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ABSTRACT

Snow is an important component of the land surface, and the choice of products for assimilation or verification
can have a large impact on the surface analysis. This paper introduces the many sources of snow data that are
currently available, both in situ and from remote sensing from space, along with some recent developments. Snow
extent products are derived from the biggest range of sensors and are the most widely used, while information on
snow mass from space is still too error-prone to be used successfully in assimilation schemes.

1 Introduction

Snow provides important energy and moisture boundary conditions to the atmosphere at the land surface,
and long time series of snow extent and mass from reanalysis would be useful for many hydrological and
climate applications. For operational use, observations of snow must be available in real time and would
ideally be global in extent and come with error estimates. Data not suitable for operational assimilation
could be important independent verification of operationalforecasts, or for reanalysis.

Ground-based snow measurements have been made at meteorological stations in many parts of the
world, butChang et al.(2005) suggest that to obtain an error of less than 5cm in a 1 degree by 1 degree
grid cell, ten measurements are required. This density of measurements is unlikely to be achieved over
a wide area. Remote sensing using satellites emerged in the second half of the twentieth century as a
means of gathering spatially and temporally continuous datasets of both snow extent and mass, or snow
water equivalent (SWE). Snow extent datasets are derived from a range of different instruments and re-
quire differing amounts of manual processing. SWE data is only retrieved from microwave instruments.
Spaceborne scatterometers are also now being used to monitor snowmelt, while other snow parameters
such as albedo and grain size are also beginning to be retrieved from measured reflectances.

2 Current products used at ECMWF

Prior to 2004, and for the ERA40 reanalysis, the analysed snow was relaxed to the Foster and Davy
climatology (1988), which used synoptic stations, literature searches and climatological records to re-
construct manually a gridded hemispheric snow depth climatology. However, the authors themselves
acknowledge low confidence in data at high latitudes, and systematic biases have been identified, which
are particularly problematic over Eurasia (Brown and Frei, 2007). The ERA40 reanalysis also assim-
ilated in situ data from the former USSR snow surveys between1966 and 1990 and Canadian snow
depths from 1946-1995. There is a problem in the ERA40 snow data between 1989 and 1994 and these
data should be discarded (Uppala et al., 2005; Clifford et al., 2009).

Since 2004, the operational scheme uses the Northern Hemisphere snow cover product from NOAA/
NESDIS which provides daily data in near real time. The impact of this change in data use can be
seen by comparing the snow fields from the ERA Interim reanalysis before and after 2004 (figure1).
Pre-2004, the snow analysis resembles that from ERA40, while after 2004 the distribution of snow is
very different.
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(a) February 2002 (b) February 2003

(c) February 2004 (d) February 2005

Figure 1: Snow water equivalent (mm), from ERA Interim for February 2002 and 2003 (pre use of
NESDIS extent data), and February 2004 and 2005 (with NESDIS extent data assimilated).

3 Ground-based measurements

A number of in situ snow monitoring networks and intensive field campaigns exist that could provide
input to or verification for operational snow fields and reanalysis. Since 1980, a network of snow sensors
called SNOTEL has been recording data at 730 sites in 11 western US states. Most of the stations are in
remote, high-mountain locations, which means the data needto be used carefully to avoid, for instance,
elevation biases. Instruments include a pressure sensing snow pillow, a storage precipitation gauge,
and air temperature sensors. Soil temperature and moisturemeasurements are also available at some
sites. The network reports in near real time at sub-daily resolution, and longer-term average products
are also provided. Information about and access to the data is found at the United States Department of
Agriculture’s Natural Resources Conservation Service website: http://www.wcc.nrcs.usda.gov/snow/.

The Cold Land Processes Experiment (CLPX) consisted of a series of intensive multi-sensor field cam-
paigns over winter and spring 2002 and 2003 in Colorado, and later Alaska (for CLPX-2). The field sites
ranged in size from 1 ha to 160,000 km2 in a nested arrangement, so that the scaling of measurements
and processes in cold environments could be investigated. Ground, airborne and spaceborne observa-
tions of meteorological and land surface variables were collected, making this dataset a useful resource
for the development of techniques to combine data at multiple scales. A journal special issue focussing
on the results of the campaign was published in 2008 (Dozier and Melloh, 2008), and data is held at the
National Snow and Ice Data Center (NSIDC).

A further technique that may be developed in future is using GPS receivers to infer snow variability.
Reflections of GPS signals from snow-covered ground are deliberately minimised, butLarson et al.
(2009) showed that there remains a correlation with snow depth that could be exploited. Advantages of
this method include an existing network of GPS receivers (many at high latitudes), and a much larger
representative area for each measurement than, for instance, a snow pillow (10,000m2 vs 10 m2).

