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Abstract  

A new version of the RTTOV fast radiative transfer model has been developed that exploits principal 
component analysis. The model is based on the computation of a database of line-by-line spectra for a 
large training set of diverse atmospheric situations. The principal component scores obtained from the 
eigenvectors of the covariance matrix of the simulated radiances are used as input data in a linear 
regression scheme where they are expressed as a linear combination of profile dependent predictors. The 
predictors consist of a selected number of polychromatic radiances computed using the standard RTTOV 
fast transmittance model. The linear regression scheme can then be used to simulate principal component 
scores and consequently reconstruct radiances for any input atmospheric profile. The principal component 
based model compares favourably to the conventional RTTOV model both in terms of speed and accuracy: 
the dimensionality reduction inherent in the use of principal component analysis makes the principal 
component based RTTOV much more computationally efficient and because of the highly linear 
relationship between the principal component scores and the independent variables used in the regression 
scheme, the principal component based RTTOV can reproduce the underlying line-by-line radiances to a 
much higher degree of accuracy. The availability of a principal component based fast radiative transfer will 
enable ECMWF to exploit the noise reduction capability of principal component analysis and investigate 
the direct assimilation of IASI principal component scores in the spectral regions affected by high 
instrument noise.  

KEY WORDS: Satellite data assimilation; Numerical weather prediction; radiative transfer. 

 

1 Introduction 
The assimilation of high resolution radiances measured by the Atmospheric Infrared Sounder (AIRS) 
(Aumann et al., 2003) on the Earth Observing System (EOS) Aqua platform and the Infrared 
Atmospheric Sounding Interferometer (IASI) (Chalon et al., 2001) on the MetOp-A platform has 
produced a significant positive impact on forecast quality (McNally et al., 2006; Collard and 
McNally, 2008). The operational use of AIRS and IASI radiances at the European Centre for 
Medium-Range Weather Forecasts (ECMWF) is currently restricted to a selection of temperature 
sounding channels in the long-wave region of the spectrum and to a very limited number of humidity 
sounding channels in the main infrared water vapour band. The short-wave spectral region covered by 
IASI band 3 (2000-2760 cm-1) contains excellent temperature sounding channels which could also be 
exploited for assimilation into a Numerical Weather Prediction (NWP) system. Channels in the IASI 
short-wave band are currently underused compared to similar channels in the long-wave region for a 
number of reasons, which include cloud detection and radiative transfer biases, day-night variations in 
data usability due to non-local thermodynamic equilibrium (LTE) effects, increased instrument noise. 
All these issues are under investigation with the aim of optimizing the use of the data.   

Regarding the increased instrument noise, we observe that the spectra of high-resolution infrared 
sounders contain many channels that have very similar spectral signatures. Channels that are similar 
in content are highly correlated to each other. As discussed in Antonelli et al. (2004), the use of 
principal component analysis (PCA) can remove a significant fraction of the uncorrelated random 
error present in the observations by exploiting the high level of correlation among these channels. 
Based on PCA noise filtering, we are studying the feasibility of mitigating the instrument noise 
problem in IASI band 3 through the direct assimilation of principal components (PC). The direct use 
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of PCs in an NWP assimilation system requires an efficient radiative transfer (RT) model (also known 
as observation operator) that can simulate PCs directly given first-guess fields of temperature, water 
vapour, ozone, surface properties, and perhaps, at a later time, other variables.   

The observation operator used at ECMWF to assimilate satellite radiance data is the Radiative 
Transfer for TOVS (RTTOV) model (Saunders et al. 1999, Matricardi et al., 2004). It uses a 
parameterization of the atmospheric transmittances that makes the model accurate and fast enough to 
fulfill the current NWP requirements of near real-time monitoring and assimilation of satellite 
radiance data. In this paper, we describe the development of a PCA based version of RTTOV 
(PC_RTTOV). Although the rationale behind the development of PC_RTTOV is the direct simulation 
of PCs, we observe that PC_RTTOV also allows the simulation of spectral radiances. Because of the 
dimensionality reduction inherent to PCA (radiances can be reconstructed using a few linear 
combinations of PCs), PC_RTTOV can be used to simulate radiances much more efficiently than the 
standard RTTOV model. This aspect assumes particular relevance, since the full exploitation of the 
wealth of information provided by current and future high spectral resolution sounders might require 
the use of an increased number of channels. In addition, the development at ECMWF of a 
comprehensive monitoring and forecasting systems for trace atmospheric constituents important for 
climate and air quality is likely to involve an increasing number of trace gas species in the RTTOV 
input state vector. The fulfillment of these demands will pose a significant computational burden on 
the ECMWF Integrated Forecast System (IFS). The availability of a much more computationally 
efficient RT model could thus become a limiting factor in the assimilation of high-resolution radiance 
data.  

