTC (a) as observed by MTSAT and (b) from the
ECMWEF analysis. Also shown are (c) monthly mean brightresgerature differences (K) for July 2009 at 00
UTC between the D+5 ECMWF forecasts and the verifying amafieds.

the sensitivity of the ECMWF model climate to resolution heeen studied in unprecedented detail
(T 159, 1,511, T,1279 and T2047) in the framework of the Athena project (dedicated dsheoNSF
Cray XT4 Athenasupercomputer in the US). In the past, most of the focus isetlvestigations has
been on synoptic and planetary-scale aspects of the aterespsevere weather has been considered
only indirectly. However, ongoing activities at ECMWF artetpartner institutions in diagnosing the
results from the Athena project will concentrate on seveeather €.g, extratropical wind storms,
tropical cyclones, and tips jets). The diagnostics dewaddp this framework will be incorporated in the
standard diagnostics software packages.

A key-element for the comprehensive assessment of thesgiegnts is the publication of the plethora
of generated plots on the Diagnostics Explorer in a way thaeadily accessible to scientists within
ECMWF (Rodwell and Jung20083.

From these seasonal integrations it is very difficult torirife origin of systematic model error and to
understand exactly how physics changes influence the miagite. In order to shed some light on the
underlying mechanisms it has been found useful to studyntheence of a particular physics change
over a range of time scales (from hours to montR)dwell and Jung2008h Jung et al.2010g. This
‘seamless diagnostic perspective’ is illustrated in E&y.which shows how the new convection scheme,
introduced in cycle 32R3Bechtold et al. 2008, influences mean 500 hPa geopotential height (Z500)
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fields as early as D+1. This suggests that some of the imprewenin the Northern Hemisphere at-
mospheric circulation seen with the introduction of the remvection scheme are localg( involv-

ing dynamics-physics interactions in the extratropicfieathan remotely forced from the tropics (see
Jung et al.2010a for details).

aD+1 CD+11-D+30

Figure 14: Mean difference in 500 hPa geopotential heightr{i) between experiments with the ‘new’ (cycle
32R3) and ‘old’ (cycle 32R2) convection scheme: (a) D+1,PspP-D+10, (c) D+11-D+30 and (d) D+31—
D+120. Contour interval is (a) 0.5 m, (b) 5 m and (c)—(d) 10 nork&: Jung et al(20103.

2.8.2 Idealised simulations on the sphere: Held-Suarezaapplanet experiments

A substantial reduction in complexity is achieved by coesity dry ‘Held-Suarez’ model climate simu-
lations Held and SuareA994) designed to evaluate dynamical cores of atmospheric geciezulation
models independently of the physical parametrizationgb@lHeld-Suarez simulations on the sphere
display two symmetric zonal mean zonal flow jets enclosingngkfied tropical regime — enforced
by a simple relaxation to a prescribed equilibrium tempgeabn the sphere and the addition of a pre-
scribed momentum dissipatioRléld and Suare1994). For example, Figl5(a) illustrates the decrease
of zonal mean temperatures in the equatorial stratosphitheinereased horizontal resolution. This
change suggests that the similar change seen in the fulllrffeide 15b from the Athena results) can be
explained as primarily a response of the dynamics to reésolufhere is also a direct dynamic cooling
response in the equatorial troposphere (Efa), but this appears to be ‘masked’ when the physics is
allowed to interact (Figl5b). This separation of dynamical responses from the tosdaese is an
important aspect of this diagnostic tool.

Held-Suarez simulations also exhibit substantial examtal variability. Hence the Held-Suarez set-
up may also be used to explore tropical-extratropical atgon with and without elaborate physical
parametrizations or moist processeégegi, 2010).

A lesser reduction of complexity is achieved with aquapiaimaulations. Aquaplanet models consist of
a dynamical core and the physical parametrizations of tiadigboundary layer turbulence, convection
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Figure 15: Mean zonal average temperature differences (&twben runs at 12047 and T159 during the
September—November (SON) season. (a) Dry Held-Suarelationy(100 days of integration). (b) Atmospheric
component of the ECMWF model (1989-2007).

and clouds. Global simulations are made with an underlyeigsia surface and the model is forced by a
family of sea-surface temperature (SST) distributions @nedcribed external forcings. The Aquaplanet
Intercomparison Project (APENgale and Hoskin®2000 documents the inter-comparison of various

models for given SST distributions in a forthcoming ATLAS

The application of both Held-Suarez and aquaplanet simuktat every relevant model cycle will
support the early diagnosis of changes in model behaviohilevgubstantially saving computational
cost, in particular when combined with the reduced-radpm@ach described in the following section.

2.8.3 Idealised simulations on the sphere: reduced-radiperiments

An alternative diagnostic strategy can be exploited for 3Beglobal atmosphere, where the plane-
tary radius is suitably reduced to capture non-hydrosgattienomena without incurring the computa-
tional cost of actual simulations of weather and climate at-hydrostatic resolutiodx < &/(2) km
(Wedi and Smolarkiewic2009. In other words, the size of the computational domain isiced with-
out changing the depth or the vertical structure of the aphere. Here the underlying assumption is that
the essential flow characteristics remain unchanged wleeseparation of horizontal and vertical scales
is reduced Kuang et al.2005. The usefulness of this strategy is illustrated\fadi and Smolarkiewicz

Shttp://www.met.reading.ac.uk/ mike/APE
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(2009 andWedi et al.(2009 with a set of canonical flow problems including horizontalhd vertically
propagating spherical acoustic-waves, ‘local-scalegaaphically forced gravity waves, and ‘global-
scale’ planetary Rossby waves in Held-Suarez simulatibmgVedi and Smolarkiewic£2009 the test
cases were conducted for two very different global dynahtioees — the non-hydrostatic IFS and the
multi-scale anelastic research code EULA®B(sa et a).2008).

An interesting example is the ability to simulate propagatwaves at internal critical levelge. the
height at which the background flow (in the direction of wavegagation) is equal to the horizontal
phase speed of the wave. Waves attenuate as they approgdritical level and momentum carried by
these waves is transferred to the mean flow at and below tighithd his scenario together with con-
vective and shear instabilities forms “critical layers™hish are an important aspect of mesoscale oro-
graphic flows and of circulation features such as the quiasirial oscillation \Wedi and Smolarkiewicz
2006). Figure16(a—c) illustrate the EULAG, non-hydrostatic and the hythtis IFS results, respec-
tively, for the case of non-linear flow past a three-dimenaicill in the presence of a critical level
(Grubisic and SmolarkiewicZ1997). The critical level is a preferred location for internal weabreak-
ing, with the resulting flow locally non-linear and non-hgstatic. In the case of the non-hydrostatic
simulations the forming homogeneous mixed layer acts asfagveeflector to all incoming waves. In
contrast the hydrostatic solution (Fitsc) shows also a wave response above the critical layer. Tine si
ulations indicate a sensitivity to both the horizontal aedical resolution as well as the model equations
used, thus complementing the diagnostic tools for the eatifin of the dynamical core of the IFS.

