

Land Surface observations: Requirements for operational NWP in data assimilation and verification

Pedro Viterbo Instituto de Meteorologia

Acknowledgments: Isabel Trigo, Emanuel Dutra, Alan Betts, Javier Garcia-Haro, Jean-Louis Roujean and the landSAF consortium

ECMWF/GLASS Workshop on Land Surface Modelling and Data Assimilation and the implications for predictability, Reading, 9-12 November 2009

- Overview
- Observations for data assimilation
- Observations for verification
- Land SAF examples: Remote sensing based data for data assimilation and/or verification
- Conclusions

- Overview
- Observations for data assimilation
- Observations for verification
- Land SAF examples: Remote sensing based data for data assimilation and/or verification
- Conclusions

Overview

- Potential overlap with other talks, because observations are dealt with in at least:
 - Models and model intercomparison results (Session 1)
 - Observations for model development: Process studies oriented
 - Observations for model validation
 - Observations for "Benchmarking"
 - Data assimilation talks (all of them)
 - They concentrate on data assimilation methods, but also on observations used/needed
 - All talks in session 3
- Scope of the talk: To deal with observations for
 - Data assimilation
 - Verification & monitoring
 - Verification (& monitoring) is a *regular* check of model results against observations in order to have early warning of drifts and build a *representative* sample of model errors
 - Timeliness is essential

SWE in Alptal: Open site, 2003-04

SA SAF

TESSEL (BLUE) HTESSEL (new roughness) (RED)

Alp-opn-0304 300 SWE [kg.m⁻] 200 100 0 -5050 100 0 **HTESSEL** (black) **HTESSEL-new snow(BLUE)** HTESSEL-snow multi-layer (RED) **Observations Model Median**

•TESSEL to HTESSEL reduces the coupling atmosphere-snow (z0) with much less evaporation

•HTESSEL to STESSEL new (lower) albedo in melting conditions favours earlier melting

Observations for model development (2/2)

I SA SAF

•HTESSEL (CTR) to NEW snow decreases the density, favouring higher soil insulation and less soil cooling

•Multilayer snow model (ML) improves snow temperature and soil T at 5 cm

- Overview
- Observations for data assimilation
- Observations for verification
- Land SAF examples: Remote sensing based data for data assimilation and/or verification
- Conclusions

- Surface data assimilation estimates state variables combining

 (a) imperfect models forced by imperfect atmospheric forcing
 with (b) inaccurate and/or proxy data
- General evolution equation for state variable X $dX/dt = \sum_i F_i$ F_i are fluxes

X = Tsoil, Snow_mass, soil_water, biomass

• The seasonal variation of X is

dX/dt = 0	Tsoil
$dX/dt \sim 1/3 F_i$	Soil water
$dX/dt \sim F_i$	Snow mass
dX/dt ~ ??	Biomass

• For soil water and snow mass data assimilation increments are commensurate with the seasonal evolution, creating closure problems in the surface budgets

Mackenzie river basin era40:

Surface snow budget

Surface analysis increments are of the same order of the seasonal evolution of the snow mass budget

Betts et al, 2003: JHM

LSA SAF Synergy of observations (soil moisture)

- Screen level temperature and humidity are indirectly linked to soil moisture through evaporative cooling.
- **Microwave brightness temperature contains more direct information** ۲ near surface soil moisture and is less dependent on atmospheric
 - Penetration depth of μw Tb depends on:
 - Soil texture
 - Soil temperature profile
 - Vegetation fraction
 - Vegetation water content
 - Surface roughness
 - LSMEM (Land Lowave Emissivity Model) for model equivalent of Tb
- and control is essential to avoid over-fitting Rate of change inform

xy data only;

Model Tskin is very sensitive to aerodynamical resistance (surface roughness)

- Vegetation state (LAI, fAPAR) contains information on soil moisture, but
 - Clear sky data only;
 - Saturation of LAI and fAPAR at high values

- Overview
- Observations for data assimilation
- Observations for verification
- Land SAF examples: Remote sensing based data for data assimilation and/or verification
- Conclusions

- **Observations for verification**
- Verification (& monitoring) is a *regular* check of model results against observations in order to have early warning of drifts and build a *representative* sample of model errors
- Order out of caos

SA SAF

- How to extract a model relevant message from a large set of model vs. observations
 - Climate/ecosystem/season conditional sampling
 - Process oriented thinking (e.g., new snow TESSEL model development)
- The importance of a large sample for robust results
 - ERA-I
- Timeliness
 - Any set of observations needs to be available to NWP centres within a few months

Some examples

INSTITUTO DE METEOROLOGI. PORTUGAL

- In-situ data
 - Surface radiative fluxes
 - From BSRN
 - From remote sensing
 - Fluxnet results
 - COSMOS (cosmic rays for soil moisture)
 - Regional networks in support of SMOS cal/val
 - US SNOWTEL
- Remote sensing
 - LST (or radiances from IR (10.9 and 12.4 channels) from geostationary
 - Vegetation results
 - MODIS snow cover fraction
 - MODIS albedo
 - Remote sensing estimates of carbon assimilation (NPP, NEE) can be very useful when NWP models become fully "green"
 - We desperately need a reliable dataset of daily precipitation over land

- Overview
- Observations for data assimilation
- Observations for verification
- Land SAF examples: Remote sensing based data for data assimilation and/or verification
- Conclusions