Fast radiative transfer models based on PCA have been described by Liu et al. (2006) and Havemann 
(2006). Although PC_RTTOV exploits the same basic principles of PCA, it differs in many aspects 
from these models, most substantially in the scheme used to predict the PCs. Whereas Liu et al. and 
Havemann use a multiple linear regression algorithm where the independent variables are 
monochromatic radiances computed using an appropriate model, the linear regression scheme utilized 
in PC_RTTOV uses profile dependent predictors which consist of a selected number of polychromatic 
radiances computed using the conventional RTTOV fast transmittance model. This approach allows 
the incorporation of PC_RTTOV into the well-established RTTOV architecture. This is a very 
attractive option. In fact, it requires only a limited number of modifications to RTTOV, it has an 
obvious maintenance advantage, and makes the model suitable for utilization in a scheme where the 
adjoint physics is used (i.e. the model must give the correct increments when the state vector is 
perturbed). 

The paper is organized as follows: in section 2 we discuss the basic principles of PCA and their 
application to the simulation of radiance spectra. In section 3 we describe the various stages involved 
in the training of PC_RTTOV. The scheme used for the prediction of the PC scores is described in 
section 4 whereas its accuracy is discussed in section 5. In section 6 we illustrate and discuss the 
forward model error correlation matrix. Conclusions are given in section 7. 
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2 Basic principles of principal component analysis and its application 
to radiance spectra 

PCA is a method that allows the reduction of the dimensionality of a problem by examining the linear 
relationship between all the variables contained in a multivariate dataset. The reduction of the 
dimension of the dataset is obtained by replacing the original set of correlated variables with a smaller 
number of uncorrelated variables called principal components. Since the new derived variables retain 
most of the information contained in the original data set, they can be used to efficiently represent the 
data.  

Suppose our dataset consists of n observations on m variables arranged into an n by m data matrix X.  
The dataset can then be represented by the vector population (here T denotes the 

transpose). If C is the m by m covariance matrix of the data matrix X, and A is the m by m matrix 
formed by the eigenvectors of the covariance matrix arranged as row vectors in descending order 
according to the magnitude of their eigenvalues, the PCs, y, of the vector population can be written as:  

T
mxxx ),.....,( 21=x

  (1) =y Ax

The eigenvectors represent the directions of maximum variance in the data; consequently, each PC 
gives the linear combination of the variables that provides the maximum variation. The PCs are 
orthogonal, hence uncorrelated (this does not imply they are statistically independent), and the values 
associated to each observation are known as PCs scores. If  is the eigenvalue associated with the ith 

eigenvector, then the value of  gives the proportion of variation explained by the ith PC. 

Since by definition the matrix A is orthogonal (hence not singular), on the basis that the inverse of an 
orthogonal matrix is equal to its transpose, we can write: 
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Equations (3) and (4) can be written in discrete notation form as:  
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where i represents the ith value and j is the jth observation. A number of PCs, p, fewer than m can often 
represent most of the variation in the data. We can then reduce the dimension of the problem by 
replacing the m variables with the first p PCs. In many applications, the choice of the number of 
dimensions is based on the total variation accounted for by the leading PCs and it will in general 
depend on specific aspects of the dataset.  

In this paper, the multivariate dataset consists of high-resolution polychromatic radiances calculated 
using an accurate line-by-line (LBL) model for a sample of diverse atmospheric situations (i.e. the 
observations). In principle, we can compute PCs scores for any independent observation by projecting 
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the corresponding LBL radiances on the fixed basis of eigenvectors obtained from the covariance 
matrix of the training dataset. This algorithm, however, involves the very time consuming calculation 
of the LBL radiances and consequently we cannot envisage its use in an operational environment 
where we require the near-real time simulation of PC scores. For this scope, we need to develop a 
computationally more efficient algorithm. The same algorithm will also allow the reconstruction of 
the simulated radiances at a fraction of the cost required by a LBL model.   

Based on what is discussed above, the main steps involved in the development of a PCA based fast 
RT model are: the generation of a training database of LBL radiances and the development of an 
algorithm to predict accurate PCs scores for any atmospheric profile not included in the training 
dataset. The methodologies adopted in this paper are described in detail in the next two sections. 

3 The training of the PCA based fast model 

3.1 The atmospheric profile training set 

The profiles used to generate the multivariate dataset of simulated atmospheric radiances should 
represent the range of variations in temperature, absorber amount and surface parameters found in the 
atmosphere. To this end, we have utilized the profiles contained in the database described by 
Chevallier et al. (2006). These profiles were sampled from a large dataset produced using the 
operational suite of the ECMWF forecasting system (cycle 32R2) for the period July 2006-June 2007. 
In addition to profiles of temperature, water vapour and ozone, the database contains ancillary 
information on surface properties. 