116 ECMWF/GLASS Workshop on Land surface modelling, 9-12 November 2009



CLIFFORD, D.: SNOW PRODUCTS FOR ASSIMILATION AND VERIFICATION

4 Remote sensing products

4.1 Snow extent and duration

Snow extent data is usually provided by visible band instruments, as snow has high albedo in the visible
part of the spectrum so shows up clearly next to the (low albedo) snow-free surface. Careful discrim-
ination is required between snow cover and cloud cover, and it is estimated that more than a third of
the northern parts of both continents is obscured by clouds during the winter months. The data is also
affected by low solar illumination in winter, making the satellite pictures harder to interpret (Frei et al.,
2003). Masking of the snow due to vegetation can also be a problem for visible band sensors.

Active instruments such as NSCAT and QuikSCAT have been usedto detect melting snow through the
change in radar backscatter and hence derive a snow line (Nghiem and Tsai, 2001). Snow onset and
melt datasets have also been derived from these scatterometers; Wang et al.(2008) found significant
correlations with snow-off dates derived from station dataalthough melt was difficult to detect in dense
forest or where snow cover is very shallow, such as across thetundra. A dataset of snow-off dates has
been compiled by the Canadian Centre for Remote Sensing for 1982-2004 (Zhao and Fernandes, 2009).
It is based on the daily 5km Equal Area Scalable Extent (EASE)-Grid product from AVHRR and uses
a new snow cover fraction algorithm that takes account of cloud cover. Snow-off date is defined as the
date when a pixel has no snow for at least three continuous days during the spring melting season.

A widley-used snow extent product is that from the National Oceanic and Atmospheric Administration
(NOAA)/National Environmental Satellite, Data, and Information Service (NESDIS). Weekly snow ex-
tent data goes back to 1966, but from 1997 onwards a daily product known as the Interactive Multisensor
Snow and Ice Mapping System (IMS) became operational. Snow cover is interpreted by analysts using
primarily data from Polar Operational Environmental Satellites (POES) and Geostationary Orbiting En-
vironmental Satellites (GOES), but also other visible and microwave imagers, with a pixel designated
as snow-covered when more than 50% is covered with snow.

The MODIS instrument, launched in 2000, has a fully automated algorithm for determining snow extent,
unlike the IMS, and daily products at 500m resolution are available. The MODIS snow products also
make use of an automatic cloud mask, which is conservative (more likely to identify clear sky as clouds
than vice versa). Masking by vegetation can be a problem;Hall et al.(2001) assess errors in the MODIS
snow cover retrieval due to land cover type by assigning percentage errors for each of seven land cover
classes, plus additional errors due to mixed pixel effects.They estimate that the Northern hemisphere
snow extent mapping error is 8%, largely due to the amount of forest cover north of the snowline.

Other large scale snow extent products include a North America-only 1km dataset from the National Op-
erational Hydrologic Remote Sensing Center (NOHRSC), alsobased on AVHRR and GOES data, and
products derived from microwave radiometers such as the Special Sensor Microwave/Imager (SSM/I)
and the Scanning Multichannel Microwave Radiometer (SMMR). The detection of snow cover using mi-
crowave frequencies has a number of advantages over using visible-band imagery. Data can be obtained
during darkness or when the sky is overcast, as clouds are fairly transparent at microwave frequencies.
However, the microwave measurements are not sensitive to thin snow, so will underestimate the total
extent.

A number of large-scale comparisons of snow extent data havebeen performed. A comparison of data
from MODIS, NOHRSC and SSM/I was undertaken byHall et al.(2002). They found that MODIS and
NOHRSC often agree well, although MODIS nearly always maps alarger area as snow-covered. As
expected, SSM/I shows the lowest snow-covered area although agreement between MODIS and SSM/I
increases as the snow season progresses.Armstrong and Brodzik(2001) found that data from visible and
passive microwave sensors showed similar interannual variability, but that the microwave measurements
underestimated the extent by up to eight million square kilometres, compared to the visible data. The
largest differences were found in autumn with some improvement in winter and the most agreement in
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spring. A comparison of snow-off dates from QuikSCAT, MODISand the IMS shows agreement is good
over Siberia but in the Canadian Arctic the IMS shows snow forseveral days longer than the other data
sources. It is suggested that the high concentration of ice-covered lakes in the Canadian Arctic hinders
the manual determination of the snowline in the IMS product (Chris Derksen, pers comm 2009).

