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ABSTRACT

Ensemble forecasts should strive for quantifying forecast uncertainties as accurately as possible. Useful diag-
nostics should measure how well this goal has been achieved and they should identify aspects of an ensemble
prediction system that require improvement.

First, an overview of standard diagnostics for ensemble forecasts is presented. Then, diagnostic methods for
assessing variations of the second moment of the predicted distribution are discussed. Finally, a benchmark system
for initial perturbations is described. It is a suboptimal ensemble forecasting system that uses flow-independent
initial perturbations based on a sample of past short-range forecast errors.

1 Introduction

The value of reliable uncertainty information for forecasts of the atmosphere and ocean is getting in-
creasingly recognized among the users of such forecasts. The need for uncertainty information, i.e. error
bars, was anticipated more than two decades ago (Tennekes et al. 1987; Lewis 2005). Ensemble fore-
casting has been established operationally to satisfy this demand over 15 years ago (Molteni et al. 1996;
Toth and Kalnay 1993). Since then, ensemble forecasting systems have benefitted from many improve-
ments. These comprise better estimates of the initial state, higher accuracy in simulating dynamics and
parametrized physical processes as well as improved representations of the sources of uncertainties. In
addition, advances in computing technology permitted to increase the spatial resolution and the number
of members in the ensembles which helped to further boost the usefulness of the uncertainty information
provided by the ensembles.

The evaluation of ensemble forecasts differs from that of deterministic forecasts because the former pro-
vide a probability distribution that is not better known a posteriori than it was known a priori (Talagrand
and Candille 2009). In a single case, this probability distribution is not even observable as there is just
a single realisation from that distribution that materializes. In consequence, any meaningful evaluation
has to accumulate forecast-verification pairs over sufficiently large samples in order to enable the com-
parison of like objects, i.e. predicted distributions and empirical distributions of observed or analysed
values.

Diagnostic methods that aid forecast system development are the focus of this presentation. First, a brief
overview of standard diagnostic methods for ensemble prediction will be given. These apply to any kind
of probabilistic forecast. This topic is well covered in textbooks and many scientific publications. Thus,
the overview emphasizes the essentials rather than attempts to be exhaustive. Then, diagnostic methods
are discussed that aim specifically at the identification of deficiencies in ensemble prediction systems.
Ultimately, diagnostic methods of this kind should provide guidance for refining the representation of
initial uncertainty and model uncertainty in ensemble prediction systems.

One can envisage other aspects of diagnosis of ensemble forecasts beyond the scope of this presentation.
For instance, one could use ensemble forecasts to understand the dynamical and physical processes gov-
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erning the evolution of initially small perturbations. This could be useful for unravelling the dynamics
of initial condition and model errors. Studying the origin of large forecast errors is another potentially
interesting diagnostic field. Ensemble forecasts can provide plausible explanations of large forecast er-
rors in terms of the amplifications of specific perturbations to the initial conditions or the model. For the
sake of brevity, these aspects will not be covered here.

The outline of this contribution is as follows. Section 2 reviews a range of standard diagnostics for
ensemble forecasts with some examples mainly from the ECMWF Ensemble Prediction System (EPS).
Then, some recent work on diagnosing the spatio-temporal variations of the predicted variances is pre-
sented in Section 3. More generally speaking, this assesses the shape of the distribution rather than
the quality of the distribution overall. To illustrate the ideas, examples from TIGGE1 and the ECMWF
EPS will be provided. Section 4 discusses the results of numerical experimentation designed to aid the
diagnosis of deficiencies in existing ensemble forecasting systems. Discussion and Conclusions follow
in Sections 5 and 6. Some mathematical derivations are provided in appendices.

2 Standard diagnostics

This section introduces a set of standard diagnostics that are commonly used to assess ensemble fore-
casts. To some extent this is a subjective selection that focusses on what is considered essential.

2.1 Model characteristics

The numerical model is the central component of any ensemble forecasting system. The skill of the
ensemble relies to a large extent on the performance of this numerical model. The numerical model of
the ensemble often differs in some aspects from the model used in the data assimilation system and for
the single best guess forecast. For instance, the spatial resolution might be coarser and the integration
time step might be longer in order to permit the timely production of several tens of ensemble members
(Buizza et al. 2007). Furthermore, computationally less demanding options in the parameterizations
may have been selected (Morcrette et al. 2008). Due to these differences, it is important to perform a
similar range of diagnostics that are employed for the single best guess forecast. A minimalist approach
should involve at least a comparison of forecast scores between the ensemble prediction model and the
best guess model.

Another aspect that requires diagnostic is the climate of the numerical model. The systematic errors of
the model climate should be small otherwise the ensemble cannot converge to a sample from the clima-
tological distribution for long lead times. The members of the ensemble forecast are usually forecasts
with a perturbed model (or even with different models). Therefore, it is also necessary to assess the
realism of the climate of the perturbed model (or models). The diagnostic of the climate should include
an analysis of errors in the mean and the variances but it may also involve more subtle aspects of the
climate as in the example given below.

A detrimental effect of model tendency perturbations on the tail of the climatological distribution of
precipitation was recently documented for the ECMWF EPS (Palmer et al. 2009). The parameterized
tendencies of physical processes in the ECMWF EPS are stochastically perturbed. The original version
of the scheme was developed by Buizza et al. (1999) and is commonly known as “stochastic physics”.
This version of the scheme increases the frequency of heavy precipitation events significantly compared
to the unperturbed model. Precipitation exceeding 30 mm/6 h occurs about 3 times (1.5 times) as often
in the perturbed model than in the unperturbed model in the tropics (extra-tropics). Despite this unde-
sirable feature, the original stochastic scheme has a positive impact on the probabilistic skill of the EPS
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particularly in the tropics. A recent major revision of the scheme has reduced the frequency of heavy
precipitation events significantly in spite of being more effective in generating ensemble spread than the
original scheme (Palmer et al. 2009). Henceforth, this model perturbation scheme will be referred to as
Stochastically Perturbed Parametrization Tendencies (SPPT).

2.2 Attributes of probabilistic forecasts

Determining the quality of forecasts — both probabilistic and deterministic — involves an analysis of
the joint distribution of forecasts and observations (Murphy and Winkler 1987; Wilks 2006). What
aspects of this joint distribution characterise good ensemble forecasts? The two basic properties that
are needed for good probabilistic predictions are reliability and resolution (e.g. Candille and Talagrand
2005). Reliability refers to the statistical consistency between forecasted probabilities and the observa-
tions that are used for the validation of these forecasts. The statistical consistency is sometimes also
referred to as calibration (Gneiting and Raftery 2007).

Let us consider a probabilistic prediction of a variable x ∈R`. In general, x can be the model state itself
or any kind of projection of the model state in some lower-dimensional space. A probabilistic prediction
is then a distribution F defined on R`. In loose terms, reliability is the property that the observations of
x are distributed according to F , whenever F has been predicted. Most often, reliability is assessed for
a sample consisting of a certain period, say one season, and over some region, say Europe. Thus, the
reliability is measured in an average sense. However, one can interpret the whenever in the definition
in a stricter sense and consider any sufficiently large subsample. The subsample has to be independent
of observations valid at a time later than the time window used for estimating the initial conditions
of the forecast. Demanding reliability in subsamples leads to a more rigorous definition of statistical
consistency. We will return to this important variant of the diagnostic in Section 3.1.

The climatological distribution is at least in the average sense perfectly reliable. However, it does not
constitute a skilful prediction as it is too broad. It lacks resolution which is the second property required
in order to have a good probabilistic prediction. The property of resolution measures how different
predicted distributions Fj with Fj 6= Fk for j 6= k sort the observations into distinct groups. A neces-
sary condition for high resolution is sharpness, which is an attribute of the forecast alone. Sharpness
describes the degree of localisation of the distribution in R`. Sharpness is also referred to as refinement
(Murphy and Winkler 1987). Gneiting et al. formulated the goal of probabilistic forecasting to maxi-
mize sharpness subject to calibration (see references in Gneiting and Raftery 2007). A point distribution,
corresponding to a deterministic forecast, is infinitely sharp. However, the sharper a distribution is, the
more difficult it becomes to achieve reliability.

2.3 A zoo of measures

There are many different ways in which the joint distribution of observations and probabilistic forecasts
can be summarized to obtain measures of the quality of the prediction. This leads to a zoo of measures.
Now some of the common beasts in this zoo are introduced.