The Chevallier et al. (2006) database contains 12,564 profiles. As suggested by Chevallier (2002), the 
reduction of the number of profiles to a size that is manageable for LBL computations can be 
achieved by randomly sampling the profiles since this would not change the probability distribution of 
the profiles contained in the original dataset. We have then randomly sampled an arbitrary number of 
1000 profiles and have complemented them with a number of profiles selected manually to cover the 
extreme values in the dataset since they are very difficult to obtain when making a random selection. 
The inclusion of the additional profiles resulted in a total number of 1039 profiles. In this study, the 
training of the fast model does not to include land surface observations. Consequently, we only 
selected profiles over the sea surface. All the profiles have been interpolated to the fixed pressure grid 
of 101 levels specified by Strow et al. (2003) and were used to perform LBL radiance computations 
using the pressure grid that extends from the top of the atmosphere to the nearest surface pressure 
value. The statistical characteristics of the training profiles are shown in figures 1, 2, and 3 for 
temperature, water vapour and ozone respectively. 
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Figure 1. Statistics of the temperature profiles in the 1039 profile training set. The minimum and 
maximum values are shown as circles and squares respectively. The solid black curve is the mean 
value and the error bars have a width of twice the standard deviation. 

 
Figure 2. Statistics of the water vapor profiles in the 1039 profile training set. The minimum 
and maximum values are shown as circles and squares respectively. The solid curve is the 
mean value and the error bars have a width of twice the standard deviation. 

 
Figure 3. Statistics of the ozone profiles in the 1039 profile training set. The minimum and 
maximum values are shown as circles and squares respectively. The solid curve is the mean 
value and the error bars have a width of twice the standard deviation. 
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In addition to the vertical profiles of temperature and absorber amount, the LBL computations require 
the values of surface temperature, skin temperature, surface pressure and wind speed at 10 m. In our 
1039 profile dataset, values of the surface pressure vary typically between 990 and 1020 hPa with 
minimum and maximum values attained at 940 and 1040 hPa respectively. Regarding surface 
temperature and skin temperature, they vary between 273 and 303 K with values as small as 240K 
observed mostly over sea ice. The computation of the emissivity used in the LBL computations 
requires the knowledge of the 10 m wind speed. In our dataset this quantity varies between 0 and 40 
m/s. However, since it is estimated (Watts et al., 1996) that for wind speeds greater than 15 m/s the 
emissivity model used in our LBL computations can be invalidated by the presence of foam, any 
value greater that 20 m/s was scaled down to a values smaller than 20 m/s.  

Finally, for testing purposes, we have generated a similar database of 1039 profiles independent of the 
profiles used to train PC_RTTOV. 

3.2 The LBL database of atmospheric radiances 

The database of LBL radiances used in this study was calculated using version 11.1 of the LBLRTM 
(LBLRTM_v_11.1) LBL model developed at AER (Clough et al., 2005). Our computations have been 
carried out assuming clear sky conditions over the sea surface in absence of solar radiation.  
Monochromatic radiances were computed at a resolution of 0.001 cm-1 for each atmospheric profile 
and five values of the zenith angle that cover the viewing geometry of IASI and AIRS (namely the 
angles for which the secant has equally spaced values from 1 to 2). This choice corresponds to a total 
number of 5195 observations. To compute the spectral emissivities used in the LBL computations we 
have modified the model by Masuda et al. (1988) by including the effect of surface reflected emission 
using the methodology described in Wu and Smith (1995) and applying the salinity correction by 
Pinkley and Williams (1976). 

The LBL calculations include 17 atmospheric constituents. The only species that can vary are H2O 
and O3. The other species are held constant and include CO2, N2O, CO, CH4, NO2, SO2, NO, N2, O2, 
HNO3, OCS, CCl4, CF4, CCl3F (CFC-11) and CCl2F2 (CFC-12). For CO2, N2O, CO and N2O we use 
the climatological profiles described in Matricardi (2008) whereas for the other species we use the 
AFGL atmospheric constituent profiles with the exception of HNO3 and NO for which we have 
utilized profiles generated using the MOZART chemical transport model (Hauglustaine et al., 1998). 
The profiles of CCl4, CF4, CCl3F (CFC-11), CCl2F2 (CFC-12) were scaled to reflect present-day 
concentrations using the values tabulated in Table 1.  

 

Table 1. Present-day concentrations for CFC’s and Halons included in the LBLRTM 
computations. 

CFC-11  
(ppbv) 

CFC-12  
(ppbv) 

CCl4  
(ppbv) 

CF4  
(ppbv) 

246 540 74 90 
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For the LBL computations, we have created a molecular database that blends line parameters obtained 
from different sources. This choice is based on the results shown in Matricardi (2007) which suggest 
that in a number of spectral regions the use of alternative line parameters can result in a better 
agreement between observations and simulations. The blended database is based on the AER file 
supplied with the LBLRTM_v11.1 package. This file is largely drawn from HITRAN2004 and 
includes updates up to 1/1/2007. However, for the ozone region between 1000 and 1080 cm-1 we use 
ozone line parameters from HITRAN_2000 (Rothman et al., 2003) whereas in the spectral region 
between 1700 and 2400 cm-1 we use water vapour line parameters from GEISA_2003 (Jacquinet-
Husson et al., 2005). 

Finally, we have computed the polychromatic radiances for the channels of IASI and AIRS by 
convolving the monochromatic radiances with the specification of the spectral response function 
available at the time.  