A future focus is targeting idealised moist simulationshwi¢solved and unresolved convection in the
small-planet environment. This will help explore the ‘giayne’ boundaries of hydrostatic and non-
hydrostatic regimes as well as resolved and unresolvedection regimes in the broader context of
physics-dynamics coupling and interaction. The small gtlaapproach is thus complementary to re-
search projects investigating scale interactions of th@dal atmospheree(g. CASCADE) and to ultra-
high resolution limited-area studies performed in the mensates.

2.8.4 Relaxation experiments

The relaxation technique is a well known diagnostic tookl &aas been used at ECMWF in the past
(Hasler 1982 Ferranti et al.1990. The basic idea is to artificially suppress the developroéfarecast
error in a given region, by relaxing back to a set of analyaed, to then investigate the consequences
in other regions. In its current implementatialugg et al.2008 2010¢b; Jung and RodwelR010 this
involves adding an extra tendency term to the model of thafor

—A(X—Xref) 3

where the model state vector is representec,bgnd the analysis fields towards which the model is
drawn byx.ef. The e-folding timescale of the relaxatiok; %, is a function of the variable, location and
height.

The method is illustrated in Fid.7, which shows Z500 anomalies for DJF 2009/10 from ERA-Interi
the control integration (prescribed SST and sea ice), theraxent with tropical relaxation and the ex-
periment with relaxation of the Northern Hemisphere ssplb®re. Given that none of the experiments
manages to reproduce the negative phase of North Atlantidl@®»n (NAO) suggest that internal (ex-
tratropical) atmospheric dynamics explain the unusualiéition during the winter of 2009/10 making
it difficult for seasonal forecasting systems to predict ¢dheet of the negative phase of the NAO. In-
terestingly, tropical relaxation managed to reproducentgative phase of the NAO for the winter of
2005/06 Jung et al.20109 showing that the relaxation method is capable of discratiiy between
different origins of extratropical circulation anomalies

The relaxation approach is a powerful tool to understandsiptes remote origins of forecast errors
(Jung et al.2010H and circulation anomaliesl@ng et al.20109. Applications of this technique are
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Figure 16: Cross section of vertical velocity for the casenoh-linear flow past a three-dimensional hill in
the presence of a critical level (indicated by the thin honital line). (a) EULAG,(b) non-hydrostatic and (c)
hydrostatic version of the IFS. All integrations were catiout on a ‘small planet’ with a radius of about 20 km
(and about 250 m horizontal and 35 m vertical resolution)e Tontour interval is 0.2 ms. The vertical axis is
pressure in hPa. For details s€&rubiSic and Smolarkiewic1997).

particularly well suited to understanding larger-scalgeass of the atmospheric circulation — for exam-

ple the remote impacts of the over-active monsoon. WhikedRcludes to some degree the application
to severe weather events, the relaxation is a powerful agprto diagnose more persistent, large-scale
high-impactevents, such as the MJO, Euro-Atlantic blocking, and the NA&Rbse simulation and pre-
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Figure 17: Geopotential height anomalies at the 500 hPallévem) for the period 1 December 2009 to 28
February 2010: (a) ERA Interim and ensemble forecasts ()it relaxation, (c) with tropical relaxation and
(d) with stratospheric relaxation. All forecasts were $¢&alon 1 November. Statistically significant differences (a
the 95% confidence level) in (b)—(d) are hatched.

diction still pose serious challenges. For the future itlsped to further develop this relaxation code
on the IFS €.g.scale-dependent relaxation and relaxation of specific tityhiand to apply it in a wider
context.

2.9 Coupled processes

This section deals with the evaluation of errors in the cedmicean-atmosphere system on the time-
scales relevant to the monthly and seasonal forecasts. iTtwes €oming from the each individual
component are analysed separately as well as in the couystshs

2.9.1 Diagnosis of ocean data assimilation

There are major changes taking place in ECMWF's coupledcésting system at the moment, with
the NEMO ocean model replacing the old HOPE model, and wighatioption of the NEMOVAR
assimilation system. NEMOVAR is currently being implenazhfor 3D-Var assimilation of temperature
and salinity profiles, ocean currents and satellite alémdata logensen et al.2009. In addition,

it is forced with ERA-Interim surface fluxes of sensible-hgaoisture, momentum and (penetrative)
radiation. Furthermore, SSTs are strongly relaxed to mAQET observations (with a timescale~o?
days) and weakly relaxed to salinity climatology (with a disgale of~2 years). With this approach,
mean analysis increments should reflect systematic emdreirepresentation of surface fluxes and/or

the ocean model.€. not the entire coupled model) and so diagnostics should iglementary to those
obtained from the NWP assimilation.
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An example of NEMOVAR ocean analysis increments is givenig E8, which shows mean ocean
potential-temperature increments at the equator. In tleteEa Pacific increments remove heat below
the thermocline and add heat above while, in the westerrfi®dtie opposite happens. This has the
effect of increasing the tilt of the thermocline. These @ments could partly be reflecting ocean model
error. However, these increments are common to other ocedelmforced by the same surface winds.
In addition, a joint diagnostic project with the UK Met. Officvas highlighted large differences in
seasonal-means of analysed zonal winds at 850 hPa in thigreg to 2ms* —i.e. 25% of the total).
Hence it is quite likely that the surface momentum fluxes uselde assimilation also play an important
role in generating these ocean increments.
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Figure 18: Equatorial cross-section of temporal mean, Hy-avindow, potential temperature incremerft€)
from NEMOVAR 3D-Var assimilation. The averages have bepmpated for the period of 1989 to 2006.

Research diagnostics also include the comparison wittpemdent (non-assimilated) observations and
with other datasets such as the World Ocean Atlas 2005 (WQAAS with NWP (sectior?.2), the
ocean data assimilation is also assessed by conducting\@tzs8ystem Experiments (OSESs). Indeed,
the ocean data assimilation system provides a good enveohto diagnose errors in surface fluxes and
the ocean model. Although discussed here, se@idri clearly fits well within the left-hand yellow box
of Fig. 1.

2.9.2 Diagnosis of large-scale variability and teleconti@ts in coupled and SST-forced hindcasts

In long-range forecasts performed with coupled modelgrenmay originate either from an incorrect
prediction of SST variability, or from an inability of the gpled model to reproduce the correct atmo-
spheric response to SST anomaly.

In order to investigate the origin of seasonal forecastreri@41-member, uncoupled, seasonal hindcast
ensemble forced with observed SST is produced each qulrédiows a quick assessment of whether
a particular seasonal-mean atmospheric anomaly couldbiesm forecast if the correct SST had been
predicted. Results from those uncoupled seasonal hirelaestaccessible on the internal web, and are
systematically used during the joint meeting of the Operatiand Research Divisions when discussing
the seasonal forecast performance.