Practical limitations and the limited sample size of forecasts and associated observations imply that it is
not possible to assess all aspects of a multivariate probabilistic prediction. Here, multivariate prediction
means that we look at predictions of higher-dimensional variables x ∈ R` for ` > 1. It is common
practice to make some simplifications in order to proceed with the assessment of probabilistic forecasts.
The majority of diagnostic work on ensemble forecasts has looked at univariate predictions (` = 1). For
instance, the quality of probabilistic predictions of one variable, say 500 hPa geopotential or 850 hPa
meridional wind component at single locations. Another common simplification is the assessment of
binary events. Examples of such binary events are: Does a tropical cyclone affect a particular location
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in a given time window? Does the temperature drop more than 8 K below the climatological average?

One of the basic measures that is an indicator of the overall quality of the predicted distribution is the
skill of the ensemble mean. This skill can be measured for instance with the Anomaly Correlation
Coefficient or with an RMS error. Ideally, the skill of the ensemble mean should be initially as high as
that of an unperturbed forecast generated with the same model and then increase relative to the single
unperturbed forecast as some aspects of the latter forecast become unpredictable and are filtered in the
former (Leith 1974). For large lead times, the mean squared error of the ensemble mean should approach
the climatological variance.

In a statistically consistent ensemble, the ensemble standard deviation should match the standard de-
viation of the ensemble mean error when a sufficiently large sample is considered to reliably estimate
the error (see Sec. 2.5). Also, the ensemble standard deviation, often referred to simply as spread, is a
measure of the sharpness of the forecast. The smaller the spread, the larger is the sharpness. Another
measure of reliability that can be sensitive to higher moments of the distribution is the rank histogram
(Hamill 2001, and references therein). The rank histogram tests whether the ensemble forecasts are
statistically indistinguishable from the true state.

For binary events, the mean squared error of the predicted probability is a useful summary measure that
assesses both reliabity and resolution. This measure is known as the Brier Score. It can be decomposed
into a component that measures reliability and a component that measures resolution and a component
that depends only on the distribution of the observed values. The Brier Score has been generalized
to multiple categories and continuous scalar variables. These generalizations are arithmetic means of
Brier Scores with varied thresholds for the event definitions and they are known as (Discrete) Ranked
Probability Score and Continuous Ranked Probability Score, respectively. For the continuous case,
the Ranked Probability Score measures the mean squared error of the cumulative distribution and it is
identical to the mean absolute error for a deterministic forecast. There are also decompositions into
reliability and resolution components for the Continuous and Discrete Ranked Probabability Scores
(Hersbach 2000; Candille and Talagrand 2005, and references therein).

The area under the Relative Operating Characteristic (or ROC-area) is another summary measure that
is used to assess the probabilistic prediction of binary events. The ROC-area is insensitive to reliability
and quantifies the ability to discriminate events. A more general scoring rule that includes the ROC-area
as special case is the two-alternative forced choice test (Mason and Weigel 2009).

The Logarithmic Score, also referred to as Ignorance Score, is a summary measure that can be used
for binary events as well as multi-category events or density forecasts of a continuous variable. The
Logarithmic score is defined as minus the logarithm of the predicted probability (or probability density
in the continuous case) at the verifying value. It assesses both reliability and resolution.

The list of measures mentioned here is by no means exhaustive but it is deemed sufficiently comprehen-
sive in order to permit a thorough assessment of ensemble forecasts.

2.4 Proper scores

The condensation of the information in the joint distribution of probabilistic forecasts and observations
into summary measures can potentially provide misleading diagnostics when the focus is on the wrong
kind of measures. However, it is possible to make some statements about the usefulness of summary
measures independently of the actual distribution of forecasts and observations. Those scores that are
strictly proper are superior in the sense that maximising such scores leads to the correct probability
distribution. A rigorous mathematical definition of proper and strictly proper is given by Gneiting and
Raftery (2007) together with theorems characterising properties of proper scores. The Logarithmic
Score, the Brier Score and the Discrete and Continuous versions of the Ranked Probability Score are
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examples of proper scores. Gneiting and Raftery (2007) also provide an example of how a score that is
not proper can lead to a miscalibration of an ensemble forecast (their Fig. 3).

2.5 Spread-error relationship

A versatile diagnostic for ensemble forecasts that assesses reliability is the relationship between ensem-
ble spread and the ensemble mean error (Talagrand et al. 1997). The relationship is usually quantified
in terms of variances but other relationships may be useful too. Here, only variances will be discussed.
Ideally, the diagnostic should be applied after bias-correcting the forecasts. In practice, it may be non-
trivial to estimate the bias of the ensemble mean prior to the diagnostic. Often, the diagnostic is simply
applied to direct model output. It is still useful for those cases where the random component of the
forecast error is significantly larger than the mean forecast error.

Before discussing some examples, it is worth clarifying the dependence of the spread-error relationship
on ensemble size. A necessary condition for statistical consistency is obtained by assuming a perfectly
reliable member ensemble: The members x j, j = 1 . . .M and the truth y are independent identically
distributed random variables with mean µ and variance σ2. In Appendix A, it is shown that the expected
squared error of the ensemble mean is decreasing with ensemble size M according to
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The sample variance estimate is smaller than the true variance as the deviations are computed with
respect to the sample mean which is based on the members themselves. Due to the systematic under-
estimation of the true variance, this estimate is referred to as biased estimate of the variance (see e.g.
Barlow 1989). For pedagogical reasons, the derivation is given in Appendix A.

For reasonably large ensemble sizes, e.g. M = 50, the correction factors are close enough to one and
can be neglected for most purposes. However, for smaller ensemble sizes, say M ≤ 20, the correction
factors should be accounted for. The necessary condition for an ensemble to be statistically consistent
is

M
M−1

biased ensemble variance estimate =
M

M +1
squared ensemble mean error, (3)

As mentioned before, this assumes that the ensemble is unbiased.

There are different flavours of the spread-error relationship depending on how the average in Equa-
tion (3) is defined. The basic form of the spread-error relationship considers simple averages of the
variances over a region and a set of forecasts. Several examples of these will be discussed below. The
more sophisticated form of the spread-error relationship considers averages depending on the ensemble
variance itself. This will be discussed in detail in Section 3.1.

As a first example, the comparison of ensemble spread and ensemble mean RMS error by Buizza et al.
(2005) has been selected. Their Figure 5 shows spread and error of 500 hPa geopotential over the
Northern Extra-tropics for the period May–June 2002. The diagnostic compares 10-member ensembles
taken from the operational predictions of the Canadian Meterological Service, NCEP, and ECMWF.
According to this study, none of the three systems is statistically consistent in terms of the average spread
and ensemble RMS error at all lead times in the 10-day forecast range. All systems are overdispersive
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initially and then become underdispersive later on. The ECMWF EPS exhibits the best overall agreement
over the 10-day forecast range. However, the underdispersion of the ECMWF EPS towards the end of
the forecast range is fairly moderate if the dependence of spread and error on ensemble size is accounted
for using (3).

Since 2002, the EPS has evolved and the average spread-error relationship improved further. The two
main steps towards achieving this were a resolution increase from TL255 to TL399 and subsequently a
revision of the model physics in cycle 32r3. The change of the average spread-error relationship due
to the revised model physics is discussed by Bechtold et al. (2008). Due to the revised physics being
more active, the right level of spread in the medium-range could be achieved with a 30 % reduction
of the initial perturbation amplitude. This reduction removed the initial overdispersion and led to a
system with a significantly improved agreement between spread and error in the extra-tropics for 500 hPa
geopotential (Fig. 12 in Bechtold et al. 2008).

The level of agreement between spread and error obviously depends on the sample size that is being
considered. In order to estimate the uncertainty due to the finite sample size, one can compute confidence
intervals of the difference between ensemble mean RMS error and the ensemble standard deviation
using a bootstrap resampling technique. The temporal correlation of the difference between subsequent
forecasts can be accounted for by resampling blocks of subsequent dates with the blocksize depending
on the temporal correlation (Wilks 1997). An example of such confidence intervals can be found in the
figure mentioned above.

In a statistically consistent ensemble, the ensemble spread will match the ensemble mean RMS error
everywhere in phase space. Thus, the spread-error diagnostic can cover a broad range of aspects. Incon-
sistencies between spread and RMS error for particular regions or fields may help to identify lacking or
misspecified sources of uncertainty. The link between the actual perturbations representing model un-
certainty and initial uncertainty and the spread is expected to be strongest in the early forecast ranges as
interactions of the perturbations during the model integration did not have much time to blur the various
sources of uncertainty.