3.3 The radiance reconstruction error 

As discussed in section 2, the development of PC_RTTOV requires the computation of the 
eigenvectors of the covariance matrix of the training dataset and the generation of the PCs scores for 
each observation in the same dataset. We can then reconstruct any spectrum to a given accuracy using 
a truncated number of principal components, p. This number will in general depend on the number of 
observations, n, and variables, m, in the dataset. In practical terms, we require that the value of p is 
such that for each channel, i, the radiance reconstruction error, , is below the instrument noise, :  iε iη

 

2

, , . ,
1 1 1

pn m

k i k j k i k j
j k k

i

A y A y
i

n
= = =

⎡ ⎤
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⎣ ⎦ε = < η ∀
∑ ∑ ∑

i  (5) 

Note that is this section (and throughout the remainder of the paper) radiances are expressed in units 
of black body equivalent brightness temperature (K).  

We have computed the radiance reconstruction error, , for different values of p. Figure 4 shows 

how the radiance reconstruction error for IASI varies with the number of PCs. The solid line 
represents the error whereas the dotted line is the instrument noise. Note that for each channel the 
instrument noise has been computed at a scene temperature corresponding to the mean radiance. For 
all cases that we have tested, the reconstruction error is below the instrument noise for all channels 
and decreases steeply with the number of principal components. Results in Figure 4 refer to the 
observations in the training set. The reconstruction of the radiances for the profiles in the independent 
set yields almost identical results. In PC_RTTOV the number of principal components is a tunable 
parameter. Although it can be shown that the use of a number of principal components less than 100 
can still fulfill Eq. (5), we do not want reconstruction errors to become a significant fraction of the 
LBL model errors (see Matricardi (2009) and Shepard et al. (2009) for details on the LBLRTM 
spectroscopic errors), above all in IASI band 3. Consequently, we will restrict the use of the principal 
components to a number not less than 100. 

iε
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Figure 4: The reconstruction error for the IASI channels using (a) 100 principal components, (b) 
200 principal components, (c) 300 principal components, and, (d) 400 principal components. The 
dotted line is the instrument noise computed at a scene temperature corresponding to the mean 
radiance. 

4 The PCs scores statistical regression algorithm 
The use of the PC scores of a radiance spectrum in NWP assimilation requires the computation of the 
scores for any input profile. The scope of this section is to describe the development of an algorithm 
that can perform this task very efficiently. To this end, we have fitted an equation to the values of the 
PC scores obtained from the training dataset of LBL radiances described in the previous section. In 
principle, our equation could relate the principal component scores to independent variables (or 
predictor variables) that consist of a combination of profile dependent quantities such as temperature 
and absorber amount. However, the theory of PCA briefly discussed in section (2) indicates that there 
is a linear functional relation between PC scores and polychromatic radiances. It is then natural that 
we try to fit an equation in the form of a polynomial that is linear in the polychromatic radiances of 
the m channels of the selected sensor. The efficiency of the algorithm hinges on the rapid computation 
of the polychromatic radiances. In this paper, we perform this task using the conventional RTTOV 
fast radiative transfer model. We should note that RTTOV has been trained using exactly the same 
LBL model, molecular database, and vertical pressure grid as presented in this paper. The 
implications of using a different pressure grid for the radiance computation are discussed is section 5. 
Our problem than reduces to the computation of coefficient estimates in the multiple linear regression 
model defined by: 

  (6) =y Xb%
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where is the vector of n observation of the dependent variable (i.e. the principal component scores of 

the LBL spectra),  is a n by m matrix of the independent predictors variables (i.e. the RTTOV 

radiances) and is a vector of length m of unknown coefficients that must be estimated. 

y

X~

b

In a linear regression model, the coefficient estimates describe the characteristics of the population 
from which the sample is taken and are interpreted as a measure of the true characteristics of a 
population. However, predictor variables can be linearly related to another predictor variable or to a 
subset of variables and this can result in a value of the estimated coefficients in a sample that can 
differ significantly from the true value in the population. Consequently, the findings for a sample can 
be difficult to replicate in an independent sample from the same population. It is then important that 
for the estimation of the coefficients, the effect of co-linear relations between the predictor variables 
is reduced as much as possible. 

In our regression model, the predictor variables are potentially the many thousands of channels in the 
spectra of IASI and AIRS (8461 and 2378 channels respectively). These spectra contain many 
channels that have very similar spectral signatures. As discussed above, channels that are similar in 
content can cause problems in the regression since they can be very highly correlated. To reduce the 
effect of co-linear relations between the predictor variables, we have arranged the channels in clusters 
that contain highly correlated channels. To calculate the clusters we have followed the approach by 
McMillin and Goldberg (1997). The first step in the calculation of the clusters involves the 
computation of the correlation matrix of the RTTOV channel radiances for the training profile dataset. 
We then search for the channel with the largest standard deviation (lead channel) and find all the 
channels that are correlated to the lead channel above a given threshold. The channel cluster thus 
obtained is removed from the selection pool and the process is repeated until no more clusters can be 
found. At the end of this process, the first, d, lead channels become the, d<m, predictors variables in 
the regression.  

