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Abstract: The simulation of the error evolution is discussed from a formal point of view, including the rep-
resentation of non linear effects. The operational ensemble variational assimilation at Météo-France is then
briefly summarized and illustrated. It is also shown how suchan ensemble assimilation can be used to diagnose
analysis effects on the error covariances. A combined use ofinnovation-based and ensemble-based estimates is
finally discussed.

1 Simulation of the error evolution with perturbed assimilations

1.1 Ensemble of perturbed assimilations versus deterministic square-root filters

The principles of ensemble data assimilation (EnDA) are relatively simple and general. In this study, we
will focus on the use of perturbed assimilations, based, on one hand, on explicit observation perturbations
(representative of observation errors), and on the other hand, on background perturbations which are either
fully implicit (from the perturbed previous data assimilation cycles) or partly explicit (to represent model error
contributions).

Applying this approach to a Kalman filter algorithm corresponds to an ensemble Kalman filter (EnKF). Sim-
ilarly, its application to a variational algorithm leads toan ensemble variational assimilation (EnVar), such as
the one which is operational at Météo-France since 2008. Such an EnVar system is very easy to implement
and run from an existing variational system, as each member is basically quite similar to a usual variational
assimilation experiment (albeit less expensive, depending for instance on horizontal resolution and number of
outer-loops).

It may be mentioned also that there are other variants calleddeterministic square-root filters (e.g. Tippett et
al 2003). They are based on a linear transformation of background perturbations into analysis perturbations.
However, these square-root filters are more restrictive to some extent, as will be briefly discussed in section 1.2
also. Firstly, in order to make the transformation simple, they are based on an assumption that their gain matrix
is optimal, which is usually not correct (due to sampling noise and model error approximations for instance).
Secondly, because the analysis perturbation update is purely linear, they do not represent non linear effects of
analysis schemes such as 4D-Var. Thirdly, such square-rootfilters are also often (if not always ?) restricted to a
low-rank ensemble-based gain matrix, instead of the reference (possibly hybrid) full-rank gain used in 4D-Var
for instance.

For these reasons, using an EnVar system can be seen as preferable than building up and using a more restrictive
deterministic square-root filter system.
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1.2 Analysis error and analysis perturbation equations

From a formal point of view, ensemble data assimilation is a way to simulate the analysis error equation (e.g.
Berre et al 2006). For the sake of simplicity, we will start with the usual linear form of the analysis equation,
and discuss the non linear case later on.

The (unperturbed) analysis statexa can be written as a linear combination of a backgroundxb and observations
y, with K the specified gain matrix, andH the observation operator :

xa = (I −KH )xb +Ky

The same kind of equation, with the same operators, can be written formally for the true statex⋆, with new
specific inputs, corresponding to the true states in model and observation spaces :

x⋆ = (I −KH )x⋆ +Ky⋆

The analysis error equation is given by the difference between these two equations, and again the same kind of
equation appears, with new specific inputs, namely background errorseb and observation errorseo :

ea = (I −KH )eb +Keo

So this simple equation indicates that the analysis error evolves in a similar way as the usual analysis state
equation : while the inputs change, the basic operators are the same, namelyI −KH andK .

Another nice feature is that this equation is true even ifK is suboptimal. And the form of the analysis error
equation indicates that applying this effective suboptimal K to observation errors, and the associatedI −KH to
background errors, is a way to take this suboptimality (and its effect on the analysis error) into account.

Moreover, this equation can be shown to be also valid for a weakly non linear analysis system such as 4D-Var
(Desroziers et al 2009). In practice, using perturbed non linear analyses is in fact a way to represent non linear
effects in this analysis part of the error evolution. This issimilar to the representation of non linear effects in
the forecast part of the error evolution, through the use of perturbed non linear forecasts (instead of using a
linear model for the forecast evolution of initial perturbations).

These last two features (about suboptimality and non linearity) suggest that using observation and background
perturbations, to produce analysis perturbations (in a nonlinear way), is likely to be more general and appro-
priate than using a direct linear transformation of background perturbations into analysis perturbations (as done
in deterministic square-root filters).