The tropics are an example of a region where the ECMWF EPS is still generally underdispersive. The
recent revision of the Stochastically Perturbed Parametrization Tendency scheme has helped to improve
the spread error relationship in this region (Palmer et al. 2009). The agreement between spread and error
in the tropics will improve further with the introduction of perturbations from an ensemble of perturbed
analyses (Buizza et al. 2008).

The spread-error diagnostic can be extended to also consider different spatial scales. Jung and Leut-
becher (2008) use waveband filters to focus on planetary, synoptic and sub-synoptic scales. They showed
that the overdispersion of the ECMWF EPS prior to model cycle 32r3 in the early forecast ranges is par-
ticularly prominent in the synoptic scales in the mid-latitudes.

3 Variations of the shape of the predicted distribution in space and time

The spread of an ensemble of forecasts varies in space and time. This is due to variations of initial pertur-
bations, tendency perturbations and the modulation of perturbation growth by the flow. The diagnostics
discussed so far did not specifically focus on this aspect. To fully assess an ensemble prediction system,
the reliability of the spread variations needs to be quantified. A suitable diagnostic will be discussed in
Section 3.1.

This will be followed by a description of diagnostics that assess the probabilistic skill of the variations of
the shape of the probability distribution. In Section 3.2, the probabilistic skill of binary events defined
with respect to an error climatology will be examined. In Section 3.3, the probabilistic skill of the
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continuous probability distribution predicted by the ensemble, i.e. with flow-dependent variations of the
shape of the distribution, is contrasted with the skill obtained from issuing a reference forecast dressed
with a climatological distribution of its errors. This analysis will include a theoretical upper limit on the
gain in skill due to reliable predictions of the variations of the spread.

3.1 Spread reliability

The largest variations in ensemble spread can be expected when local values are considered. Therefore,
we consider the fields themselves rather than area-averaged values. From the fields for a fixed lead
time and a set of start dates, we obtain a sample of the joint distribution of ensemble standard deviation
and ensemble mean error. The spread-reliability is determined from the conditional distribution of the
ensemble mean error for given ensemble standard deviation σens. Such a kind of diagnostic was dis-
cussed earlier by e.g. Talagrand et al. (1997) and Leutbecher and Palmer (2008). Statistical consistency,
i.e. reliability, requires that the standard deviation of this conditional distribution is equal to σens, the
value of the ensemble standard deviation on which the distribution of the error is conditioned. For small
ensemble sizes, it will be necessary to account for the finiteness of the ensemble according to Eq. (3).

To compute the diagnostic, the sample is stratified by the predicted spread and partitioned into equally
populated bins of increasing spread. Then, the standard deviation of the ensemble and the standard
deviation of the ensemble mean error are computed for each bin. For variables with small bias compared
to the random error, one can use the RMS error of the ensemble mean as proxy for its standard deviation.
In the examples given below, the sample is split in 20 equally populated spread bins. The forecasts are
truncated at wavenumber 63 and interpolated on a 2.5◦×2.5◦ grid. The standard deviations and RMS
errors are computed with cosine latitude weights, i.e. weights proportional to the area represented by
each grid point.

Talagrand et al. (1997) and later Leutbecher et al. (2007) as well as Leutbecher and Palmer (2008) have
discussed the spread-reliability of the ECMWF EPS. They concluded that the reliability of the spread is
quite poor at early lead times but improves progressively as the forecast evolves. For instance, (Leut-
becher et al. 2007, their Fig. 7) show the spread-reliability of 500 hPa geopotential in winter DJF06/07
for the Northern Mid-latitudes (35◦–65◦N). Initially, at a lead of 1–2 d, the EPS is quite overdispersive
(underdispersive) for large (small) spread. However, at a lead time of 5 d, the relationship is close to
ideal.

Now, differences in the spread-reliability among the four global ensembles from Canada, ECMWF,
the Met Office, and NCEP will be discussed. The data for this comparison are available through the
TIGGE project (Bougeault et al. 2009). Recent comparison studies (e.g. Park et al. 2008; Hagedorn
et al. 2010) suggest that these four ensembles are the most skilful ensembles in TIGGE. While the latter
studies have compared the average relationship between ensemble spread and ensemble mean RMS
error, the detailed spread-reliability has not been presented yet. Here, the spread-reliability of 500 hPa
geopotential height in the Northern Mid-latitudes (35◦–65◦N) is compared for winter DJF08/09. The
data have been obtained by verifying direct model output with quasi-independent ERA-interim analyses
(Simmons et al. 2007; Hagedorn et al. 2010).

Figure 1 shows the spread-reliability at 24 h and 48 h lead time. At a lead time of 24 h, the Canadian
ensemble has the most reliable distribution of spread. The other three ensembles are clearly less reliable.
They overpredict (underpredict) variance for large (small) spread. At a lead time of 48 h, the Canadian
ensemble still exhibits the most reliable spread although a moderate underdispersion is present except
for the largest spread classes. The spread-reliability of the other three ensembles improves from 24 to
48 hours. The Met Office and NCEP ensembles are also somewhat underdispersive for low and normal
spread. The ECMWF ensemble still predicts too much variance for large spread and too little variance
for small spread. The reliability of spread in the early lead times appears to be an area where the
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Figure 1: Spread-reliability of 500 hPa geopotential height at lead time 24 h (a) and 48 h (b) in the
Northern Mid-latitudes (35◦–65◦N) for four ensembles in TIGGE: Canadian Met. Centre (CMC),
ECMWF, Met Office, and NCEP. Multi-model refers to the combination of these four ensembles with
equal weights. Period DJF08/09. Verification against ERA-interim analyses on a 2.5◦× 2.5◦grid.

ECMWF EPS is still quite suboptimal. Results by Leutbecher et al. (2007) give an early indication that
the spread reliability can be improved through a revision of the initial perturbations that makes use of
perturbations from an ensemble of analyses.

For completeness, the ensemble mean RMS error, the ensemble standard deviation and the Continuous
Ranked Probability Skill Score (CRPSS) of the four ensembles are shown in Figs. 2 and 3. Although
the Canadian ensemble has the most reliable spread distribution in the early lead times, it is not the en-
semble with the highest probabilistic skill. This is probably due to the lack of resolution. The Canadian
ensemble has the largest RMS error of the ensemble mean. Vice versa, the RMS error of the ECMWF
ensemble mean is significantly smaller than that of the three other ensembles and it has a significant lead
over the other three ensembles in terms of the CRPSS. Finally, it is worth noting that the multi-model
ensemble consisting of the four ensembles compared here is quite overdispersive in terms of 500 hPa
height up to a lead time of about 5 days.

3.2 Dichotomous events

Often, probabilistic forecasts are assessed by analysing their characteristics for the prediction of di-
chotomous events, i.e. the state can be described by a binary variable (0: event did not occur, 1: event
occurred). For many diagnostic purposes, it is suitable to define events with respect to a climatological
distribution. For instance, one can look at the probability that a variable exceeds a given quantile of the
climatological distribution. Climatological distributions can be obtained from reanalyses or an archive
of observations. A little care is required in constructing the climatological distribution in order to get
a statistically homogeneous sample when data are spatially and temporally aggregated. Statistical ho-
mogeneity can be achieved if the climatological distribution resolves spatial and seasonal variations in
the actual climate well. If the climatological distribution is too crude, one may diagnose fictitious skill
(Hamill and Juras 2006).

In general, a probabilistic forecast starts with a tight distribution which gradually broadens and eventu-
ally converges to a distribution as wide as the climatological one. The probability of predicting an event
defined with respect to the climate will be either in the vicinity of 0 or in the vicinity of 1 in most lo-
cations when the predicted distribution is much tighter than the climatological distribution (Fig. 4a). To
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Figure 2: as previous Figure but for Ensemble standard deviation (no symbols) and ensemble mean
RMS error (with symbols) versus lead time.
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Figure 3: as previous Figure but for the Continuous Ranked Probability Skill Score. The skill score
is computed with a climatological distribution based on ERA-40 analyses as reference.
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(a)

(b)

Figure 4: Event definition relative to climate (a) and relative to the ensemble mean (b). Two en-
semble forecasts with a smaller than normal spread (left) and with a larger than normal spread
(right) are shown as a probability density function (pdf, shaded in blue). Probabilities for the event
(a) tend to be either 0 or 1 if the forecasted pdf is significantly tighter than the climate distribution
as happens usually for the early lead times. This degeneracy is avoided in event definition (b) that
uses the climate of the ensemble mean error (shaded in yellow) to set the position ασerr−em of the
event threshold relative to the ensemble mean (EM). The variance of the error σ2

err−em depends on
lead time in contrast to the event definition in (a) based on the climatological variance σ2

clim that is
independent of lead time.

illustrate this, Fig. 5 shows probabilities for 850 hPa meridional wind from a 48-hour ECMWF ensem-
ble forecast for exceeding a value of µclim +σclim. Here, µclim and σclim denote the climatological mean
and the climatological standard deviation, respectively. The climate is derived from ERA-40 analyses
in the period 1979–2001 (Jung and Leutbecher 2008; Uppala et al. 2005). Thus, although the forecast is
inherently probabilistic, diagnostics based on this kind of event will be almost equivalent to diagnostics
of a deterministic forecast. With other words, diagnostics based on the climatological event definition
are insensitive to the shape of the predicted distribution when short lead times are considered — except
for the small fraction of the domain with probabilities deviating significantly from 0 and 1. However, as-
sessing the distribution shape in the early part of the forecast is expected to be important for diagnosing
deficiencies in the perturbation methodologies.