The different snow covered area datasets see different amounts of snow, but the interannual variability
in extent show good agreement once datasets are normalised.In much the same way as ensemble means
of climate forecasts, the average snow cover anomaly from multiple datasets seems to do better than any
one dataset. Interestingly, the multi-dataset mean mean snow cover extent anomaly series was almost
identical to the snow cover anomaly series derived from ERA-40 snow depths (manuscript in prep, Ross
Brown 2009).

MODIS reflectance measurements have also been used to derivesurface grain size and albedo using a
variety of methods. Most recently,Painter et al.(2009) demonstrate the simultaneous retrieval of the
snow fraction, albedo and grain size of each MODIS pixel using linear spectral mixture analysis. The
retrieval is physically-based and because both the grain size and snow covered fraction are retrieved
simultaneously, neither relies on an assumed value of the other. The method can also estimate the pixel-
by-pixel uncertainty in snow fraction, which would be of particular use in data assimilation schemes.

4.2 Snow water equivalent

Snow water equivalent (or mass, or depth) is derived from measurements at microwave frequencies, al-
though to date no instrument has been flown specifically for this purpose. Microwave imagers with chan-
nels that have been used for snow measurements include SMMR (1978-1987), SSM/I (1987-present) and
AMSR-E (2003-present). Retrievals are generally based on the work ofChang et al.(1987), where the
linearized difference between two frequency channels is used to infer the mass of snow on the ground:

SWE (mm)= c(TB18H−TB37H) (1)

whereH refers to the horizontally polarized channel,TB is brightness temperature in degrees Kelvin and
the gradient of the linear fit,c, is generally derived from radiative transfer models basedon an assumed
grain size. This regression-based retrieval method is sensitive to this grain size assumption, and the
frequency difference saturates in deep snowpacks and is insensitive to very shallow ones. The Tibetan
plateau is a problematic area for microwave imagers: the atmosphere is very dry so the area is often
snow-free, although it is often misclassified by passive microwave brightness temperatures as snow-
covered as it is so cold (Armstrong et al., 2004). Most operational retrievals, including that described
above, use a ‘static’ approach, where the algorithm uses a constant linear coefficientc both spatially and
throughout the season.

The longest-term global SWE product based entirely on observations is the Global Snow Water Equiv-
alent Climatology, provided by the NSIDC (Armstrong et al., 2005). The climatology is produced from
a combination of SMMR, SSM/I and visible data, with the passive microwave data providing the SWE
information, and visible data is used to fill in any pixels that were seen to be snow covered but not de-
tected by the microwave radiometer. Only data from the 37GHzand 19GHz channels are used, gridded
to the 25km EASE grid. The dataset comprises monthly means from November 1978 to May 2007 (as
of late 2009). To account for the masking effect of vegetation, the algorithm is adjusted by a forest factor
using MODIS land cover. This factor increases on a linear scale with forest cover percentage, up to a
maximum value for forest cover fraction of 50% or above. A similar product based entirely on AMSR-E
observations is also now available from NSIDC.

Foster et al.(2005) propose a modified version of the original Chang algorithm (eqn. 1) to investigate
the errors due to the effect of vegetation cover and the assumption of constant grain size. The new
algorithm now uses seasonally- and spatially-varying regression coefficients, relating to climatological
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forest cover and grain size variability. The new algorithm is an improvement during the melting phase,
however there are still problems observed in dense maritimeforests and alpine regions around the Great
Lakes. ‘Dynamic’ approaches, where the grain size used evolves with time and is dependent on, for
example, the temperature history of the pixel, have also been developed.Tedesco et al.(2010) have
recently compared the following approaches for real time SWE retrieval:

Static retrieval The retrieval ofFoster et al.(2005) described above. This is the benchmark to which
all the other methods are compared.

Dynamic retrieval Retrieval coefficients are recalibrated every few days or weeks according to ancil-
lary in situ snow depth data

Forward modelling with an EM model ‘Effective grain size’ parameter in the forward model recali-
brated every few days or weeks according to ancillary in situsnow depths

Land surface model Forcing comes from the Global Land Data Assimilation Systemwhich provides
meteorological forcing at 2x2.5 degrees resolution at 3 hourly intervals. These forcing data are
derived from observed data at global scales.

These different approaches are evaluated with 3 years of in situ data at 37 WMO stations. The biggest
improvements are seen with the dynamic retrieval, which show a 50-90% reduction in RMSE compared
to ground-measured snow depth. The EM model also offers improvements but not so much, and at
some stations performs significantly worse. This could be due to the neglect of snow stratification in
the model, and soil properties not being calibrated for the different sites. The highest RMSE for the
benchmark retrieval and the forward model is for heavily forested stations. RMSE at these stations
for the novel approaches is lower: dynamic approaches have no need to take account of the vegetation
explicitly as this is included implicitly through the updated retrieval coefficient. Estimates of SWE using
the land surface model come out equal to the dynamic retrieval in terms of RMSE, and as the best in
terms of a correlation coefficient. Using the microwave dataadds no information to the model estimates:
high frequency noise in the brightness temperatures degrades the model estimates, and signal saturation
prevents information retrieval for deep snowpacks.