The equation of the analysis perturbation can be derived in asimilar way as for the analysis error. The perturbed
analysisx′a is a linear combination of perturbed inputsx′b andy′:

x′a = (I −KH )x′b +Ky ′

The equation of the analysis perturbationεa corresponds to the difference between this perturbed analysis and
the unperturbed analysis:

εa = (I −KH )εb +Kεo

It appears that the perturbation equation is again very close to the analysis error equation, with new specific
inputs, namely background perturbationsεb and observation perturbationsεo.
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So this illustrates the fact that an ensemble of perturbed assimilations mimics in a relevant way the manner in
which errors evolve in the data assimilation cycle.

1.3 Formal comparison with the NMC method

To emphasize further this point, the analysis error and perturbation equations can be compared with the equation
of the analysis incrementδx = xa−xb, which is the basic ingredient in the NMC method (e.g. Berre et al 2006):

δx = −KHeb +Keo

In the analysis increment equation, the inputs are the same as in the analysis error equation, but one of the
operators is different. In fact,I −KH , which can be seen as a high-pass filter (Daley 1991), is replaced by
−KH , which is a low-pass filter. This is consistent with the fact that estimated correlation functions are too
broad in the NMC method, compared to ensemble assimilation (e.g. Belo Pereira and Berre 2006).

More generally, this kind of formal comparison indicates that the analysis error equation is better simulated in
EnDA than with the NMC method.

1.4 Open issues in the error simulation technique

There are of course open issues in the way of simulating the error evolution with ensemble assimilation. Sup-
pose for instance that we want to simulate errors in a 4D-Var cycle with a high resolution model. Due to
numerical cost, one may be interested by two possible approximations in the ensemble simulation of errors.

Firstly, one may consider to reduce the horizontal resolution of the model, which is relatively classical. Sec-
ondly, one may approximate the reference gain matrix of 4D-Var, either with 3D-Fgat, or with 4D-Var and
fewer outer loops. Another possibility is to use either EnKFor ETKF, in the error simulation part, but in this
case the gainK in this part will be derived from the ensemble information essentially. In other words, the error
simulation will be based on a low-rank ensemble-based gain matrix, which potentially can be a rather coarse
approximation of the reference (possibly hybrid) full-rank gain used in 4D-Var.

For reasons evoked in section 1.1, using a ”consistent ensemble variational assimilation” (i.e. a variational
approach in both perturbed and unperturbed components) seems preferable than using either EnKF or ETKF in
the error simulation part (together with a variational system in the deterministic part).

2 The operational Météo-France ensemble variational assimilation

2.1 Summary of the EnVar system

The main features of this system are briefly evoked here, as a summary of their description in Berre et al (2007).

This ensemble is made of 6 perturbed global members, with truncation T359, 60 vertical levels, and 3D-Fgat
for the Arpege model. This system will be upgraded in 2009, byusing 4D-Var with one outer loop, 70 vertical
model levels, and truncation T399.

An optimized spatial filter is applied to error variances, inorder to increase the robustness of variance estimates.
Noise to signal studies (Raynaud et al 2009) indicate that with such an optimized spatial filter applied to the
6-member variance estimate, the relative error estimationvariance (of the background error variance field) is
around 10%, which is similar to the quality of raw variances estimated from a 21-member ensemble (according
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to 2
N−1 = 2

20 ≈ 10%). Moreover, background error standard deviations are inflated by a factor 1.3, in order to
represent model error contributions.

The Arpege 4D-Var uses these sigmab’s of the day for vorticity (and thus, implicitly, also for the associated
balanced parts of temperature, surface pressure and divergence), and this is operational since July 2008. The
upgrading in 2009 will include an extension of this, by usingthe ensemble to specify flow-dependent variances
also for specific humidity and for the unbalanced parts of temperature, surface pressure and divergence. This
extension contributes to additional positive impacts, in particular due to flow-dependent humidity variances.