850hPa **V velocity (Exp: 0001) - Ensemble member number 50 of  51
Thursday 29 January 2009 00UTC ECMWF   EPS Perturbed Forecast t+48 VT: Saturday 31 January 2009 00UTC
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Figure 5: Probability to exceed µclim + σclim at a lead time of 48 h for 850 hPa meridional wind.
ECMWF ensemble, valid at 0 UTC on 31 January 2009. Unshaded regions have a probability lower
than 0.05 or larger than 0.95.
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An alternative event definition is introduced now in order to assess the skill of ensembles in predicting
the shape of the distribution including the early forecast ranges. The new event is defined relative to
a reference forecast, which could be either the ensemble mean or an unperturbed control forecast. An
archive of past errors of the reference forecast is used to define the climatological error distribution.
Then, events of the kind

x > xref +ασerr−ref (4)

are considered. As the standard deviation of the error grows with lead time, the event definition naturally
scales with lead time and the degenerate situation of probabilities close to 0 and 1 is avoided (Fig. 4b).
Here, the values xref and σerr−ref denote the reference forecast and the climatological standard deviation
of the error of the reference forecast, respectively. If such an event occurs, −(xref− xo) > ασerr−ref
holds, i.e. minus the error of the reference forecasts exceeds a value of α standard deviations of the error
climatology. One can consider different values of α , say, between −2 and +2.

The skill of such predictions can be evaluated with a probabilistic forecast given by a climatologi-
cal distribution centred on the reference forecast. The climatological distribution consists of an es-
timated distribution of minus the error of the reference forecast in order to be consistent with the
event definition (4). Here, we consider two kinds of error distributions: (i) a Gaussian error clima-
tology given by N(0,σ2

err−ref) and (ii) an error climatology based on quantiles of the error anomalies
((xref− xo)−µerr−ref). The anomalies are with respect to the climatological mean error of the reference
forecast µerr−ref. Here, biases have not been corrected for. In order to account for biases, one needs
to replace xref by xref− µerr−ref in the event definition for “observed” events. The definition of “pre-
dicted” events remains unaltered assuming that the bias of the reference forecast is the same as that of
the ensemble members.

Operational ECMWF reforecasts (Hagedorn et al. 2008; Hagedorn 2008) are used to define error clima-
tologies for the control forecast and the ensemble mean. Results will be shown for the season DJF08/09.
Reforecasts are available once weekly for the 18 preceding years. The reforecasts consist of four per-
turbed and one unperturbed control forecast. The ensemble mean is based on these five forecasts and
is expected to be less accurate than the real-time ensemble mean of the EPS due to the small number
of members in the reforecasts. The reforecasts are started from ERA-40 analyses for the considered
season2. The error climate for a particular start date is computed from the 9 weeks of reforecasts centred
on this day. Thus, 18×9 = 162 error fields are used to estimate the error climate. The computation of
the errors is performed with ERA-interim analyses as proxy for the truth.

Figure 6 shows the probability of exceeding values defined relative to the ensemble mean (xEM +σerr−EM
and xEM−σerr−EM). For a Gaussian distribution, one would expect average values of 0.16 and 0.84 for
the probabilities, respectively. The locations where the probabilities deviate significantly from 0 and 1
cover a much larger fraction of the domain than for the common event definition shown in Fig. 5.

The dependence of the error climatology on lead time yields a natural scaling of the event definition. This
avoids the degeneracy of the probabilities towards small lead times and will allow a proper assessment of
the probabilistic skill of the shape of the distribution even at early lead times. Another appealing aspect
of the event definition based on the error climatology is the link between anomalies of the predicted
probabilities and synoptic features in the flow. Figure 7 shows the 48-hour EPS probability of exceeding
the ensemble mean by one standard deviation of the error climatology together with analysed fields of
mean sea level pressure, 925 hPa equivalent potential temperature and 850 hPa wind in order to sketch
the synoptic context. Generally speaking, areas of increased uncertainty tend to be associated with
cyclonic features and fronts. The exception is a region in south-east Asia. The flow in this region is
generally weak and due to the orography the 850 hPa level is close to (or even under) the surface. Thus,
caution is required in interpreting the probability anomalies here.

The aim is now to quantify whether the uncertainty predicted by the ensemble has more skill than the
2Since March 2009, ERA-Interim analyses are used for initializing the reforecasts.
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Figure 6: Probability to be larger than the ensemble mean by plus (top) and minus (bottom) one
standard deviation of the climatological distribution of ensemble mean errors for 850 hPa merid-
ional wind component at a lead of 48 h. ECMWF ensemble, valid at 0 UTC on 31 January 2009.
Unshaded regions have a probability lower than 0.05 or larger than 0.95.
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Figure 7: as top panel in previous Figure with analysed synoptic features overlaid: mean sea level
pressure (top), equivalent potential temperature at 925 hPa (middle) and wind at 850 hPa (bottom).
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uncertainty provided by the error climate. The skill of predicting events relative to the control forecast
and the ensemble mean has been evaluated with the Brier Score, the ROC-area and the Ignorance Score
(Logarithmic Score). Let p and o denote the predicted probability and the observed value (o = 1 if the
event occured 0 otherwise), respectively. Then, the Brier Score is given by

BS = (p−o)2. (5)

The ROC-area is given by ∫ 1

0
H dF ∈ [0.5,1], (6)

where H = number correct fc
number of occurrences and F = number of false alarms

number of nonoccurrences denote Hit Rate and False Alarm Rate, re-
spectively. They are a function of the probability at which one decides to predict the event.

Here, the Ignorance Score is defined as

−(o log(p(T ))+(1−o) log(1− p(T ))), (7)

where the forecasted probability, when n members of an M-member ensemble predict the event, is given
by

p(T )(n) =
n+2/3
M +4/3

∈
[

2
3M +4

,
3M +2
3M +4

]
. (8)

These probabilities are known as Tukey’s plotting positions (Wilks 2006). The plotting positions are an
improved way of estimating probabilities from a finite ensemble without using a sophisticated calibra-
tion technique. They take into account the sampling uncertainty and account for the fact that the actual
probability is larger 0 and smaller 1 even if no member or all members predict that the event is going to
happen. Tukey’s plotting position are a simple way of heeding Cromwell’s advice that one should never
issue statements with probability 0 or 1. As the Ignorance Score is defined with the logarithm of the
probability the use of the standard probabilities p = n/M ∈ [0,1] would lead to an ill-defined measure.

Figure 8 shows the Ignorance score for the new type of event and the threshold α = +1. For the
event defined relative to the control forecast, the EPS is clearly more skilful than the forecasts based on
climatological error distributions; the difference in skill grows continuously with lead time until about
10 d. In contrast, for events relative to the ensemble mean, the difference in skill between EPS and the
climatological error distributions does not get as large. The largest gap is reached at intermediate lead
times. For lead times larger than 10 d, the EPS is only as good as the ensemble mean with the Gaussian
error climatology. Results for the Brier Score are qualitatively similar (not shown). For the longer
(shorter) lead times > 7d (< 7d), the Gaussian error climatology is more (less) skilful than the quantile-
based error climatology. Note, however, that this difference in skill between the two climatologies varies
with the magnitude of the threshold. For larger anomalies, |α| = 2, the Gaussian error climate is more
skilfull for all lead times. Presumably, this is due to the fact that the quantile based climate is noisier
for the tails of the distribution due to the moderate sample size of 18× 9 = 162 used to estimate the
climatology.