If we fix the number of predictor variables, we can estimate the PC_RTTOV gain in computational 
efficiency (i.e. the ratio between the RTTOV and the PC_RTTOV computational time), g, as follows. 
For the standard RTTOV model, the bulk of the radiance computation consists of the calculation of 
the layer optical depths. The calculation of the optical depths for a single channel requires a number 
of linear operations equal to , where l is the number of vertical layers, s is the number of 
absorbing species, and pr is the number of predictors per layer. Typically, l=100, s=7, and, pr=12, 
therefore, the computation of the optical depths for c channels requires no less than  
operations. In the case of PC_RTTOV, the radiance simulation for c channels involves the 
computation of the values of the independent variables ( operations) and the radiance 
reconstruction ( operations) for a total of +  operations. We can 
then give a conservative estimate of g dividing o by opc: 

prsl ⋅⋅

8400⋅= co

8461⋅d
8461⋅ p)( dcp +⋅ = dopc )( dc +⋅

 
( ) / 840

cg
d p c d

≅
+ + 0

 (7) 

Results for IASI are shown in Figure 5 where values of g are plotted for  (i.e. the whole 
spectrum) and a choice of 300, 400, 500, and, 600 predictor variables. We see that for this choice of 
parameters, we estimate that the gain in computational efficiency varies between 8 and 21.  

8461=c
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Figure 5: The gain in computational efficiency of PC_RTTOV over RTTOV. 

Note that g decreases with c and reaches the value of 1 for a number of channels, c  equal to: ~

 
(1 )

8400

1
8400

pd
c p

+
=

−
%  (8) 

The number of lead channels and the number and distribution of channels in each cluster depend on 
the threshold value used to specify the level of correlation. A too high threshold can result in a large 
number of highly correlated lead channels whereas a too low threshold can result in too few lead 
channels. To address the problem posed by the choice of the optimal value of the correlation 
threshold, we have used an objective criterion that consists in the selection of the value of the 
threshold that minimizes the fitting root-mean-square (rms) error defined as: 
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 (9) 

where are the LBL radiances and are the PC_RTTOV radiances.  To minimize the 

contribution due to the radiance reconstruction error, we have computed the PC_RTTOV radiances 
using 400 principal components.  

LBL
jiR ,

PC
jiR ,

We have evaluated the quantity in Eq. (9) for various numbers of predictor variables and threshold 
values. In particular, we have selected 300, 400, 500, and, 600 predictor variables for IASI and 200, 
300, and, 400 predictor variables for AIRS and have varied the value of the threshold between 0.9972 
and 0.9995 in increments of 0.001. To fix the maximum number of predictor variables for IASI, we 
have used Eq. (7) and found the value that results in at least a ten-fold gain in computational 
efficiency using 200 principal components for the radiance reconstruction. For AIRS, we have sought 
at least a five-fold gain using 100 principal components. Results are plotted in Figure 6, which shows 
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how the fitting error varies with the value of the threshold and with the number of predictor variables. 
It is evident that the optimal value of the threshold (i.e. the absolute minimum of the fitting error 
curve) varies with the number of predictor variables in the regression. The optimal threshold values 
used in this paper are tabulated in Table 2.  Also noticeable is the fact that the fitting error decreases 
with the number of predictors variables in the regression. This aspect will be discussed in more detail 
in the next section. Although not shown here, the clusters with the largest population are generally 
found in the more transparent regions of the spectrum whereas the more opaque regions see the 
presence of clusters with a smaller number of channels. In many instances, the clusters contains only 
one channel.  

 
Figure 6: The fitting rms error for (a) IASI and (b) AIRS. 

 

 

Table 2. The optimal value of the correlation threshold used in the selection of the 
independent variables. 

Number of independent 
variables 

200 300 400 500 600 

Value of the threshold for IASI  0.998 0.998 0.9985 0.9986 
Value of the threshold for AIRS 0.9977 0.999 0.9985   
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5 Performance of PC_RTTOV for simulations of IASI and AIRS 
radiances 

In section 3.3 we have discussed the radiance reconstruction error by varying the number of PCs used 
to reconstruct the radiances. The spectra shown in Figure 4 were obtained using exact PC scores. Now 
that we have determined an algorithm to predict the PCs scores, we can assess the accuracy of 
PC_RTTOV by a comparison of the radiances computed by the fast model with reference radiances 
obtained in different ways. Firstly, the PC_RTTOV radiances computed for the dependent set of 
profiles that were used to train the fast model can be compared with the LBL model equivalents to 
determine the accuracy of the fast model itself. In the same context, we shall also use a set of profiles 
independent of the regression coefficients to allow uncertainties from different type of profiles to be 
included. Thirdly, the fast model radiances can be compared with measured radiances to allow 
spectroscopic and other uncertainties to be included.  