In addition, a diagnostic package has been developed tesadsecorrespondence between patterns of
large-scale variability and teleconnections simulatedhgymodel and those found from observational
datasets and re-analyses. The package uses regressio®&nahilysis to compute a set of climate
variability patterns which are relevant to seasonal aretiatnual time-scales. The diagnosed fields can
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be classified into three main areas:

e Variability/covariability of SST and heat/water fluxes
e Atmospheric response to SST variability

e Dominant modes of atmospheric variability/covariability

The similarity between patterns derived from observatiand GCM datasets is quantified with the use
of 2-dimensional ‘Taylor’ diagrams. Distances in Tayloagliams are used to define metrics which can
be used as ‘figures of merit’ in the evaluation and comparig@BCM simulations. The package can be
used to compare the variability generated by different rhogeles, or to evaluate how variability and
teleconnection patterns differ in SST-forced versus caigimulations.

An example of the output of this diagnostic package is prtesem Fig.19 and Fig.20. These fig-
ures highlight the links between SST and monsoon predipitatariations in (a) ERA-Interim, (b) the
uncoupled hindcasts using system 3, (c) the coupled faecagg system 3, and (d) in a 5-member,
20-year hindcast set with the new coupled model (IFS-36 EMR). Figurel9 shows covariances with
the first principal component of precipitation within thedrbox indicated. The patterns for the ob-
servations and coupled simulations (Fl§a,c,d) look rather similar and incorporate a clear eastwes
rainfall dipole. The new coupled model (Fig9d) appears to produce a stronger dipole than that of the
re-analysis and coupled System 3 (Hifa,c), although the percentage of variance explained byrte fi
PC is in close agreement with the re-analysis value (16.24u8e15.5%). The precipitation pattern
from the uncoupled simulations (Fi§9b) is strikingly different and emphasises a north-soutbotg.

In the uncoupled hindcasts, the first PC of South Asian rhiefglains a significantly larger propor-
tion of variance (21%) than the first PC of ERA Interim, whife tsecond PC (associated with stronger
east-west rainfall gradients) accounts for about 11% of/#n@nce.

a) ERA-Interim b) System 3 (uncoupled)

0.
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Figure 19: Covariances of precipitation over the whole damshown with the first principal component of
precipitation in the red box indicated. Results are basedarERA-Interim, (b) the uncoupled hindcasts using
system 3, (c) the coupled forecasts using system 3, and (d)enber, 20-year hindcast set with the new coupled
model (IFS-36R1/NEMO).

In Fig. 20, the covariance of SST with South Asian rainfall PC1 is digpt. Both coupled mod-
els (Fig.20c,d) show stronger covariance with EI-Nifio — La-Nifia S$ibraalies than that observed
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Figure 20: The covariance of SST with the first principal comgnt of precipitation as in Figl9. Results are
based on (a) ERA-Interim, (b) the uncoupled hindcasts usystem 3, (¢) the coupled forecasts using system 3,
and (d) a 5-member, 20-year hindcast set with the new couptatkl (IFS-36R1/NEMO).

(Fig. 20a). The more westerly position of the maximum of equatori@ll Sanomalies in the IFS-

36R1/NEMO system is a consequence of its cold bias in thdiPacild tongue. The very different

precipitation pattern for the uncoupled model is connetted rather different covariance with SST
(Fig. 20b), but it is interesting to note that the uncoupled simalai suggest an important role for
extratropical SST anomalies over the northwestern Pacdi also indicated by the observations.

These differences underline the importance of couplinggfiting the correct variability of monsoon
precipitation. In the context of this paper, it emphasisesitnportance of a variety of diagnostic tools
that can assess the effect of air-sea interactions andempbcesses on the modelled variability and,
consequently, on the pattern and intensity of predictednaties.

2.9.3 Diagnosis of the mixed-layer model

In sectionl.5, it was shown that the monsoon is less over-active in cougitedlations (Fig2q) than it

is in uncoupled simulations (Fi@n). This can be explained through mixed-layer diagnostiesgnted

in Takaya et al(2010. They show how Indian Ocean SST (particularly arounéS)becomes cold
relative to SST analyses over the first 10 days during Julgéxgnts. In effect the over-strong monsoon
surface winds in the atmospheric model lead to increasedtldteat fluxes, but these are moderated
(in the medium-range) if the ocean is able to respond. Hemeertonsoon in the coupled model is
provided with less moisture than it is in the uncoupled modéiry similar arguments apply for the
weakening of tropical cyclones when they are allowed toragewith the oceanBender et al.1993
Wada 2009. The cooling effect is actually underestimated by the mhilegyer model when compared
with TMI observations and this may be explained by the faat the implemented mixed-layer model
does not represent upwelling.

2.9.4 Sensitivity experiments with the coupled system

Numerical experiments in which specific regions of the oca@nrelaxed towards observed conditions
have been used recently with the IFS/HOPE system to asseissfiact of SST biases in the Gulf Stream
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region Balmaseda et al2010. Regional SST relaxation is going to be implemented in FE®INEMO
and IFS/high-resolution-mixed-layer systems.

Experimentations designed to evaluate the impact of thed laarface initial conditions
(Ferranti and Viterbp2006 Weisheimer et al.2009 have shown that initial memory in the land sur-
face is an important predictability source. More recentiyipled simulations using observed sea-ice
concentration @almaseda et gl2010) have shown its impact on the atmospheric circulation at se
sonal time-scales.

2.9.5 Other diagnostic tools

A seasonal forecast suite developed in collaboration viiehEnsembles project and Meteorological
Operations section provides a comprehensive set of basgndstics and verification statistics (such
as biases, timeseries of atmospheric and oceanic indieesnunistic and probabilistic scores) for any
seasonal forecast experiment. This suite is instrumemthkl development of the new seasonal forecast
System 4. Results from this suite are accessible on thenaitereb.

Seasonal-mean teleconnections and transient Rosshypeaket diagnosticsGrazzini and Lucarini
2009 also highlight links to circulation features such as ower Worth Atlantic / European region.

The MJO is a major potential source of predictability in threfics on time scales exceeding one week.
It has a significant impact on the Asian monsoon, it affeces davelopment of EI-Nifio events and
impacts on tropical cyclogenesis. Hence dedicated didigsaare routinely used to assess the quality
of the MJO predictions in every new model cyclétart et al, 2007). An example will be presented in
section3.

The evaluation of the coupled system climate is crucial foy further development of the seasonal
forecast system. During the development process, sevet®lo$ coupled hindcasts using the most
recent atmospheric model cycle have to be produced andsaaklydeally diagnostics of the coupled
and uncoupled systems should be based on the same expatisgtnip. Efforts are going to be directed
towards making the system more accessible to other ressactions.

2.10 Flow-dependent error

Hindcasts, made using a constant IFS cycle within the ER&rlm project, can help distinguish flow-
dependent changes in operational forecast skill from thgseciated with cycle changes. For example,
ECMWEF'’s operational northern hemispheric Z500 errors veerestantially larger during the March—
May (MAM) season of 2009 than they were in the previous ydads important to understand whether
MAM 2009 was simply less predictable or whether a problem leeh introduced into the IFS in the
intervening period.