An experimental coupling with regional models has been carried out also, both at 10 km resolution with the
Aladin model (Desroziers et al 2007), and at 2.5 km resolution with the Arome model (Brousseau et al 2007).
This is applied in order to estimate the static part of regional error covariances, and an extension to specify
flow-dependent covariances is also investigated.

2.2 Flow-dependent error variances and their impact

Figure 1: Left panel: ensemble-based background error standard deviations for vorticity near 500 hPa
(isoline interval:10−4s−1). Right panel: mean sea level pressure field. Both fields are valid on 8 December
2006.

The left panel of Figure1 is an example of field of sigmab’s of the day, for vorticity near 500 hPa, on the 8th of
December 2006. Large values of sigmab’s are in blue, so they are located over Europe for this situation.

The right panel shows the associated weather situation, in terms of mean sea level pressure. This indicates the
occurence of a severe winter storm over France, which is connected to large values of sigmab’s, in accordance
with expected uncertainties in this kind of intense situation.

As illustrated by Figure 7 in Berre et al (2007), it should be mentioned also that the largest flow-dependent
changes of the variance field (compared to climatological variance fields) are relatively localized spatially. This
suggests that one should not expect a huge and systematic improvement when using flow-dependent sigmab’s
instead of static sigmab’s, but rather positive impacts which can be relatively localized in space and in time, and
which are connected to intense weather situations. This general expectation will be illustrated experimentally
a bit below in this section.

The impact of this kind of flow-dependent sigmab’s is illustrated in Figure2 for a severe winter storm which
occured over France on 10 February 2009. The red isolines correspond to 36 hour forecasts of mean sea level
pressure, based on static sigmab’s in the left panel, and based on sigmab’s of the day in the right panel. The
blue isolines correspond to the verifying analysis. It appears that using flow-dependent sigmab’s has a positive
impact on the forecast of this severe storm, in terms of depthof the low and gradient intensity.

Figure3 is another illustration for a case of tropical cyclone near Madagascar, taken from a study by Montroty
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Figure 2: Severe winter storm over France on 10 February 2009. The red isolines correspond to 36h
forecasts of mean sea level pressure, while the blue isolines are from the verifying analysis. Left panel: 36h
forecast based on static sigmab’s. Right panel: 36h forecast based on flow-dependent sigmab’s.

(2008). The left panel shows trajectory forecasts, and the left panel corresponds to forecasts of intensity. The
black line is the verifying observation, the yellow curves are based on static sigmab’s, and the purple curves are
based on flow-dependent sigmab’s. It can be seen that using the flow-dependent sigmab has a positive impact
on the trajectory and on the intensity of this tropical cyclone. A detailed case study has shown that this positive
impact arises from a beneficial amplification of analysis increments, in some important sensitive areas.

Extended impact runs have been carried out over several monthly periods to evaluate the average impact of
flow-dependent sigmab’s.

This is illustrated by Figure4, where the three panels correspond to the decrease of the geopotential forecast
RMS over Northern America, as a function of height and forecast range, when using flow-dependent sigmab’s
instead of static sigmab’s. The blue isolines correspond toa positive decrease of the RMS, i.e. to an improve-
ment due to the use of flow-dependent sigmab’s.

It appears that using flow-dependent sigmab’s has a positiveimpact on the average, which tends to be more
pronounced during the two winter seasons than in autumn. This is likely to be related to the more intense
cyclogeneses in winter.

Moreover, examination of time series of RMS indicates that these average improvements correspond to a ten-
dency to reduce local RMS peaks, as shown by Figure 8 in Berre et al (2007). This is consistent with the
aforementioned idea that using flow-dependent sigmab’s is likely to be particularly beneficial for local intense
weather situations.

3 Diagnostics of analysis and background errors

3.1 Expressions of the analysis error covariance

When the analysis is optimal, a classical estimate of the analysis error covariance is :A = (I −KH )B, which
indicates that analysis errors are expected to be smaller than background errors.