5.1 The fit of PC_RTTOV to the LBL radiances 

The PC_RTTOV radiances can be computed using a variable number of predictors and PCs. Since the 
number of predictors and the number of PCs can be combined in many different ways, it is 
impractical to present results on a single channel basis for all the possible combinations. 
Consequently, we will first concentrate on a discussion of the results in terms of the overall rms fitting 
error computed using Eq. (9) and then present results on a single channels basis only for a selected 
number of cases. The rms fitting error for IASI and AIRS is plotted in Figure 7 for the dependent and 
independent profiles as a function of the number of PCs and the number of predictor variables. 
Results for the independent set give a more realistic estimate of the error in that they tell us how good 
we are in replicating the findings for the training sample in an independent sample from the same 
population. All the panels in Figure 7 show that an increase in the number of predictors results in a  
 

 

 
Figure 7. The fitting rms error as a function of the number of predictors and the number of PCs 
for IASI and AIRS. 
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reduction of the rms fitting error. Although not shown here, the reduction of the error is most 
noticeable in the CO2 temperature sounding bands and in the water vapour band. The error spread is 
less accentuated for the independent case suggesting that errors related to the representatives of the 
training set are more important that errors determined by the choice of the number of predictors. This 
is also reflected in the fact that when moving to the independent dataset, the errors obtained using 
more predictor variables tend to increase more then the errors obtained using less predictor variables. 
As shown in Figure 7, the use of 300 or, indeed, 400 principal components, give little advantage over 
the use of 200 principal components. This is especially true for AIRS for which the error exhibits a 
less steep dependence on the number of PCs used in the radiance reconstruction.  

Results for the independent set on a single channels basis (i.e. in Eq. (9) we do not perform the 
summation over the number of channels, i) are presented in Figures 8 and 9 for IASI and AIRS 
respectively. For each instrument we have selected two cases, i.e. the combination of the number of 
predictor variables and PCs that corresponds to the minimum and maximum absolute value of the 
computational gain, g. Results are presented in terms of bias, rms error, and, maximum error. As 
discussed above, results for IASI are more influenced by the number of principal components. As 
Figure 4 shows, this is clearly the case for the channels in the CO2 υ3-band (the region around 2350 
cm-1) where errors depend markedly on the number of principal components. In contrast, the larger 
error in the centre of the fundamental CO2 υ2-band at 667 cm-1 appears to be a genuine feature of the 
regression algorithm. The rms error depends on the choice of parameters. For the vast majority of the 
IASI and AIRS channels it does not exceeds 0.05 K. Outliers are the IASI channels in the CO2 υ3-
band and a very few AIRS channels in the ozone band. For both instruments the bias makes a 
marginal contribution to the rms error.  It should be stressed that for any choice of parameters, the rms 
error is still below the noise of the two instruments. We should note that although in this study we 
have limited the minimum number of PCs to 100 and used no less than 300 IASI and 200 AIRS 
predictor variables, we can still reduce this numbers for any specific application that requires an even 
higher computational gain. Of course we must trade off any choice versus the loss in radiance 
accuracy.  

Results in Figures 8 and 9 can be compared to equivalent results obtained using the conventional 
RTTOV model. These are shown in Figure 10. It is clear that the improvement in radiance accuracy 
that can be achieved using PC_RTTOV is dramatic. This is true above all for the channels 
characterized by the presence of absorption lines due to ozone and water vapour. Also noticeable are 
the larger RTTOV errors in the CO2 ν3 band. Although the conventional RTTOV model does not 
compare favourably to PC_RTTOV, we should note that the rms errors observed for the large sample 
of 5191 observation used in this paper are indeed very close to the rms errors obtained for the smaller 
sample of 258 independent observations used by Matricardi (2008).  This result attests the robustness 
of the fast algorithm used to predict the RTTOV transmittances.  

So far we have discussed the statistics of the error using predictor variables computed using the same 
101 level pressure grid used in the LBL computations. The RTTOV model uses an internal 
interpolation scheme that allows the levels in the input profile to be defined by the user. The user 
defined profile is interpolated to the levels specified in the coefficient file (101 levels in our case) to 
perform the computations of the optical depths. To ensure that the Jacobians are properly mapped 
back on the user levels, the integration of the RT equation is performed on the same levels specified 
by the user by interpolating the optical depths into these levels. The predictor variables computed in 
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Figure 8. The mean value (bias), root mean square and maximum value of the difference between 
PC_RTTOV and  LBL radiances for the IASI instrument. 

 
Figure 9. The mean value (bias), root mean square and maximum value of the difference between 
PC_RTTOV and  LBL radiances for the AIRS instrument. 
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Figure 10. The mean value (bias), root mean square and maximum value of the difference 
between RTTOV and  LBL radiances for the IASI instrument. 

 

this way are inconsistent with those utilized during the training process and their use will produce 
errors in the simulated radiances. To estimate these errors, we have utilized the profiles in the 
independent set to compute IASI predictor variables obtained by interpolating the RTTOV optical 
depths to the 43 level pressure grid used in many RTTOV coefficients and to the 90 level pressure 
grid used in the RTIASI fast RT model (Matricardi, 2003). The rationale behind the choice of the 90 
RTIASI levels is that in the current ECMWF assimilation system the RTTOV internal interpolation is 
carried out on 91 vertical levels. The radiances simulated using the new specification of the predictor 
variables have been compared to the original LBL radiances. Results (not shown here) tell us that by 
using the error-prone predictor variables, the radiances simulated by PC_RTTOV have errors whose 
magnitude is comparable (in rms terms) to the magnitude of the errors introduced in the computation 
of the predictor variables (i.e. the error due to the change in the resolution of the vertical pressure grid 
used in the RT computations). For the examples presented in this paper, these errors are of the order 
of a few mK for the 90 level pressure grid whereas for the 43 level grid they vary between 0.1 K and 
0.2 K.  