This example is discussed with the help of a diagnostic twatl $eparates error and ‘activity’ into differ-
ent spatial scaleg(g. ‘synoptic’ and ‘planetary’). Figur@1(a) shows results based on the operational
forecasts for the northern mid-latitudes as a function oédast lead-time. Each curve has three at-
tributes: colour, thickness and style. Red curves show MAN®and blue curves show MAM 2008.
Thick curves relate to planetary scales and thin curvesdasyimoptic scales. Solid curves show the
mean-squared forecast error. Dashed curves sheytt® mean-squared analysis anomaly (from the
long-term climatology: the ‘observed activity’). Dottedrees show forecast activity. Coloured circles
on any curve indicate a statistically significantly bettesult compared to the other year. Importantly,
because squared quantities are shown, the planetary aagtigyacales can be added to give the total
(error or activity). In the limit of no predictability, the®r curves would reach the activity curves.

The poor scores for MAM 2009 can partly be explained by aneiase in synoptic-scale error (thin,
solid). This is consistent with increased synoptic adtithin, dashed). However, planetary-scale
errors (thick, solid) were also larger (statistically sfgrantly so) even though planetary activity (thick,
dashed) was actually less in 2009.
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Figure 21: Scale dependent error and activity for the northmidlatitude 500 hPa geopotential heights in the
March—May (MAM) season 2009 versus MAM 2008: (a) Operatiforacasts, (b) ERA-Interim hindcasts. Line
style indicates the quantity: solid for mean-squared gmashed for mean-squared activity of the analysis, dotted
for mean-squared activity of the forecast. Activity is dadias twice the mean squared anomaly of a given field
relative to climatology. Line thickness indicates the grafiwaves included: thick for planetary waves with zonal
wavenumbers 0-3, thin for synoptic-scale waves with zoasenumbers 4—-14. Line colour indicates the year:
red for MAM 2009, blue for MAM 2008. Dots are placed on a cufitbat year is statistically significantly better
than the other year. Errors for different scales can be addezhrly. Similarly activities can be added to give the
total activity over zonal wavenumbers 0-14. The error telodbe activity at the limit of no predictability.

The corresponding results based on the ERA-Interim hingcdmow very similar signals (Fig@1b) and
this leads to the (re-assuring) conclusion that a receneiroygle update is not the reason for the poorer
scores in MAM 2009.

Further work is required to understand why the IFS had pdaigroblems predicting the larger-scale
planetary wave pattern in MAM 2009. The relaxation experitadike those discussed in sectidr8.4
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may be helpful in this regard.

2.11 Forecast uncertainty

The evaluation of ensemble forecasts differs from that eérdeinistic forecasts because the former
provide a probability distribution that is not better knownposteriori than it was known a priori
(Talagrand and Candilj009. Any meaningful evaluation has to accumulate forecasfigation pairs
over sufficiently large samples in order to enable the coisparof like objectsj.e. predicted distribu-
tions and empirical distributions of forecast errors eatia from observations or analyses.

A versatile diagnostic for ensemble forecasts that assasdiability is the relationship between en-
semble spread and the ensemble mean ef@agrand et al.1997). It is used in a number of ways

at ECMWEF to assess the characteristics of the EPS by lookiddfarent variables in the model state
space and all forecast lead times. The diagnosis of ensgdadiction systems at ECMWF focuses on
how inconsistencies between ensemble spread and the deseedn error are linked to deficiencies in
the formulation of the sources of uncertainty in initial ddions and the forecast model.

The basic form of the spread-error relationship considenple averages of the variances over a re-
gion and a set of forecasts. The more sophisticated formefgread-error relationship considers
the joint distribution of ensemble standard deviation andeenble mean error for a fixed lead time
(Talagrand et a).1997 Leutbecher and Palme2008. The spread-reliability is determined from the
conditional distribution of the ensemble mean error foegiensemble standard deviatiog,s Statis-
tical consistencyj.e. reliability, requires that the standard deviation of thimditional distribution is
equal tooens the value of the ensemble standard deviation on which stelition of the error is con-
ditioned. An example of this conditional spread-error diagfic has already been discussed in Section
2.60n analysis uncertainty. Depending on the variable andtie@elit may be necessary to account for
analysis or observational uncertainty. This can be dodeviilg the method oSaetra et ali2004) and
work on using this method in the verification of ensemble dast at ECMWEF is in progress.

The spread-error diagnostic has been extended to consffégent spatial scaleslung and Leutbecher

(2008 use waveband filters to focus on planetary, synoptic andsgobptic scales. They showed
that the over-dispersion of the ECMWF EPS prior to model &\32r3 in the early forecast ranges is
particularly prominent in the synoptic scales in the mitklaes.

Often a ‘forecast bust’ is thought of as a deterministic ¢as# that is far from the truth. Here, proba-
bilistic forecast busts have been defined to occur when thereble spread is small, but the mean error
is large. In such a situation, the probabilistic forecasy fna over-confident. One such probabilistic
bust is evident in the operational D+5 forecast verifying2dhOctober 2008 (see Fig@2). On this
date, the ensemble spreﬁf (black, ‘pf’ stands for ‘perturbed forecast’), suggesighdly increased
uncertainty in the forecast, but the squared error of therabge meang2,, (red) is much largenis the
ensemble size aneh— 1)/(n+1) is a scaling to make the mean squared error quantitativehpecable
with the mean spread). Occasionally, even for a perfectipreied forecasting system, the verifying
analysis will fall outside the ensemble, but it is worth exaimg whether this represents something more
systematic.

Figure 23 shows a composite of five such ‘probabilistic busts’ in thebDensemble forecast. Four
of the busts are in spring and one is in autumn. Although tesarke preliminary, the suggestion is
that anomalies over the US, panel (a), appear to lead, 5dd#sts to a planetary wave-like feature
down-stream, (b), and enhanced forecast errors over E(dypieat were not predicted by the ensemble
spread (c). If these results are representative of a syteissue (more cases will establish this), then
this study may be highlighting model problems with the repreation of mesoscale convective systems
and mesoscale convective vortices over the US, for exarmpeS¢thumacher and Davig010 that may
not, therefore, be explicitly accounted-for in the singwactors used to perturb the ensemble.

Also shown in Fig22is the correlation between the daily time-series of enserslead and error of the
ensemble-mean. Although a perfectly calibrated ensernobéedst system would still have a correlation
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Z500 Spread and Error at D+5
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Figure 22: Time-series of D+5 ensemble spread (black) anezfd ensemble mean forecast error (red) for 500
hPa geopotential heights over Europe (unit€®n¥). The error is scaled so that, in a perfectly calibrated syst
they should have the same expected (long-term-mean) valihe apread.

(a) Initial Analysis Anomaly Composite (b) Verifying Analysis Anomaly Composite
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Figure 23: Composites of probabilistic busts in D+5 ensesrfblecasts over Europe. (a) Initial analysis anomaly.
(b) Verifying analysis anomaly. (c) Ensemble spread at D# Root-mean-squared error of the ensemble mean
at D+5. The composite comprises forecasts verifying on #tesi20070404, 20070424, 20080306, 20080417,
20080927.

less than 1, it is worth monitoring this correlation in fieuAssessment of the spread-error relationship
on the daily timescale may, for example, highlight a poéigjitthat, although spread is well-calibrated to
error in the long-term-mean, there may be a compensatiamideg, with too much spread in situations
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of reasonably predictable flow and too little spread in s$itues that are (presently) less predictable.