The area under the Relative Operating Characteristic for the error-based events is shown in Fig. 9. The
ROC-area for the event relative to the ensemble mean peaks at a lead time of 4 d while the ROC-area for
the event relative to the control forecast increases steadily up to a lead of≈ 6−10 d. The areas under the
ROC for all examined thresholds, α =±1,±2 are qualitatively similar. The ROC-area for all ensemble
mean based events peak between 2.5 and 4 d. This peak at intermediate lead times is consistent with the
results for Ignorance Score and Brier Score. The initial increase of either the ROC-area or the Ignorance
and Brier Score relative to the skill of the climatological error distribution is expected to be due to the
initial improvement of the spread-reliability. Finally, it is worth mentioning that qualitatively similar
results have been obtained for another season (MAM2009) and for other fields (temperature at 850 hPa
and geopotential at 500 hPa).
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Figure 8: Ignorance Score for events defined relative to control forecast (a) and relative to ensemble
mean (b). Scores for the EPS (solid), the Gaussian climatological error distribution (dashed) and the
quantile-based climatological error distribution (dotted). Meridional wind component at 850 hPa in
the Northern-Midlatitudes (35◦-65◦N), DJF2008/9. The event is for exceeding the reference forecast
by one standard deviation of the error of the reference forecast.
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Figure 9: as previous Figure but for the area under the Relative Operating Characteristic.
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3.3 Continuous distributions

The goal of this section is to evaluate variations of the shape of the predicted distribution for continuous
scalar variables. The evaluation uses two different summary measures that assess both reliability and
resolution and which are proper scores. The first metric is the Continuous Ranked Probability Score. It
is defined as

CRPS =
∫ +∞

−∞

(Pf (x)−H(x− y))2 dx, (9)

where Pf , H and y denote the forecasted cumulative distribution, the Heavyside step function and the
observed or analysed value of the variable, respectively. The step function is the cumulative distribution
of the value that materializes.

The second metric is the Continuous Ignorance Score (or Logarithmic Score) given by

CIgnS =− log p f (y). (10)

It requires that the prediction is a continuous probability density function (pdf) p f rather than a set of
discrete values as provided by the raw ensemble output. There are many ways in which an ensemble
forecast can be transformed into a continuous pdf (e.g. Silverman 1986). As the focus will be on the
variance of the distribution, it seems appropriate to start with one of the simplest procedures possible.
Here, we will evaluate the Continuous Ignorance Score by using a Gaussian distribution with the mean
and variance given by the values predicted by the ensemble p f = N(µ f ,σ

2
f ). With this ansatz, the

Continuous Ignorance Score is given by

CIgnS =
(y−µ f )2

2σ2
f

+ log
(

σ f
√

2π

)
. (11)

The first term on the right hand side is proportional to the squared ensemble mean error normalized by
the ensemble variance. The value (y−µ f )

σ f
can also be interpreted as a reduced centred random variable

(RCRV) of the verifying value y. The mean and variance of the RCRV should be 0 and 1, respectively
(Candille et al. 2007). The second logarithmic term penalises large spread. Without it, the lowest
Ignorance score would be achieved with an infinitely large spread.

Now, the distribution predicted by the ensemble will be compared with that given by reference forecasts
with a static Gaussian distribution. As in the previous section, the unperturbed control forecast and the
ensemble mean are the reference forecasts. The variance of the static Gaussian distribution is set to the
climatological variance of the error of the respective reference forecast. Before results for the ECMWF
EPS will be presented, it is instructive to look at an idealized situation for which analytical results can
be obtained.

3.4 An idealized heteroscedastic model

It is traditional in the verification of probabilistic forecasts to define skill scores so that a skill of zero
implies a forecast as good as the climatological distribution and a skill of one implies a perfect determin-
istic forecast. However, even the initial state from which forecasts are started will never be perfect. This
is a direct consequence of the nonlinear chaotic dynamics of the atmosphere and the finite number of
imperfect observations available to estimate the initial state and the imperfections of the forecast model.
These facts will always impose a lower limit on the average forecast error variance v≡ σ2 > 0.

What we will consider now is the definition of a perfect probabilistic forecast under the constraint that
the average variance of the error of the reference forecast is fixed. For the unperturbed control forecast,
this constraint will be satisfied to the extent that a particular forecast system consisting of a forecast
model, a set of observations and an assimilation system is considered. For the ensemble mean this is
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a simplification. Changes in the representation of initial and model uncertainties can also affect the
accuracy of the ensemble mean.

For the derivations that follow now, it is useful to consider a fixed lead time of the forecast. The label
t will be used to refer to different valid times of the forecast. Two hypothetical limiting cases will be
considered for a given reference forecast xref. Let us consider the probabilistic forecast with a perfect
static distribution defined as

p(x, t) = ps(x− xref(t)). (12)

Here, the position of the pdf varies with the reference forecast xref(t) but the pdf ps is either constant or
only seasonally varying. This forecast will be referred to as the perfect static forecast, henceforth. The
attribute perfect refers to the assumption that the pdf ps is statistically consistent with the error of the
reference forecast in an average sense over all t, i.e. the empirical distribution of minus the error of the
reference forecast should converge towards ps for large samples.

The other limiting case is the perfect dynamic forecast. It is given by

p(x, t) = pd(x− xref(t), t). (13)

Here, the pdf pd varies explicitly with t. It is assumed to be statistically consistent with the error of
the reference forecast in a stricter sense: For any subsample (which may be conditioned on pd , or even
on any information available to us up to the time the forecast is started), the empirical distributions of
minus the error of the reference forecast converge to the subsample mean of pd .

For the idealized example considered here, we assume that the reference forecasts are unbiased so that∫
xps dx =

∫
xpd dx = 0. Furthermore, we constrain both the perfect static forecast and the perfect dy-

namic forecast to have the same average variance∫
x2 ps dx = v and (14)∫
x2 pd dx = v. (15)

The overline refers to an average over the valid times.

Let us now consider the particular case where the reference forecast is the mean µt of a Gaussian
distribution and the true state is distributed according to

y∼ N(µt ,σ
2
t ). (16)

In this situation, the perfect dynamic forecast is pd = N(µt ,σ
2
t ) and the perfect static forecast is ps =

N(µt ,σ2) with σ2 ≡ Etσ
2
t .

In order to proceed further, the expected values of the CRPS and the CIgnS need to be known. In
Appendix B, it is shown that the expected CRPS for predicted pdf N(µt ,σ

2
f ) and truth y distributed

according to (16) is given by

Ey CRPS(N(µt ,σ
2
f ),y) =

σt√
π

[
−

σ f

σt
+
√

2+2σ2
f /σ2

t

]
(17)

Figure 10 shows how the expected CRPS varies as function of the ratio of the predicted standard devia-
tion σ f and the true standard deviation σt . As the CRPS is a proper score, the minimum is attained for
σ f = σt .

The expected value of the Continuous Ignorance Score follows directly from (11). It is given by

Ey CIgnS(N(µt ,σ
2
f ),y) =

1
2
[
ln(2πσ

2
f )+(σt/σ f )2] (18)
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Figure 10: Expected CRPS for a Gaussian prediction with standard deviation σ f and a truth dis-
tributed according to a Gaussian distribution with standard deviation σt . The CRPS has been nor-
malized with σt/

√
π , which is the expected CRPS for σ f = σt .
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Figure 11: As previous Figure but for the difference of the Ignorance score for the predicted dis-
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The Ignorance score penalises underdispersion significantly stronger than the CRPS (Fig. 11). However,
being a proper score, the Ignorance score also is smallest for the correct level of variance (σ f = σt).

The degree by which the scores for the perfect dynamic forecast and the perfect static forecast differ is a
function of the distribution of the variance of the error vt = σ2

t . For an arbitrary distribution of variance
of the error of µt , given by the pdf f (v), the expected values of the CRPS for the perfect static forecast
and the perfect dynamic forecast are

Cs ≡ Ev Ey CRPS(N(µt ,v),y) =
∫

f (v)
√

v√
π

[
−
√

v/v+
√

2(1+ v/v)
]

dv =

−
√

v/π +
√

2/π

∫
f (v)
√

v+ vdv (19)

and

Cd ≡ Ev Ey CRPS(N(µt ,v),y) =
∫

f (v)
√

v√
π

[
−
√

v/v+
√

2(1+ v/v)
]

dv =
√

v/π, (20)

respectively. The expected Continuous Ignorance Scores for an arbitrary variance distribution f (v) are
given by

Is =
∫ 1

2

[
log(2πv)+

v
v

]
f (v)dv =

1
2

log(2πv)+
1
2

and (21)

Id =
∫ 1

2

[
log(2πv)+

v
v

]
f (v)dv =

1
2

log(2πv)+
1
2

(22)

for the two kinds of forecasts.