5.2 Comparison with observed radiances 

In this section we compare IASI spectra measured over sea with simulations carried out using 
PC_RTTOV. The simulations are performed using fields of temperature, water vapour and ozone 
obtained from the ECMWF short-range forecasts during the period 1 April-10 April 2008. Only 
channels detected as clear by the ECMWF cloud detection algorithm are processed. To avoid reflected 
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solar radiation and non-LTE effects, in the spectral region between 2000 and 2760 cm-1 we have 
sampled only night-time spectra. Since the ECMWF cloud detection algorithm (McNally and Watts 
2003) finds clear channels rather than clear locations, the size of the sample varies with the sensitivity 
of the channel to clouds and amounts to several thousands of spectra for the channels peaking at 
middle and high altitudes to a few thousand for the channels peaking at low latitudes or at the surface.  

By comparing clear sky observations with simulations we allow LBL spectroscopic errors and 
uncertainties in the specification of the input state vector to be included in the error statistics 
alongside with errors due to residual cloud contamination. This aspect of the problem has been 
discussed in detail in Matricardi (2009) and Shepard et al. (2009) with particular emphasis on the 
LBLRTM LBL model and any further examination is outside the scope of this paper. The results 
presented here serve as a sanity check to demonstrate that PC_RTTOV does not give unexpected 
results. To this end, in Figure 11 we have plotted the mean value of the difference (bias) between the 
observed spectra and the spectra simulated by PC_RTTOV (panel (a)) and RTTOV (panel (b)). Figure 
11 clearly shows that the PC_RTTOV biases are very similar to those obtained using the conventional 
(and well established) version of RTTOV used in the ECMWF operations.  

 
Figure 11. The mean value (bias) of the difference between observed radiances and radiances 
computed using a) PC_RTTOV, b) RTTOV. In panel c) we plot the difference between the 
quantities plotted in panels a) and b).  

It is generally assumed that fast model errors are dominated by the contribution given by 
spectroscopic errors in the underlying LBL models. If we assume that results shown in Figure 8 are 
representative of the errors associated with the PC_RTTOV fast parameterization of the PC scores, 
then the curve plotted in panel (c) of Figure 11 (i.e. the difference between the curve in panel (a) and 
the curve in panel (b)) should give a reasonable estimate of the contribution given by the RTTOV fast 
transmittance parameterization scheme to the total error. It is interesting to see that results shown in 
Figure 11, panel (c), are in line with what we would expect based on the errors plotted in Figure 10. In 
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fact the channels that exhibit the largest differences are exactly the same channels that exhibit the 
largest rms errors in Figure 10.  

6 The correlation matrix of the fast forward model error for IASI 
The assimilation of satellite radiance data into a NWP system involves the definition of the 
observation error covariance matrix that is used to specify errors associated with radiance data. If we 
assume that the instrument noise is independent of the forward model errors, the observation error 
covariance matrix, O, is the sum of the instrumental error covariance matrix, E, and the forward 
model error covariance matrix, F, which is based on the estimation of errors associated with fast RT 
models. The IASI radiances used in NWP assimilation are Level 1C apodised radiances. The effect of 
the apodisation is to introduce short range correlations in the instrumental noise linking each channel 
with its four nearest neighbours (Amato et al. 1999). Thus, long range correlations can only be 
introduced through the contribution given by the forward model error correlations which are usually 
neglected. In PC_RTTOV the radiance reconstruction involves the use of variables (the PCs) that are 
linear combinations of channel radiances. Consequently we can expect substantial inter-channel error 
correlations. The significance of these correlations depends on the relative magnitude of forward 
model and instrumental errors. If we consider only the errors due to the fast parameterization of the 
PC scores, results shown in section 5.1 suggest that for PC_RTTOV the instrumental noise is by far 
the dominant term in the observation error covariance matrix. It would seem then that a diagonal 
matrix gives an appropriate representation of the forward model error covariance matrix. However, if 
we consider the overall forward model error, a diagonal approximation could not be appropriate. For 
instance, in some spectral regions the overall forward model error can be dominated by the 
contribution due to spectroscopic errors in the underlying LBL model. Although the systematic 
component of the error is removed by the bias correction scheme used in the assimilation system, any 
random component might result in additional correlated errors. The validity of a diagonal 
approximation will again depend on the relative magnitude of forward model and instrumental errors 
and consequently some treatment of the error correlation could be required.  