A proper score that is particularly suited for identifyingopabilistic forecasts busts in the sense dis-
cussed above is the Ignorance score computed for the Gaudssiesity with the mean and variance
predicted by the ensemble. Work to use it routinely at ECMW/adsess ensemble forecasts has started.
The Ignorance score is particularly efficient in quantiyiime skill (or lack of skill) in flow-dependent
variations of uncertainty as demonstratedleyitbeche2009).

2.12 Diagnostic verification

Some aspects of verification provide considerable insigfiat fiorecast system error. Two such aspects
are discussed below.

2.12.1 \Verifying the tracks of cyclonic features

Adverse and severe weather events in both the tropics aratteapics commonly relate to the passage
of cyclonic features in the lower troposphere. So if the fiagdof these cyclonic features in forecasts
and model analyses can be compared, one can effectivelfy ¥erecasts of inclement weather ‘by
proxy’. Whilst such an approach implicitly relies on theegtity of model analysis fields it has the
major advantage of circumventing observation-relateclpraos. Importantly, such an approach can
also incorporate severe weather events over data spa@sg aatably oceans, hugely increasing the
dataset size. This tackles the primary hurdle for severeheeaerification, namely small samples, and
so can markedly increase result robustness. Thus we havéieat®n strategy that, through the use of
innovative feature-track-related diagnostics, can tlyesddress ECMWF'’s severe weather forecasting
goals. As discussed below, the verification ties in with ngalane-related products, and so is dual-
purpose, providing diagnostic information not just for E@MN but also for its product users.

The main tools required here are sophisticated automagedthims for identifying and tracking the said
cyclonic features. Having imported and extended pre-exgjdtlet Office code (seklewson and Titley
2010, ECMWF now has such tools at its disposal. Indeed thesecavgoroviding products for forecast-
ers in real time (seklewson 20091, and a verification component has recently been built img@ared

to some other trackers our methodology has the distinctradge of being able to follow features across
a wide range of scales, with smaller frontal waves and polas Ibeing successfully tracked alongside
larger hurricanes and extra-tropical depressions. Figdfa) shows an example of a number of fea-
tures automatically identified in an analysis field, inchgla chain of frontal waves (orange spots), that
brought heavy rainfall to the British Isles.

To illustrate some of the diagnostic capabilities of cyeldnack verification a 6 week period from
winter 2009/10 was examined. Figu2& shows the median position error, as a function of lead time,
for all features tracked forward from T+0 in various modekitasts. This tells us that the deterministic
forecasts provide a minimum error feature position forecpsto day 3.5, after which the EPS feature
mean takes over as the most accurate. Meanwhile the EP®Icantris a little less accurate than the
deterministic, showing, importantly, that even going frdgkm to 16km resolution can improve feature
trajectories. Note also that the (unperturbed) controlhas a lead time gain of about half a day in the
early medium range over a perturbed EPS member (black [Ties fact that other cyclone attributes, in
addition to position, are stored in a database when tradaftgvare is run will enable other diagnostics
pertaining to model handling of cyclonic features, suchiasds in deepening rates, to be examined in
detail in due course. They may also provide pointers to whyreiand biases occur (selewson 2002).

One of the cyclone database attributes stored is the ‘mawimind 1km above the earth’s surface
within a 300km radius of the feature point’. A related prodisca ‘storm track strike probability’ plot

- for this the maximum wind attribute is used to place all fea$ tracked in EPS members into three
categories of severity (Fi@4b shows an example for the ‘all features’ category). Plothisftype show
the probability that a cyclonic feature, attaining the giseverity threshold, will pass within 300km
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Figure 24: (a) Objectively identified synoptic features iadal analysis for OOUTC 10 July 2010. Mean sea level
pressure contours are black, with 1000-500hPa thicknees|of 546 and 564 dm in colour (dash-dot). Objective
warm and cold fronts are red and blue respectively. Frontal/es are orange, ‘barotropic lows’ are black and
diminutive frontal wavesHewson 20099 are green. (b) D+4 storm track strike probability producorin the
ECMWEF EPS, for the same validity time, for all features, sdal%. Tracking time window is +/-12h. Red band
crossing Scotland corresponds in this case to the forecask bf the frontal waves.
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Figure 25: ECMWEF cyclonic feature median position error fii@k runs of the Jan 2010 model upgrade, over an

extended N Atlantic domain (Deterministic forecasts werg€l®79 resolution; Control and EPS members were
at T639 for these lead times). Verification period 25/111@91/10. ‘EPS Feature mean’ denotes the centre of
gravity position for surviving features in the EPS runs.

within a 24 hour period, and as such are analogous to the ‘obnmcertainty’ formally used with
tropical cyclone predictions. The difference is that they peoduct covers all features at once, not just a
single named system. Such products have been verified, aggira 6 week period, using a Brier Skill
Score approach, and some results are shown inZgigfor the ‘all features’ (solid) and ‘windstorm’
(dashed) categories. To verify ‘adverse weather by praxgame general sense, one can focus on the
‘all features’ category, whilst to verify ‘severe weathegr froxy’ - in this case severe winds - one can
focus on the ‘windstorm’ class. The trial version of the naghhresolution forecasting system, that
was introduced in late January 2009 (red), generally ofdpaed the then operational system (blue).
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This is re-assuring, and tallies with signals from more emtional measures. However the plot also
highlights that handling by the EPS of the ‘windstorm’ catsgat leads of 2 to 4 days may have been
degraded. This is being monitored. This important resulildi@enerally be masked out by classical
verification measures. Note also that verification can atésafplied to other EPS systems, and here the
black line shows the performance of the global version oMle¢ Office MOGREPS ensemble over the
same period. This indicates that the ECMWF EPS has a leadg@ineover MOGREPS of typically 2
days, even in the early medium range.
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Figure 26: Brier skill scores for forecast strike probaltiis for two classes of cyclone: ‘all features’ (solid) and
‘storms’ (dashed), for two EPS systems (see legend - ‘ECM\WERD was at resolution T399 to day 10, then
T255; ‘ECMWEF HI-RES TRIAL was T639 to day 10, then T319). ‘Stems’ category denotes those features
around which the wind speed, at 1km altitude, within a 300&dius, exceeds 60kts locally. The verification
period and domain are as in Fi@5.

Future plans include classifying cyclonic features acegydo other measures, such as area-integrated
precipitation totals in their vicinity, to address othevese weather aspects. ‘Rainstorm’ strike proba-
bility plots will be one output, and these will probably berified using rainfall in short range model
forecasts. The diagnostic value of this is that it can pa#wntgive insights into precipitation biases and
moisture budget issues in the ECMWF model. One problem ntighthe integrity of the model pre-
cipitation ‘analysis’, and it may be better to use some fofrhlended model-observation precipitation
analysis instead. There is also considerable scope to denapd verify products from experimental
runs. For example, one could examine the effect that intoolu of a mixed layer ocean model has
on storm tracks and the precipitation characteristics a$¢hstorms. There is also scope to apply the
tracking, routinely, in monthly and seasonal forecastgresent this is only done for tropical cyclones.