As an example, two simple variance distributions will be considered: A continuous uniform distribution
of variance between a lower value v1 and and upper value v2 and a discrete uniform distribution which
selects the values vt = v1 and vt = v2 with equal probability (Fig. 12). Thus, f (v) = (v2− v1)−1 for v ∈
[v1,v2] and 0 otherwise in the continuous case. In the discrete case, we have f (v) = 1

2 δ (v−v1)+ 1
2 δ (v−

v2). Here, δ denotes the Dirac distribution. The mean variance for both distributions is v = (v1 + v2)/2.
We will use the dimensionless parameter

∆v = (v2− v1)/(2v) ∈ [0,1] (23)

to characterize the width of the variance distributions in both situations. Evaluating the integrals in (19)
and (20) for the continuous uniform distribution yields

Cs =
√

v/π

(
4

3∆v

[
(1+∆v/2)3/2− (1−∆v/2)3/2

]
−1
)

(24)

Cd =
√

v/π
1

3∆v

[
(1+∆v)3/2− (1−∆v)3/2

]
(25)

for the expected CRPS of the perfect static forecast and the perfect dynamic forecast, respectively. For
the discrete uniform variance distribution, one obtains

Cs =
√

v/π

(√
1+∆v/2+

√
1−∆v/2−1

)
(26)

Cd =
√

v/π

(√
1+∆v +

√
1−∆v

)
/2. (27)

The skill of the perfect dynamic forecast relative to the perfect static forecast is given by 1−Cd/Cs. The
ratio Cd/Cs decreases monotonically with increasing width ∆v of the variance distribution (Fig. 13). For
the discrete variance distribution, the ratio is smaller than for the continuous variance distribution as the
typical error in predicting the mean variance v instead of the actual variance vt is significantly larger for
the discrete variance distribution. The perfect dynamic forecast is always better than the static forecast
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Figure 12: Idealized distributions of the true variance of the error of the distribution mean.
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Figure 13: Ratio between expected CRPS of the perfect dynamic forecast and the expected CRPS of
the perfect static forecast as function of the dimensionless width ∆v of the variance distribution.

Seminar on Diagnosis of Forecasting and Data Assimilation Systems, 7–10 September 2009 253



LEUTBECHER, M.: DIAGNOSIS OF ENSEMBLE FORECASTING SYSTEMS

except for the trivial case ∆v = 0. It is instructive to convert the increase in probabilistic skill due to the
use of a dynamically varying distribution instead of a static distribution into a lead time gain. Let us
assume that the standard deviation grows exponentially with lead time tlead as exp(tlead/τ), where τ is
the e-folding time scale of the error. Then, the expected CRPS for both types of forecast will also grow
exponentially with the same e-folding time scale according to (17). Thus, the gain in lead time is given
by

∆tlead =−τ log(Cd/Cs) (28)

Simmons and Hollingsworth (2002) estimated error doubling times for 500 hPa height around 1.4 d
in the Northern Extra-tropics (τ = 48 h). For wide variance distributions, i.e. ∆v ≈ 1, the reduction in
the CRPS from the perfect static forecast to the perfect dynamic forecast amounts to 3% (20%) for
the continuous (discrete) uniform variance distribution. The corresponding lead time gains are 1.5 h
and 11 h for the continuous variance distribution and the discrete variance distribution, respectively.
The variance distribution predicted by a real ensemble will be better approximated by the continuous
distribution than the discrete distribution. Therefore, only a modest gain in lead time of less than 2 h can
be expected by representing the dynamic variations of the variance perfectly instead of using a perfect
static distribution.

Now, we continue the example and look at the Continuous Ignorance Score. The score for the perfect
static forecast is given by (21). Averaging of the logarithm of the variance in (22) gives the score for the
perfect dynamic forecast. For the continuous variance distribution, one obtains

Id = Is−
1
2

+
1

4∆v
log
(

1+∆v

1−∆v

)
+

1
4

log
(
1−∆

2
v
)

(29)

and the score for the discrete variance distribution is given by

Id = Is +
1
4

log
(
1−∆

2
v
)
. (30)

The skill of one forecast with respect to another in terms of ignorance is measured by the difference
of the ignorances (Roulston and Smith 2002). Figure 14 shows the difference in Ignorance scores
between the static and dynamic forecast as function of the width ∆v of the variance distribution. For
wide distributions ∆v ≈ 1, the difference in the Ignorance Score amounts to values of about 0.15 ( 0.5)
for the continuous (discrete) variance distribution.

Again, it is informative to relate the change in scores to a lead time gain. It follows from (21) that the
Ignorance Score of the static forecast grows with lead time as Is = const. + tlead/τ for the assumed
exponential growth of the standard deviation

√
v ∝ exp(tlead/τ). Thus, a change in Ignorance Score of

∆I converts to a lead time gain according to

∆tlead = τ ∆I . (31)

For a value of τ = 48 h, the reductions of the Ignorance Score of 0.15 (0.5) imply lead time gains of
about 7 h (24 h) for the case of a wide continuous (discrete) uniform variance distribution.

The idealised considerations indicate that the Continuous Ignorance Score is a much more sensitive
measure of variations in the shape of the pdf than the Continuous Ranked Probability Score. Now, we
will explore the results for the ECMWF Ensemble Prediction System.

3.5 Results for the EPS

The Continuous Ranked Probability Score and the Continuous Ignorance Score have been computed for
the operational EPS for two seasons (DJF08/09, MAM09) and for three variables (500 hPa geopotential,
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Figure 14: Difference between expected Continuous Ignorance Score (CIgnS) of the perfect static
forecast and the expected CIgnS of the perfect dynamic forecast as function of the dimensionless
width ∆v of the variance distribution f (v).

control ens. mean
D+2 D+5 D+2 D+5

CRPS 4 21 1.5 4
CIgnS 0 30 0 11

Table 1: Gain in lead time (h) due to using the EPS instead of a static distribution centred on the
control forecast (columns 2 and 3) and centred on the ensemble mean (columns 4 and 5). 850 hPa
meridional wind component in the Northern Mid-latitudes in DJF08/09.

850 hPa temperature and meridional wind). In order to define the static forecasts centred on the control
and the ensemble mean, error variances from the reforecasts are used (see Section 3.2 for details). Due
to the remaining inevitable inconsistencies between the reforecasts and the real time forecasts, the static
forecast is likely to be suboptimal.

The Continuous Ranked Probability Score of the EPS and the static Gaussian distribution centred on the
two reference forecasts are compared in Fig. 15. By construction, the EPS ensemble mean is identical
to the control forecast at initial time. Therefore, the scores based on the static Gaussian distributions
centred on the two forecasts are equal initially. Already at a lead time of 2 d, however, the probabilistic
forecasts based on the static Gaussian centred on the ensemble mean is noticably better than the Gaussian
centred on the control forecast. The gap between the two forecasts progressively widens with lead time
reaching a difference equivalent to 17 h at a lead time of about 5 d. The EPS is more skilful than
the static Gaussian centred on the ensemble mean. Initially, however, the difference in the Continuous
Ranked Probability Score (CRPS) is marginal. At a lead time of about 5 d, the EPS is 4 h more skilful
than the static Gaussian centred on the ensemble mean. Here, the CRPS for the EPS is computed with
the empirical distribution function obtained from the 51 forecasts. Note that the results are not altered
if the CRPS of the EPS is computed from the Gaussian centred on the ensemble mean with the variance
predicted by the EPS (not shown).
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Figure 15: Continuous Ranked Probability Score for the EPS (red-solid) and a static Gaussian
distributions centred on the control forecast (blue-dotted) and centred on the ensemble mean (blue-
dashed) for the 850 hPa meridional wind component in the Northern Mid-latitudes (35◦–65◦N) in
the season DJF08/09. The variance of the static Gaussian distribution has been estimated from the
variance of the respective errors in the 18-year reforecast dataset.