An in-depth discussion of the observation error matrix is outside the scope of this paper (the reader 
can refer to Bormann et al. (2010) for more details). Nevertheless, we consider it is important to 
document the fast model error correlation matrix since this aspect is too often overlooked in the 
literature. To this end, in Figure 12 we present the error correlation matrix for PC_RTTOV obtained 
by computing the brightness temperature differences between fast and LBL model for the testing set 
of independent profiles. The details of the correlation matrix depend on the number of predictor 
variables used in the regression and on the number of PCs used in the radiance reconstruction. Results 
in Figure 12 refer to the 600 predictor-400 PC case since it represents one of the most complex cases. 
The colour scale varies from white (very high correlation) to black (very high anticorrelation).  We 
also show (Figure 13) the equivalent correlation matrix for RTTOV although we will discuss in detail 
only the features of the PC_RTTOV correlation matrix.  

If we start our examination of the correlation matrix from low wave numbers, we see that there are 
high correlations between the channels in the CO2 Q-branches in the 15 μm absorption band. A 
moderately high anticorrelation also exists between these channels and the channels in the window 
region around 2400 cm-1. Channels in the window region between 800 cm-1 and 1200 cm-1 are also 
highly correlated and a high level of correlation exists between these channels and the channels in the 
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window regions between 2000 cm-1-2150 cm-1 and between 2400 cm-1-2760 cm-1. The star-like 
feature around 1050 cm-1 represents a strong correlation structure within the O3 band.  Channels in the 
O3 band exhibits a moderate anticorrelation with channels in the H2O band between 1400 and 
1700 cm-1 and a high anticorrelation with channels in the window region between 2400 cm-1 and 2760 
cm-1. The cross-like and the star-like structure centred in the middle of the H2O υ2 band at 1600 cm-1 
represents a very significant correlation structure within the H2O band. Regarding the H2O band, we 
can also observe a moderate anticorrelation structure between the channels in the 1500-1700 cm-1 
region and the window channels between 800 cm-1 and 1200 cm-1. Very high correlations structures 
appear to be present within the window region between 2000 cm-1 and 2200 cm-1, the CO2 υ3-band 
around 2300 cm-1 and the window region between 2400 cm-1 and 2760 cm-1. Finally, various 
moderately high anticorrelation structures are present between 2200 cm-1 and 2760 cm-1. If we 
compare the PC_RTTOV with the RTTOV correlation matrix we note that in PC_RTTOV the 
average level of correlation has increased (i.e. regions that in RTTOV appear in red/orange-yellow 
now appear in deep red/blue-white). Also noticeable is the much bolder correlation structure in the 
H2O band and the presence of high correlations between channels in different window regions. 

 
Figure 12. The forward model error correlation matrix for PC_RTTOV. 

 

 
Figure 13. The forward model error correlation matrix for RTTOV. 
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Conclusions 
In this paper we have described the development of a new version of the RTTOV fast radiative 
transfer that exploits PC analysis (PC_RTTOV). The model is based on the computation of a database 
of line-by-line spectra for a large training set of diverse atmospheric situations. The PC scores 
obtained from the eigenvectors of the covariance matrix of the simulated radiances are used as input 
data in a multiple linear regression scheme where they are expressed as a linear combination of profile 
dependent predictors which consist of a selected number of polychromatic radiances computed using 
the standard RTTOV fast transmittance model. The PC scores can be predicted for any state vector 
that includes variable profiles of temperature, water vapour, ozone, and, surface parameters.  

The number of predictor variables used in the regression algorithm and the number of PCs used for 
the radiance reconstruction are tunable parameters in the model. By varying these parameters, we can 
change the computational efficiency and the accuracy of the model. The use of the default parameters 
specified in this paper allows the simulation of an IASI spectrum typically 8-21 times faster than 
RTTOV. Further improvements can be achieved by using a custom specification of the tunable 
parameters trading off accuracy versus computationally efficiency.  

In terms of radiance computation, PC_RTTOV can reproduce a large dataset of independent LBL 
radiances typically within 0.05K rms. For many channels, the actual value of the error is well below 
this figure. This is a dramatic improvement over the conventional RTTOV model. This is mainly due 
to the inherent linear relationship between the dependent variables and the independent predictor 
variables used in the PCs regression algorithm. The comparison of IASI radiances simulated with 
PC_RTTOV with a large dataset of radiances measured by IASI gives results that are very similar to 
those obtained using the conventional (and well established) version of RTTOV used in the ECMWF 
operations. This is a further confirmation of the robustness of the PCs scores prediction algorithm.  

A study of the PC_RTTOV error correlation matrix shows that there are a number of long range 
correlation structures that are not present in the correlation matrix of the conventional RTTOV. The 
significance of these correlations depends on the relative magnitude of the forward model and 
instrumental errors.  If we consider only the errors due the fast parameterization of the PC scores, the 
results presented in this study suggest that a diagonal matrix gives an appropriate representation of the 
forward model error covariance matrix. However, the validity of a diagonal approximation to the error 
covariance will depend on the magnitude of the spectroscopic errors introduced by the underlying 
LBL model and consequently some treatment of the error correlation could be required.  

Finally, the availability of a principal component based fast radiative transfer will enable ECMWF to 
exploit the noise reduction capability of PCA and investigate the direct assimilation of IASI PC scores 
in the spectral regions affected by high instrument noise.  
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