2.12.2 Conditional sampling based on weather verification

It is strategically important for ECMWF to focus more on thedgliction of precipitation. As a first
step towards this goal, verification measures for predipitaare required. However, precipitation is a
difficult quantity to verify owing to its highly skewed didtution. Work has focusedRodwell et al,
2010 on developing a stable deterministic verification measguaeis particularly relevant for assessing
and monitoring the deterministic initialisation of the nebdnd the model's deterministic physics. This
score is called ‘SEEPS’ (which stands for ‘Stable Equitdiier in Probability Space’). It is a three-
category score that assesses the prediction of dry weatldetha prediction of precipitation quantity.
Essentially, it is (1 minus) the average of two 2-categoriydeeSkill Sores, defined by the climatolog-
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ical probability distribution in such a way that they are ragyotically stable in the limit of a perfect
forecasting/observation system. Because SEEPS is defindet bocal climatological probability dis-
tribution of precipitation, it always assesses the salkeamtects of the local weather. It has been shown
to be able to demonstrate statistically significant diffiees between two consecutive model cycles, and
to show trends in operational scores. Importantly, SEERShaperties that promote ‘refinement’ and
inhibit ‘hedging’. With the emphasis in operational cesteeich as ECMWF on the diagnosis of error,
it is highly beneficial that this error score gives as truefiection as possible of the ‘quality’ of the
forecast system.

Recent work on the processing of ‘SYNOP’ data exchangedtbeeG TS has allowed, for the first time,
near-real-time verification of precipitation anywhere otre globe (even when the reporting time does
not coincide with whole-day lead-times from the 0 and 12Ud&¢asts). For example Fig7 shows
scores for India (which generally reports at 3, 9 and 15 UTt@@ad-times of 2 and 5 days. In general
tropical scores are poorer than those for the extratropiasat least it can be seen that D+2 (R2§a)
has better scores than D+5 (F&Yb), and this indicates that tropical trends at constant-taad will be
identifiable in future.

(a) D+2 (b) D+5

00 02 04 06 08 10 12

Figure 27: Mean SEEPS precipitation error based on operaiaeterministic forecasts verifying in June—August
2009. (a) D+2. (b) D+5. An error of zero indicates a perfect@gorical forecast system. A mean error of 1
indicates a forecast system with no predictive skill.

Such scores will not only aid top-level decisions about ngalecimplementation but also open-up new
avenues of diagnostic research. For example, the SEEPS ischighlighting particular problems in
the prediction of precipitation associated with depressiover the Mediterranean and this will lead
to a re-focusing of attention on our predictive skill for skedepressions and the (sometimes severe)
precipitation associated with them. Breaking-down theesaato contributions from particular categor-
ical errors can also help identify the features that are mstlematic and need to be prioritised (for
example the over-prediction of light precipitation in thegent forecast system).

Future work will focus on ‘proper’ probabilistic scores. & joint use of deterministic and probabilistic

scores will allow a complete assessment of the deterngnistidel and the uncertainty aspects associ-
ated with ensemble data assimilation and stochastic physic

3 Collaborative projects

The Working Group on Diagnostics has highlighted two clasgeollaborative projects: those address-
ing existing problems, and those addressing new forecastraycycles. In sectioB.1the key findings
of the ‘over-active monsoon’ project are summarised, winilsection3.2 the diagnosis of new model
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cycle 36R4 (due for implementation in the last quarter of®04 discussed.

3.1 Diagnosis of existing problems: Summary of the monsoorrgect

For several years, our forecast systems have produced tob pracipitation over the west coasts of
India and Burma/Myanmar and over the seas surrounding thariiPeninsula. This over-activity gen-
erally also applies to the Indian Peninsula itself, paldéidy in August. The exception to this wet bias
is a marked dry region over Bangladesh. This pattern of bigs&. 2) gets worse with increasing
lead-time, and higher resolution (without parametrizatholjustment) does not help. To understand this
problem better and to demonstrate many of the diagnostis to@ilable at ECMWF, a collaborative
project on the Asian summer monsoon was established. Hweregsults of this project are summarised.

Recently, new observations have been assimilated witlgnntionsoon region. These include Indian
radiosonde temperature profiles (diagnostics indicatgutaued observation quality so that these could
be un-blacklisted; Fig8) and ASCAT scatterometer surface winds (Big). In addition, SSMI radiances
(primarily sensitive to total column humidity) are now asgated in all-sky conditions in 4D-Var in a
unified way. Observation impact assessments indicate liba®8MI data, for example, have a strong
impact on the analysis (Fig). Increased observation usage within the assimilationhlefized in the
diagnosis of the monsoon problem.

Comparison between ECMWF and UK Met Office analyses inditteteour estimates of the ‘truth’ are
quite different in the monsoon region. For example, the neatysed zonal winds at 925 and 850 hPa
over the Arabian Sea are up to 2mslower than those of the Met Office. The hemispheric masgdiud
study of the ECMWF re-analysis provides complementaryrimfdion that suggests that tropical winds
in general remain poorly analysed (FidL).

Examination of differences (in observation space) betwasservations and the first-guess can help
differentiate these estimates of the truth. First-guessmideres indicate that the low-level monsoon
circulation in the ECMWEF first-guess is about Imsstronger than observed (Figc). Agreement
between the first-guess departures of different obsen@atsoich as ASCAT and atmospheric motion
vectors €.f. Fig. 4c,d) all add weight to the suggestion that the first-guesanges (and consequent
analysis increments; Fi§) reflect a model problem.

Analysis differences between ECMWF and the UK Met office nmadjdate differences in how strongly
each analysis is drawn to the observations. However, theraspects of the flow that are not well
observed. ASCAT, for example, only ‘observes’ winds at thidaxe. A good model representation of
boundary layer processes is required to communicate ASQAace departures up to 850hPa. Hence
analysis differences may also reflect model differences.

Results also show that ECMWF low-level zonal wind errorsrdlie Arabian Sea (relative to the analy-
sis) grow with time to 3 mst by D+5 (Fig.8a) and (not shown) to about 4 misby D+10. Since this
bias is even greater than the likely uncertainty in the aig|yt is further evidence that this aspect of the
over-active monsoon reflects a model problem. Similarlyedast ‘MTSAT' brightness temperatures
grow with lead-time (Figl3c). They indicate enhanced convection over India, the ¢ad@nd northern
Indian Ocean and Arabian Sea, and reduced convection oveyldiesh.

Initial tendency budget studies have indicated which mees could be involved in the initial model
error (Fig.9). The boundary-layer momentum error, for example, isyikelbe associated with vertical

diffusion, convection or the dynamics itself (or a combioatof these). Further investigation of these
initial tendency budgets is planned.