D+2 D+5
τ 83 176

∆tlead[CRPS,∆v = 1.0] 2.5 5.3
∆tlead[CRPS,∆v = 0.8] 1.5 3.1
∆tlead[CIgnS,∆v = 1.0] 12 26
∆tlead[CIgnS,∆v = 0.8] 5.7 12

Table 2: Variance growth time-scale τ for the error of the Ensemble Mean and predicted lead time
differences between the perfect static forecast and the perfect dynamic forecast for 850 hPa merid-
ional wind component in the Northern Mid-latitudes in DJF08/09. All values in hours. Estimates
are given for the width ∆v = 0.8 and 1.0 of the variance distribution and are based on the continuous
uniform distribution.
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Figure 16: as previous Figure but for the Continuous Ignorance Score.
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The corresponding results for the Continuous Ignorance Score (CIgnS) are shown in Figure 16. The
two reference forecasts differ qualitatively in the same way as for the CRPS. The Ensemble Mean based
static forecast is better than the forecast based on the Control from a lead time of 1 d onwards. The
difference in skill amounts to 4 h (24 h) at a lead time of 2 d (5 d). The EPS is significantly worse than
the reference forecasts up to a lead time of 2 d. It is expected that this can be attributed to deficiencies
in the representation of initial uncertainties. We will return to this aspect in Section 4. For longer
lead times, the variations in the distribution predicted by the EPS are clearly useful as the EPS has a
significant lead over the static Gaussian centred on the ensemble mean. The EPS is about 11 h more
skilful at a lead time of 5 d. For even longer lead times, the difference between EPS and static forecast
decreases again. This is to be expected as the variance of EPS converges towards the climatological
variance for very long lead times and variations of the width of the predicted distribution become small.
In summary, the situation for the CIgnS is qualitatively similar to the one for the CRPS except for the
early forecast ranges where the static distributions are superior to the distribution based on the EPS.
Quantitatively, the Ignorance score is much more sensitive to spread variations than the CRPS.

It is interesting to compare the differences in lead time between EPS and the static Gaussian centred on
the ensemble mean with the estimates provided by equations (28) and (31). For this, we assume that
the variance distribution can be reasonably well approximated by the uniform variance distribution with
a dimensionless width ∆v close to 1. The variance growth time scale τ is estimated from the ensemble
spread using centred finite differences at ±12 h of the lead time. The lead time differences between
the perfect dynamic forecast and the perfect static forecast estimated from (28) and (31) are given in
Table 2 for ∆v = 0.8 and 1. For the CRPS, the estimates agree well with the observed values at lead
times of 2 d and 5 d. For the CIgnS, the values agree also well at a lead time of 5 d and using the value of
∆v = 0.8. However, for the earlier lead time, the predicted gain of≥ 6 h is much larger than the observed
value of about 0 h. It is expected that this discrepancy is due to the fact that the ensemble spread is too
unreliable in the early forecast ranges. In the future, one could extend the idealized model of Section 3.4
to unreliable predictions of uncertainty to assess this hypothesis.

4 Diagnostic numerical experimentation

Diagnostic work does not need to be limited to the analysis of already existing numerical experiments.
Sometimes, a deeper understanding can be gained from analysing new sets of experiments that are
specifically designed to answer a particular question. Experiments that will be discussed now are moti-
vated by the following question: To what extent is an ensemble using a flow-dependent representation of
initial uncertainties, say for instance, singular vector initial perturbations, more skilful than an ensemble
using a climatological representation of initial uncertainty. In other words, the climatological representa-
tion of initial uncertainty provides a simple benchmark for assessing more sophisticated representations
of initial uncertainty.

Mureau et al. (1993) compared ensembles using singular vector based initial perturbations with ensem-
bles using short-range forecast errors as initial perturbations. The latter have been constructed from
orthonormalized 6-hour forecast “errors” collected over 30 days prior to the start time of the ensemble.
Although these perturbations are not a climatological representation, they are at least partially indepen-
dent of the flow of the day. A T63 version of the ECMWF model was used and the initial state was
estimated with an Optimum Interpolation scheme. The two different sets of initial perturbations were
scaled to have the same variance initially. Mureau et al. concluded that the singular vector based initial
perturbations led to superior probabilistic forecasts.

In a more recent study, Magnusson et al. (2009) compared the skill of three ensembles which used (i)
singular vectors, (ii), the Ensemble Transform method and (iii) scaled differences of randomly selected
atmospheric states, which they refer to as Random Field Perturbations. While, (i) and (ii) are flow-
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dependent representations of initial uncertainty, (iii) can be viewed as a simple flow-independent initial
uncertainty representation. The experiments were performed with the ECMWF ensemble at a resolution
of TL255 with 40 levels. The amplitude of the initial perturbations in configurations (ii) and (iii) was set
to a value that leads to the same level of ensemble spread as in (i) at day 3 for 500 hPa geopotential in
the Northern Extra-tropics. As a consequence, the ensemble with Random Field perturbations is quite
overdispersive initially. However, the probabilistic skill in the medium-range is close to the skill of the
ensembles (i) and (ii) that have flow-dependent initial uncertainty representations.

The structural characteristics of the Random Field perturbations are the same as those of the full fields.
Therefore, the Random Fields cannot be expected to have the same structure as analysis errors. For
instance, current estimates of the variance distribution across different spatial scales show that analysis
errors have a significantly larger (smaller) proportion of variance at sub-synoptic (planetary and syn-
optic) scales than the full fields (e.g. Errico et al. 2007). Estimates of short-range forecast errors may
provide a useful alternative. As the idealized predictability experiments by Tribbia and Baumhefner
(2004) indicate, 1-day forecast errors still retain to a large degree the flatness of the variance spectrum
of analysis errors. Obviously, it is impossible to get samples of the true 1-day forecast error. Neverthe-
less, with a modern numerical weather prediction system with a good data assimilation scheme and a
good global observational coverage, forecast-analysis differences may be able to provide a reasonable
proxy for short-range forecast errors which in turn may then be a reasonable proxy for analysis errors.
The good observational coverage is crucial because otherwise the forecast-analysis difference is small
in unobserved regions despite the fact that the analysis error can be large.

Now, results of recent experiments are summarized which compare an ensemble using the operational
singular vector configuration with an ensemble with initial uncertainty represented by a sample of the
random component of 24-hour forecast error estimates. Apart from the initial conditions, the exper-
iments both use the ECMWF Ensemble Prediction System at a spatial resolution of TL255L62. The
model version is labelled cycle 32r3 and is known to be more active than previous versions due to
changes in the physical parameterisations (Bechtold et al. 2008). The diagnostics are based on 50 start
dates in the period November ’07 to February ’08. The 24-hour forecast errors are used unscaled as this
yields an ensemble with a similar mid-latitude spread at a lead of 3 days in terms of 500 hPa geopoten-
tial as the singular vector ensemble. However, this comes at the price of initial overdispersion of about
35% at a lead of 1 d. In addition, individual members in the forecast error ensemble have localized large
amplitude initial perturbations in some cases. The independence of the initial perturbations from the
actual flow can result in locally unrealistic perturbations in some members. For instance, a perturbation
representing a small-scale low several hectopascal deep can be placed within an anticyclonic region.
Such features are undesirable in an operational system. However, we need not be overly concerned with
this aspect as we are simply interested in the sensitivity of the overall ensemble skill to the use of an
independent set of initial perturbations. It is expected that the overall skill is not too sensitive to the
presence of unrealistic localized perturbations in a few members.

In general terms, the ensemble using forecast error perturbations appears to be at least as skilful as the
ensemble using singular vector perturbations except for the aspect of the initial overdispersion and the
spurious initial perturbations in some members. The largest differences between the two experiments
are evident during the first couple of days. Generally, skill scores converge at later lead times. A
detailed comparison of the two experiments will be reported separately. Here, some results for the
850 hPa meridional wind component at a lead time of 48 h are discussed. Figure 17 shows the ensemble
standard deviation and the ensemble mean RMS error. The ensemble standard deviation is quite similar
in the mid-latitude storm tracks in the two experiments. Elsewhere, in particular in the low latitudes
and the polar regions, the forecast error ensemble has a significantly larger spread. The ensemble mean
RMS errors of the two experiments are rather similar. The overall agreement between RMS error and
spread is better in the forecast error ensemble. The difference in probabilistic skill as quantified by
the CRPS is shown in Fig. 18 for the same variable and lead time. Negative values (forecast error
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Figure 17: Ensemble standard deviation (top) and ensemble mean RMS error (bottom) at 48 h lead
time for the meridional wind component (m s−1) at 850 hPa.

ensemble better than singular vector ensemble) prevail outside the storm tracks. This is consistent with
the better agreement of spread and ensemble mean error in the forecast error ensemble. These results
are also consistent with the results shown in the previous section which showed that a climatological
error distribution centred on the ensemble mean can provide a probabilistic forecast as skilful or even
superior (depending on the measure) to the EPS in the early forecast ranges.