- EUMETSAT Satellite Applications Facility dedicated to algorithm development, validation and operational production of land surface related products (primarily) based on European meteorological satellites (MSG and METOP)
 - 7 Institutes in 6 countries
 - Continuous Development Operational Phase I (2007-2012)
- Real time operations (i.e., some products are available every 15 min, ~2-3 hours after observed)
- An efficient and modular real time operational system, to which new functionalities can be added on demand
- Reviewed (~annually) by technical and scientific review panels
- Most products can be used for verification & monitoring of NWP
- A few products can be used for surface data assimilation

- Instituto de Meteorologia (IM), Portugal
- Heteo-France (MF), France
 - Royal Meteorological Institute (RMI), Belgium
 - Finnish Meteorological Institute (FMI), Finland
 - IMK, University of Karlsruhe
 - IDL, University of Lisbon
 - UV, University of Valencia
 - Organisation principles
 - Algorithms developped at one of the participating Institutes
 - Algorithms handed over to IM for integration and production

INSTITUTO DE METEOROLOGI

LandSAF Chronogram

- All products have a Product User Manual and a comprehensive Validation Report
- 4 production areas for MSG
 - Europe
 - N. Africa
 - S. Africa
 - S. America
- SEVIRI resolution (3x3 to 3x5 km)
- Variable time resolution - 15 min to 10 days
- EPS products generation started

NSTITUTO DE METEOROLOG

- Estimates of LST are regularly validated by comparison with
 - In-situ radiometer observations
 - Comparison with LST from other sources (e.g., polar orbiters)
- In-situ observations
 - Africa
 - Gobabeb, Namibia
 - AMMA area

Europe Évora, Portugal BSRN

LST: In situ obs

In-situ observations

LST - no permanent site with ground measurements within MSG disk before

INSTITUTO DE METEOROLOGIA

Évora

Tower ~28m KT15 (1 FOV at ground Ø 14m **Rotating Radiometer** (3 FOV at ground Ø 3m)

LST: Weighted averaged of 3 radiometers

$$\delta(LST_{InSitu}) = \left[\left(\delta LST_{\varepsilon} \right)^{2} + \left(\delta LST_{InSituVarT} \right)^{2} + \left(\delta LST_{InSituVarSp} \right)^{2} + \left(\delta RotRad \right)^{2} \right]^{1/2}$$

Évora: SEVIRI & MODIS vs. OBS

SA SAF

Daytime			
(°C)	BIAS	RMSE	
SEVIRI	+1.9	2.2	
MODIS	-1.8	2.6	

Night-time

(°C)	BIAS	RMSE
SEVIRI	-1.7	2.1
MODIS	-2.6	2.7

Estimating LST uncertainty on an operational basis

• Model skin temperatures have large errors over land, underestimating the diurnal cycle, in arid/semi-arid areas

- Uncertainty estimate is essential for many applications
- LSA SAF comes with an associated δLST
- The error is larger in areas
 - Dry areas, with large uncertainty on surface emissivity
 - Moist atmospheres and high viewing angles (mask out of values where $\delta LST > 4~K$
- This is complemented by validation from independent sources and in-situ validation
- We came a long way since first evaluation 7 years ago, at least on the remote sensing side
 - But we do not know where we are on the model side
- LST from the LSA SAF can be used for
 - Model verification & monitoring
 - Data assimilation

Validation of DSLF (Downward Surface

Longwave Flux) against in-situ data

Different LSA SAF algorithms & ECMWF

versus

- **In Situ Observations** (BSRN)
 - 3-hourly averages
- Data collected between
 - 2005 and 2007

DSLF: Carpentras (France), mid-latitudes

Clear Sky

ECMWF/GLASS w/s, Nov 2009

INSTITUTO DE METEOROLOGIA

PORTUGAL

DSLF: Toravere (Estonia), high latitudes

INSTITUTO DE METEOROLOGIA

Clear Sky

E LSA SAF DSLF: Tamanrasset (Algeria), Sahara

ECMWF/GLASS w/s, Nov 2009

INSTITUTO DE METEOROLOGIA

PORTUGAL

Clear Sky Bias

•LSA SAF and ECMWF present similar results;

 Problem areas:

 High latitudes: snow and clouds
 Deserts: Very high aerosol loads.

ECMWF/GLASS w/s, Nov 2009

Cloudy Sky Bias

- LSA SAF and ECMWF present comparable results;
 - Problem areas:
 > High latitudes modelling low DSLF values & cloud detection.

Less is more: MSG vs. MODIS vegetation parameters

Leaf Area Index: Central Africa

•MSG product is more robust against double-season false alarms

•The temporal continuity benefits the accuracy of retrieved seasonal parameters

•MODIS (1 km) has better resolution than MSG (3 km)

•Both products are based on cloud-free images only, and MSG samples 50 times/day, while MODIS samples 2 times/day

•Improved time sampling of MSG compensates lower resolution

- Overview
- Observations for data assimilation
- Observations for verification
- Land SAF examples: Remote sensing based data for data assimilation and/or verification
- Conclusions

- Conventional observations for data assimilation: A few datasets might become available in the near future, but no real revolution
 - Important shortcoming: SYNOP snow depth information is ambiguous
- Remote sensing observation:
 - L-band & C-band Tb for soil moisture
 - C-band Tb for SWE
 - LST from IR for soil moisture
 - Vegetation (LAI/fAPAR) to initialize soil moisture and/or biomass
 - Radiative surface forcing (LSA SAF)
- Observations for validation:
 - LSA SAF LST, radiative fluxes, vegetation parameters, ...
 - FLUXNET
 - Main gap: Precipitation over land