The coupled model displays weaker precipitation biases tha uncoupled modekt(g. Fig. 2n,q).
Partly this may be because an interactive ocean can modbeatroneously large surface latent heat
fluxes of the atmosphere-only model. The act of coupling &s® an impact on the variability of
monsoon precipitation (Fid.9). It is likely that these bias and variability changes areindependent
of each other. The implication is that better understandithe monsoon problem can be gained
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through coupled experimentation and that it is desiralsieganeral, to assess (atmospheric) physics
changes within the context of the coupled model.

Recent work means that it is now possible to monitor dailydast scores of monsoon precipitation
(Fig. 27) as well as assess biases. This should ensure that accdakeisof the monsoon problem
when development decisions are made in future.

The above collaborative study has gone a long way towardsctesising the monsoon problem and
indicating possible reasons for it. More work, howevergiguired to fully resolve the problem. Partic-
ular attention will be given to boundary-layer processesipted processes, and forecast departures in
observation space.

3.2 Diagnosis of new model cycles: Application to cycle 36R4

The monsoon project has motivated developments in ourseptation of convection in the new cycle
36R4. In particular a reduction in the hydrological cycleotigh a reduction in the shallow entrainment
rate (it becomes relative humidity dependent and congistéh deep convection), and a re-tuning of
the deep convective entrainment/detrainment rates - wigidhices the upper-tropospheric mass fluxes
and model cold bias and improves the upper-level wind field.

A change in the microphysical scheme and the cloud-radidtiteraction, that did not directly target
the monsoon problem, had an equally positive effect on thamdmonsoon circulation. The microphys-
ical developments comprise a new 5-species prognostioptigsical scheme (cloud liquid water, ice,
rain, snow, and cloud fraction) that can interact more whid tadiation through the snow content. A
new water droplet effective radius for raining clouds hasrbimtroduced and the cloud overlap in the
radiation becomes dependent on latitude. These microgddyend radiation developments increase the
vertical stability and this leads to the beneficial decréaggecipitation.

Both cycle 36R4 and cycle 36R3 have improved the 2m tempestwver land compared through the
introduction of a variable leaf area indeBdussetta et gl2010).

The impact of cycle 36R4 on the Asian summer monsoon istifitest in Fig28based on 1511 analysis
experiments for the period mid-July to August 2009. As aarable proxy for the precipitation error
and the spin-up of the monsoon circulation (based on furtberparisons with the GPCP2.1 dataset)
the difference between the D+10 and D+1 precipitation faleB6R3 is depicted in Fi®28(a). The
over-active monsoon is clearly evident, together with ttyeadlror over Bangladesh. Figu2&(b) shows

the difference in precipitation rate between cycle 36R4 2683 during the 10-day forecast range for
the same period. Clearly cycle 36R4 reduces the preciitatver the Indian Ocean and increases the
precipitation over the Bangladesh region. Consistent tighimprovement in precipitation, the upper-
level RMS wind errors at D+10 (Fi@8c) are also reduced with cycle 36R4. The overall improvement
in terms of the precipitation and wind errors in the regioabsut 15%.

The relevant components of our diagnostics suite, some @hwhere discussed in secti@ are used

in the assessment of all new forecasting cycles. Here a oignthat targets the representation of
the Madden Julian Oscillation (MJO) is discussed. The MJthaésdominant atmospheric mode in the
Tropics on the intraseasonal time scale, and its predidianf primary importance for the monthly
and seasonal forecast systems. To evaluate the skill of duelmo predict MJO events, 5-member
ensemble daily integrations from 15 December 1992 until&8iudry 1993 are performed for each new
version of the IFS using the same configuration as the operdtimonthly forecasts. The forecasts
are then projected onto combined EOFs of zonal wind at 200 zd?&l wind at 850 hPa and OLR, as
in Wheeler and Hendo(2004) (seeVitart and Moltenj 2010 for more details). Figur@9 shows the
linear correlation between observed and ensemble meapriinstpal component (PC1, left panel) and
the second component (PC2, right panel) as a function ofdrecést lead time for CY32R3 (black
line), CY36R2 (blue line) and CY36R4 (red line). Interegtin CY36R4 improves the predictability
of the MJO substantially by around 3 days, in particular fog second principal component which
has the maximum convection over the Indian Ocean. Thes#tgese therefore consistent with the
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Figure 28: (a) Difference in precipitation (mmda$): D+10 - D+1 from T 511 analysis/forecast experiments for
the period 16 July to 31 August 2009 for cycle 36R3. (b) Deffiee in precipitation rate over the 10-day forecast
range: 36R4 - 36R3, averaged over the same period. (c) Briifer in 100 hPa RMS wind error at D+10: 36R4 -
36R3 (blue implies improvement), averaged over the saniecer

improvements seen in Figug&(b,c). However, there is still a large potential in imprayime prediction
of the MJO. The current average predictability limit for G334 is around 20 days, so half a cycle,
whereas the theoretical prediction limit is expected totmna full cycle.
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Figure 29: The linear correlation between observed and eride mean first principal component (PC1, left
panel) and the second component (PC2, right panel) as aiimof the forecast lead time for cycle 32R3 (black
line), 36R2 (blue line) and 36R4 (red line).

4 Discussion

4.1 The importance of diagnostics research

Diagnostics has several different connotations depenalfirame’s point of view. For operational fore-
casting, it is primarily about the diagnosis of system erktwwever this diagnosis can entail the use of
circulation metrics and in-depth case-studies which mambee familiar to some readers. Diagnostics
research is required to maintain the pace of forecast systgmovement. New tools must be able to
identify smaller errors, analyse larger observation vaantontend with more complex models that are
run at higher resolution, and address the growing need totifipaincertainty. These trends in fore-
cast system development cannot be thought of in isolatiar.ekample, physics improvements may
lead directly to reduced forecast error, but may also peantietter assimilation of existing (or new)
observations, and thus indirectly reduce forecast ermmutih the improvement of initial conditions.
Hence there is also a great need for seamless thinking imaéigs. This involves collaborative diag-
nostic work, such as using data assimilation to diagnoseé&st model error, but it also involves simply
enhanced communication.

4.2 The Working Group on Diagnostics: Initial findings

Recently a ‘Working Group on Diagnostics’ (WGD) has beeralglithed to consider, in the broadest
terms, ECMWF's diagnostic strategy. ECMWF has never hadithenrdiagnostics strategy and so this
has been a useful exercise. The WGD comprises represestafiall Research sections and of the Me-
teorological Operations section. It has been coordinayezhie of the scientists who's work is dedicated
to diagnostics research, and has met several times so faddress the aspects of diagnostic research
discussed above, it has formed the view that its roles shiogldde: the over-sight of collaborative
projects, the strategic coordination of diagnostic dgwelents, and the across-section communication
of information and results. This paper is the first major oate of the WGD.