Similarly, recent attempts to assimilate retrieved SWE with a land surface model and meteorological
forcing data and have not been very successful. A Kalman filter approach was used to assimilate re-
motely sensed SWE data into a macroscale hydrology model byAndreadis and Lettenmaier(2006),
but the output appeared to be dominated by retrieval errors.Simulation of ground-measured bright-
ness temperatures using forward models driven by snow pit measurements can improve snow depth
estimates (Durand et al., 2009) but scaling up to satellite pixels is a problem. The land surface model
requires several snow layers and model melt-refreeze layers for good estimates of brightness tempera-
tures (Durand et al., 2008), and deriving suitable input parameters such as grain sizeat global scales is
troublesome.

5 Multi-source products

Several products are available that use a mixture of data sources to produce global products. The ESA
Globsnow project aims to produce two fundamental climate data records, one for snow extent and one for
SWE. The project team includes agencies and companies from Finland, Norway, Austria, Switzerland
and Canada. Snow extent data will be provided from 1995 onwards, based on medium resolution optical
imagery. The basic product will be available weekly and monthly, with 1km resolution globally, 250 and
500m for complex terrain. The SWE data will be obtained from amixture of active and passive, optical
and microwave-based spaceborne sensors combined with ground-based weather station observations,
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with the retrieval based onPulliainen(2006). This retrieval uses a Bayesian approach within a data
assimilation framework to compare the brightness temperature spectral difference with station data,
based on prior error estimates. The estimated accuracy of the output is 25-40mm for areas with less
than 150mm of SWE, with daily output at a resolution of 25km, and excluding the mountainous areas,
Greenland, the glaciers and snow on ice.

Another blended product is the Air Force Weather Agency/NASA Snow Algorithm (ANSA), at 25km
resolution (Foster et al, in press). It combines data on snowextent, SWE, fractional snow cover, snow-
pack ripening, onset of snowmelt and actively melting areasin all weathers. MODIS is the default
data source for cloud-free snow cover data and as a quality check on SWE retrievals from AMSR-E.
The SWE algorithm first checks brightness temperature thresholds to ensure the presence of snow, then
subsequently for whether the snow is shallow, medium or deep. Then the retrieval algorithm ofKelly
(2009) is used along with 500m resolution forest data to retrieve snow depth. This is converted to SWE
using Sturm classes (Sturm et al., 1995). AMSR-E is also used to detect wet snow (incipient melt) prior
to active melting. The QSCAT diurnal difference (relative backscatter between morning and afternoon
passes) is used to identify active snowmelt.

6 Final remarks

Recently there has been an increase in the number and varietyof snow data products available, particu-
larly at global scales. The longest-term datasets from remote sensing are now several decades long, pro-
viding an important observational record of interannual variability. The range of methods for obtaining
snow extent data allows much inter-comparison, although care must still be taken over the discrimina-
tion of cloud-covered and snow-covered scenes. New techniques using active microwave sensors will
add to the range and resolution of remotely sensed data over the coming years.

Nevertheless, there are still many questions about the reliability and utility of SWE retrievals from pas-
sive microwave sensors. Several studies have shown that SWEestimates from good land surface models
are actually degraded by the introduction of passive microwave data (Andreadis and Lettenmaier, 2006;
Tedesco et al., 2010), and in some cases by assimilating in situ data (Ross Brown,pers comm). As-
similation of in situ snow depth and/or SWE observations is successful where the observations are both
dense enough to properly sample the terrain, and are unbiased estimates of the snow cover. These two
conditions are rarely met. It is also important to note, however, that much of the algorithm development
and calibration for remote sensing has taken place in North America, and that application of these re-
trievals over Siberia is relatively untested, due to a paucity of ground data and good quality forcing for
land surface models.

A snow property that appears repeatedly in remote sensing retrievals is the grain size. Care must be
taken over the interpretation of this parameter, as it is notclear that the grain size that is measured in
the field or laboratory is easily related to the bulk parameter that controls the scattering over a satellite
pixel at optical or at microwave frequencies. With the development of active remote sensing techniques
there now exists the opporunity to study the scattering properties of snow from space at finer scales. The
combination of data from different sources, used to maximise their particular strengths and minimise
the number of assumptions inbuilt into retrievals, is surely the next step in measuring and understanding
snow across the globe.
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