The analysis error estimate which is provided by ensemble assimilation (based on an ensemble of perturbed
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Figure 3: Forecasts of the tropical cyclone Jokwe, based on static sigmab’s (in orange) and on flow-
dependent sigmab’s (in purple), as a function of forecast range. The verifying observation is in black.
Left panel: trajectory forecast. Right panel: intensity forecast.

assimilations) is more general, as it is valid also for a suboptimal analysis system :

A = (I −KH )B(I −KH )T +KRK T

As shown by this equation, the analysis error equation is a bit more complex in the general case, and ensemble
assimilation can be an efficient way to handle this complexity. In particular, ensemble-based estimates ofA
andB can be compared, in order to diagnose analysis effects.

3.2 Local covariance estimates

One interesting thing to look at is the horizontal distribution of error standard deviations. This is shown for
instance in Figure 7.a in Belo Pereira and Berre (2006) for background errors of vorticity near 500 hPa, averaged
over a one-month period. It can be seen that sigmab values tend to be larger in data-sparse oceanic areas such
as the Pacific and the Atlantic, and that relatively small sigmab’s are found in data-dense areas such as Northern
America and Europe.

It is also possible to calculate the difference between estimates of sigmab’s and sigmaa’s, calculated with the
energy norm in this case. This is shown in Figure5, for statistics averaged over a one month period. One can
notice that the error reduction is stronger in data-dense areas, and also over isolated islands where radiosondes
are available.
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Figure 4: Reduction of average geopotential RMSE over Northern America, when using flow-dependent
sigmab’s, instead of static sigmab’s, as a function of height (y axis) and forecast range (x axis). Blue
isolines correspond to a positive impact of flow-dependent sigmab’s, while the black isoline corresponds
to a neutral impact. Isoline spacing: 0.5m. Left: November 2006 - January 2007 (3 months). Middle:
February - March 2008 (1 month). Right: September - October 2007 (1 month).
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Figure 5: Difference between local estimates of sigmab and sigmaa, averaged over a one-month period,
with a total energy norm.

3.3 Global covariance estimates

Another typical diagnostic corresponds to error variance spectra. This is shown in Figure 2.a of Ştefănescu et
al (2006) for surface pressure, with a full curve for the background and a dashed curve for the analysis. These
two spectra have their maximum in the large scales, which is typical for a variable like surface pressure.

Moreover, the analysis error variance tends to be smaller than the background error variance. This is consistent
with the expectation that errors tend to be reduced by the analysis. It can be noticed also that the error reduction
tends to be larger in the large scales than in the small scales. As shown in Daley (1991) for instance, this is
consistent with the expectation that the error reduction ismaximum for components at which the amplitude of
background error is maximum, compared to the amplitude of observation error.

It is also interesting to look at vertical profiles of error standard deviations. Figure 2.c in Ştefănescu et al (2006)
is an example for temperature. The full curve is for the background, whereas the dashed line is for the analysis.
It can be seen that the two profiles are relatively similar, and that the analysis error tends to be smaller than the
background error. This is again consistent with the expectation that errors tend to be reduced by the analysis.

It can be noticed also that the error reduction tends to be larger in the mid-troposphere than near the surface.
This is likely to be related to the fact that background errors are larger scale in the mid-troposphere. This allows
their reduction to be relatively strong through the analysis step.
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It is also interesting to diagnose how analysis errors evolve into forecast errors, in the ensemble assimilation.
This is illustrated in Figure 16 in Belo Pereira and Berre (2006), by comparing vertical profiles of wind error
standard deviations. The full line is for the analysis, and the dotted line is for the associated 6h forecast. It
can be seen that there is an increase of spread during the 6h forecast, which is likely to correspond to effects of
baroclinic instabilities for instance (knowing that therewas no model error simulation in this ensemble).

It may be mentioned that data impact studies can be carried out also by using ensemble assimilation. The idea
is to compare the analysis spread when using different observation systems. This has been done by Tan et al
(2007) for instance, in order to examine the impact of wind lidars and radiosondes.