In sectionl (Fig. 1) a diagnostic framework was introduced that highlights thdous areas of the
forecasting task where diagnosis is possible. In se@itstrategic’ tools and techniques from within
each diagnosis area were presented. These are tools tHae dédveloped further and that will be central
to the future diagnosis of our forecasting system. Someasfethave been applied to the collaborative
monsoon project and results have been rewarding. Not osla @t been learnt about the monsoon (see
section3.1 for a summary) but we have begun to develop a blue-print thaldcbe adopted in future
collaborative projects. There are significant over-headhducting collaborative projects and so this
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blue-print starts with the careful identification of the impnd of the interested parties. A successful
collaborative project requires momentum to be maintainéat example by holding frequent, short

meetings, by setting reasonably tight deadlines and bylolgwg a scientific interest in all participants.

In addition to specific conclusions about the topic of inggreollaborative projects lead directly to new
diagnostic tools and highlight areas where strategic distimn developments would be useful in the
future.

4.3 Strategies for the future

Sowhere do we go from here? A diagnostics strategy is eassintce diagnosis of the forecast system is
integral to the overall strategy of the Centre. However, wenet discuss detailed diagnostics strategies
for individual sections since this would risk stifling indiwal innovation. Instead, we present, for
discussion, some possibilities for future diagnostictabalration between sections. These are organised
in terms of the three roles of the WGD.

4.3.1 Collaborative projects

There are many possibilities for collaborative projectsm® of these have been discussed above. For
example, one project could address the ‘grey zone’ whergeotion is partially resolved and non-
hydrostatic effects become important. Other topics coondluide the diagnosis of gravity waves, and
the diagnosis of model biases such as the stratospheribiaddd Such projects would be in addition to
the more routine collaborative diagnosis of major new mageles. One key project could focus on
improving the prediction of severe weather. It is worth elabing on this here to emphasise the thought
processes that underlie such projects. A project on seveethar would require going back to first
principles and systematically identifying severe weathaemts. The use of re-analyses and re-forecasts
would help increase sample size. Having identified the eyemé would need to discover whether
enough observations associated with severe weather geiilatsd, or whether too many are rejected
because they are far from the first guess. The first guess méar bevay if our physics is unable to
represent the key processes involved, and this will neectassessed. Ultimately, the prediction of
severe weather is a probabilistic task and so it will be irtgurto investigate whether the ensemble
prediction system is able to adequately represent the eBavfca severe weather event. This requires
robust verification measures that can assess the deliciatecbabetween ensemble size and ensemble
resolution. Hence it is very apparent that severe weatlpgesents a good example of a cross-cutting
diagnostic project.

4.3.2 Strategic diagnostic developments

There is also scope for the strategic coordination of diatin@evelopments. One possibility may be
very apparent to the reader from the project work presertedea This is the issue of the diagnosis of
short-range forecast error and it is worth elaborating tnatittle. A key issue for physics development
is the time taken to diagnose the broader-scale impactsopbped changes. Until recently, a physics
change has generally led to a rather large change in the matiehate and so fast, low-resolution,
climate simulations, that can be run and diagnosed ovétiigve generally been sufficient. In the
future however, as models get better, physics changesdshaue a smaller impact on model climate.
At the same time, increased operational forecast resalutith start to partially resolve some aspects
such as convection, and thus low-resolution simulationg mad be a suitable starting point from which
to diagnose the impact of a physics change on operationatdsts. Finally, the increased number
of physical processes represented within the model is lgrigatreasing the scope for interaction and
making it increasingly difficult to identify the cause of agiven model climate error. These trends
may necessitate the increased use of full-resolution dedemdation experiments to assess errors at
much shorter ranges (initial tendency errors, for examplephift of attention to assessing proposed
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physics changes within the assimilation could have otheefis. For example, the early assessment of
how proposed physics changes interact with assimilationnigues such as variational bias correction
could lead to smoother operational implementation. Indeedecting model errors very early-on in
the forecast would enhance ECMWF's ability to assimilateestational data, and thus produce better
analyses with which to initialise the forecast. There cao d&le synergies since the implementation of
weak-constraint 4D-Var into the tropospheric assimilati@ecessitates a representation of short-range
model error. Better diagnosis of short-range model errdiraléo help in the development of stochastic
physics and of the ensemble data assimilation system. IZldmrefore, there is justification for the
strategic coordinated development of short-range modei diagnostics that can be produced quickly
and efficiently from within the data assimilation.

Diagnostics at ECMWF would also benefit from making somestambre widely available. For example,
one issue is the desirability for all research scientistbdable to set-up coupled ocean-atmosphere
experiments. This would allow, for example, the impact afgmsed atmospheric physics changes on
the coupled model to be readily diagnosed. The WGD couldidensvhich tools are worth making
more widely operable, the need for on-going maintenancedacdmentation of these tools, and the
interface used to drive them. In terms of the governanceaafrdistic tools, the WGD could also discuss
the use of a common scripting language.

Finally, there is a need to ensure that diagnostics areezhfer in terms of computing resources. For
example, higher resolution requires more processing pda@werful diagnostics require, for example,
model-level process tendencies to be archived. The WGDdlkeep a continual check on these issues.

4.3.3 Communication

In addition to the enhanced communication implicit in the /Ghere are other ways that communica-
tion can be maintained and enhanced. A central web-site d&s developed that contains the WGD's
audit of ECMWF’s diagnostic tools. This is likely to be demeéd further (to contain documentation,
for example) and publicised more in future. Other internabvsites contain many forecast system di-
agnostics - the Diagnostics Explorer, for example, costaibD over-view of the forecasting and data
assimilation systems. ECMWF also holds a quarterly joineting of the Operations and Research Di-
visions (the so-called OD/RD meetings). A useful approaxtttie WGD would be to work alongside
the OD/RD meetings by coordinating project work with the @D/special topics.

An important aspect to our diagnostics strategy must be mtirage to foster and maintain links with
institutions outside ECMWF. Some fundamental diagnostisearch is well-suited to the academic
world since it does not require large computing faciliti€g&CMWF can gain useful insight from fos-
tering links with this community and, in return, can offeaghostic access to its operational forecast
system. Two-way communication between ECMWF and memb&rss(& CMWF's user community)
about diagnostics of forecast system performance is gleadential but other collaborative diagnostic
projects, such as that established with the UK Met Office adge profitable for both parties. Finally,
with seamless ideas gaining increasing acceptance, lintkeetclimate community could be developed
further. The NWP and climate communities have differeneotiyes but could use the same diagnostic
tools. For example, ECMWF could pass-on its insights inticpss-oriented metrics. At the same time
the climate community could benchmark their models againsbperational coupled forecast model in
terms of the circulation metrics that they tend to concéatoa.

4.4 Final remarks

This paper has attempted to weave a common thread (the @@ta® monsoon project) through a
previously somewhat disparate set of diagnostic areasoatsl fThe work involved has helped unite the
various sections within Research and Operations. Meaawtliscussions within the Working Group
on Diagnostics have helped formulate a more explicit diatjos strategy. The authors of this paper
acknowledge the previous suggestions by the SAC, and ifwitieer comments on this strategy.
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