Representing initial uncertainties by samples of past forecast errors is clearly suboptimal as variations
of uncertainty depending on the flow and the observation usage are ignored. The fact that the ensemble
with forecast error perturbations is as good as or superior (depending on variable, lead time and re-
gion) as the ensemble using the operational singular vector initial perturbations indicates that the latter
are also a suboptimal set of initial perturbations. The reliable prediction of the temporal and spatial
variations of initial uncertainties is, at least in principle, possible through ensemble data assimilation
techniques. This statement is corroborated by the good spread-reliability in the early forecast ranges
of the Canadian Ensemble, which uses an Ensemble Kalman Filter (Section 3.1). Work on implement-
ing an ensemble of 4D-Var assimilations with perturbations to observations and the forecast model is
in progress at ECMWF (Isaksen et al. 2007). For the EPS, it is planned to replace the perturbations
based on evolved singular vectors with perturbations from this 4D-Var ensemble (Buizza et al. 2008).
Diagnostic comparisons with the benchmark system are expected to continue to aid the development of
further improved representations of flow-dependent variations of initial uncertainty.

5 Discussion

Diagnostics in the early forecast ranges are likely to be the most useful in order to determine what aspects
in the representation of initial uncertainties are deficient as interactions between different regions and
variables as well as the presence of model uncertainties had less time to complicate the picture. However,
uncertainties of the data used for verifying the ensemble forecasts may become an issue when early lead
times are considered. Two aspects are relevant here. Firstly, forecast error and analysis error will be
correlated to some degree in the early ranges if the forecast is evaluated with an analysis obtained from
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Figure 18: Difference (m s−1) between CRPS of ensemble using short-range forecast errors and
CRPS of ensemble using singular vectors at 48 h lead time for the meridional wind component at
850 hPa.

assimilation cycles that depend on the analysis from which the ensemble has been initialized. This
aspect can be addressed at least partially by using an independent analysis for the forecast evaluation.
Secondly, the ensemble aims to represent the distribution of truth. As any verifying data deviates from
truth by some error ε , the ensemble needs to be transformed in order to predict the distribution of the
verifying data. This can be achieved through addition of noise to the ensemble. The noise should be
distributed according to the estimated characteristics of the distribution of errors ε (Saetra et al. 2004).
Alternative approaches to account for uncertainty in the verifying data are discussed by Bowler (2006)
and by Candille and Talagrand (2008).

It is an open question whether it is easier to account for uncertainties of the verifying data when using
observations or when using analyses. On the one hand, analysis errors are affected by model errors
and are difficult to estimate. Furthermore, the diagnostic risks to become incestuous if analysis error
estimates are required that are also used in defining the initial perturbations of the ensemble. On the
other hand, observation errors will need to account for the instrument error and the error of representa-
tiveness. The latter depends on the model and is difficult to estimate. Furthermore, observation errors
tend to be larger than typical analysis errors and observational coverage is very inhomogeneous. As
ensemble methods are refined for shorter lead time forecasts, the topic of accounting for uncertainty of
the verification data is likely to receive more attention in the future.

This overview has entirely focussed on diagnosing univariate aspects of the ensemble forecasts. How-
ever, some applications of ensembles depend on multivariate aspects of the pdf. It is conceivable that a
probabilistic forecast is reliable independently for variable A and variable B but not for predicting the
joint distribution of A and B. An example may be an application depending on wind speed, temperature
and humidity at a given location. Another example is the prediction of flow-dependent background er-
ror covariances for use in data assimilation schemes. For this purpose, it would be natural to verify the
correlations in addition to the predicted variances.
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6 Conclusions

Among the many measures available for evaluating ensemble forecasts, the assessment of the joint dis-
tribution of ensemble variance and the ensemble mean error remains an indispensable basic tool. In the
ECMWF EPS, recent advances in modeling the variability of the atmosphere through improvements in
the model physics and spatial resolution have led to a very good agreement between the mean ensemble
variance and the variance of the ensemble mean error for the large-scale flow in the mid-latitudes across
the whole reange of lead times up to 15 days. However, the variations of ensemble variance exhibit some
degree of unreliability at lead times of up to two days. A comparison of the EPS with three other very
skilful ensembles in the TIGGE archive indicates that the Canadian ensemble appears to have the most
consistent spatio-temporal distribution of ensemble variance in the early lead times. Yet, the Canadian
ensemble is not the most skilful in terms of probabilistic skill as it has less resolution than the EPS.

By combining probabilistic scores and a climatology of errors of the ensemble mean (or the control
forecast), the skill of variations in the shape of the predicted pdf can be evaluated. This has been
demonstrated for the pdf of continuous variables and for binary events. The binary events are defined
relative to a reference forecast (ensemble mean or control) instead of a climatological mean in order
to focus on the shape of the pdf. The distance of the event threshold from the reference forecast is
scaled with the climatological standard deviation of the error. This procedure provides a natural scaling
with lead time and avoids the degeneracy of probabilities observed for short lead times. To assess the
prediction of continuous variables, two proper scores, the Continuous Ranked Probability Score and the
Continuous Ignorance Score (the latter defined for the Gaussian distribution with mean and variance
predicted by the ensemble) have been used. Empirical evidence from diagnosis of the ECMWF EPS
as well as an idealized heteroscedastic model based on predictions with Gaussian distributions show
that the Continuous Ignorance Score is a more sensitive measure for assessing the variations in pdf
shape than the Continuous Ranked Probability Score. The idealized heteroscedastic Gaussian model
can be used to provide quantitatively useful estimates of the difference in skill between the EPS and a
static error distribution centred on the ensemble mean for lead times were the EPS has a reliable spread
distribution (say ≥ 3 d).

In order to assess the sensitivity of ensemble prediction systems to the specification of initial perturba-
tions, a benchmark system has been developed that uses a sample of the random component of past short-
range forecast errors to perturb the initial conditions. The performance of an ensemble with short-range
forecast error initial perturbations has been compared to an ensemble using singular vector perturbations
in experiments with the ECMWF forecast system. Despite some obvious deficiencies in the benchmark
system in terms of initial overdispersion and unrealistic perturbations due to the flow-independence, the
benchmark ensemble is as skilful or more skilful than the ensemble using the singular vector perturba-
tions. This indicates the potential for further improvements of the ECMWF ensemble by advancing the
methodology for initial perturbations.
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A Expected ensemble variance and variance of ensemble mean error

Here, the dependence of the ensemble mean RMS error and the ensemble variance estimate on ensemble
size are derived. Let, y and x j, j = 1, . . . ,M denote independent, identically distributed (i.i.d.) random
variables with mean µ and variance σ2. Then, y′ ≡ y−µ and x′j ≡ x j−µ are also i.i.d. with mean 0 and
variance σ2. The expected RMS error of the ensemble mean is given by
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=
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1+
1
M

)
σ

2. (32)

Here, δ jk denotes Kronecker’s delta: For j = k, δ jk = 1 and 0 otherwise.
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Likewise, the expected ensemble variance can be obtained as
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B Expected Continuous Ranked Probability Score for Gaussian distribu-
tions

Here, equation (17) for the expected value of the CRPS is derived. Gneiting et al. (2005) obtained the
CRPS for verifying datum x when the prediction is a Gaussian distribution (their Eq. (5)). Note, that
the CDF of the Gaussian distribution with mean 0 and variance 1 evaluated at x can be expressed as
1
2 + 1

2 Φ(x/
√

2), where

Φ(x) =
2√
π

∫ x

0
exp
(
−t2)dt (34)

denotes the error function. Using this relationship, Eq. (5) of Gneiting et al. (2005) can be written as

CRPS(N(µ,σ2),x) =
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π

[
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π
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Φ

(
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−(x−µ)2

2σ2

)]
. (35)

Now, the expected value of the CRPS for Gaussian truth and Gaussian forecast can be computed. With-
out loss of generality, we can assume µ = 0. Let the prediction be N(0,σ2

f ) and the truth be distributed
according to N(0,σ2

t ).

E CRPS(N(0,σ2
f ),xt) =
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2exp

(
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2σ2
f

)]
dz (36)

The three terms in the square bracket give rise to three definite integrals. The first and last term in square
brackets are straigtforward to integrate because they involve only Gaussian densities. The integral due
to the second term in square brackets can be expressed as∫

z exp(−b2z2)Φ(az)dz =
1

2b2

(
a

[a2 +b2]1/2 Φ([a2 +b2]1/2z)− exp(−b2z2)Φ(az)
)

, (37)

where a−2 = 2σ2
f and b−2 = 2σ2

t . This concludes the derivation of (17).
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