4 Combined use of innovation-based and EnDA estimates

One way to validate ensemble sigmab estimates is to calculate innovation-based sigmab estimates, using tech-
niques proposed for instance by Hollingsworth and Lönnberg (1986) and Desroziers et al (2005). Following
Desroziers et al (2005), it can be shown in fact that the covariance between the analysis increment and the
innovation is an estimate of the background error covariance, in observation space.

In principle, this can be calculated for a specific date, but then the local sigmab is calculated from a single
error realization, as is if we had only ONE member in an ensemble. Conversely, if we calculate local spatial
averages of these sigmab’s, the sample size will be increased, and comparison with ensemble estimates can be
considered.

Figure 6 in Berre et al (2007) is an example of comparison for HIRS 7 for a specific single date. The top panel is
ensemble estimates of sigmab, with local spatial averages over a 500 km radius. The bottom panel corresponds
to innovation-based sigmab estimates, using Desroziers’ formula, with a similar 500 km spatial average. It is
striking to notice that similar patterns can be seen in thesetwo independent estimates, such as large sigmab
values over Central Pacific, and small sigmab values over Southern Atlantic. So this kind of comparison is a
way to validate ensemble estimates, and this may be also a wayto estimate model error covariances in particular,
as proposed for instance by Daley (1992).

Figure 6: Estimates of sigmab for the channel HIRS-7, on 24 January 2009 at 00 UTC, centered and
normalized. Top left: innovation-based estimates. Top right: ensemble 3D-Fgat estimates. Bottom left:
ensemble 4D-Var estimates.

More recently, these diagnostics have been used to evaluatethe possibility to use a 4D-Var ensemble at Météo-
France, instead of the current 3D-Fgat ensemble. The top left panel of Figure6 is the innovation-based estimate
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of sigmab for the channel HIRS-7, from the reference unperturbed 4D-Var system. The top right panel is the
3D-Fgat ensemble estimate, and the bottom left panel is the 4D-Var ensemble estimate. It appears that the
ensemble 4D-Var estimate is much closer to the innovation-based estimate (see the green areas over Central
Pacific for instance ; the global correlation with the innovation-based map is increased from 0.2 to 0.6 when
replacing ensemble 3D-Fgat by ensemble 4D-Var).

This is also consistent with the expectation that ensemble 4D-Var should simulate the error evolution of the
reference deterministic 4D-Var system in a more accurate way (thanks to the use of the 4D-Var gain matrix in the
analysis perturbation update). Impact experiments indicate also that using flow-dependent sigmab’s provided by
ensemble 4D-Var contributes to an additional positive impact, compared to the use of flow-dependent sigmab’s
from ensemble 3D-Fgat. So these results support the idea to use 4D-Var in the ensemble assimilation system,
instead of the current ensemble 3D-Fgat.

Another important aspect to evoke is the possibility to estimate model error covariances when combining in-
novations and ensemble assimilation. Typically,B can be written as the sum of analysis errors evolved by the
modelM , and model error covariances contained inQ :

B = MAM T +Q

As (more or less) proposed by Daley (1992), ensemble assimilation can be used to estimate the evolved analysis
error component. Moreover, as shown in the previous slides,innovations can be used to estimate background
errors in observation space. This indicates that a natural technique to estimateQ is to use differences between
ensemble- and innovation-based estimates of covariances.

5 Conclusions and perspectives

Ensemble assimilation allows analysis/background error cycling to be simulated and diagnosed. Using an
ensemble of perturbed 4D-Var assimilations is relatively easy to implement, and it allows non linear analysis
effects to be represented in the error simulation.

Flow-dependent covariances can be estimated, with positive impacts on intense/severe weather events such as
mid-latitude storms and tropical cyclones. Diagnostic comparison between analysis and background spread
provides information about analysis effects. Moreover, comparisons with innovation-based estimates can be
carried out, for validation, and also for estimation of model error covariances.

Some examples of open issues are the optimization of the error simulation (i.e. choice of a good compro-
mise between approximations of the resolution and analysisscheme used in the deterministic part), and the
covariance filtering technique (e.g. spectral/wavelet optimized filters versus Schur filter for instance).
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