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Hydro vs Atmo Snow Applications / Impacts

• Hydrology

Volume forecast

Flood forecasting

Reservoir operations

Water allocation

• Meteorology / Climate

Albedo

Energy sink

Soil moisture

Soil insulation



Snow Quantities to Assimilate

• Volume
Station SWE
Station Depth
Satellite SWE/Depth

• Area
Binary snow presence
Fractional unmixing

• Gravity Anomaly

Photos : A. Slater



Uncertainty in Numerical Modeling

1. Model Structure
Parameterizations
Piecing together components
Numerical methods

2. Model Forcing
Spatial & Temporal structure

3. Parameter Data
Soils & Vegetation, type and distribution

4. Initial Conditions
Influences trajectory (forecasting = IVP)

(1)

(2)

(3)
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Snow Assimilation & Hydro Forecasting

• Snowpack has big impact
• Sub-optimal data cover

• Aim :  best estimate of SWE initial conditions
for streamflow prediction by combining
models & observations

• Research philosophy
Calibration solves low frequency variability
Assimilation aids high frequency variability



1.  Xt
- = A(Xt-1, ft)

2.  Kt = PtHT(HPtHT + R)-1

3.  Xt = Xt
- + Kt (zt – HXt

-)

Data Assimilation : Ensemble Kalman Filter

1. Project model state (X) forward
as a function of last model state
(Xt-1) and the forcing (ft)

2. Compute a Kalman Gain (K) from
covariances (P) of transformed
(H) model data and observation
variance (R) across ensemble

3. Update the model states using
the gain and observations (z)



Stochastic SNOW-17 Simulations

• SNOW-17
Anderson (1973) 
Conceptual model – needs only Temp. + Precip.
Runs operationally @ the NWS
Parameters : CBRFC operational code
Calibrated for streamflow, not SWE
Nine state variables used

• Model forced with ensemble of inputs



(2-km grid—150 x 150 pixels)

1-POP
(logistic regression)

Conditional CDF
(ord. least squares)

Precipitation
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Uncertainties in model inputs (method)

Occurrence:
βnew = βold + (XTWVX)–1 XTW(Y-π)

Amounts:
β = (XTWX)–1 XTWY

Need estimate of 
Precip. and Temp. at 
each basin/box/point

PLUS

Error estimate



POP & PCP

• Location: Colorado

• Applied Logistic & 
OLS regression

• All estimates are 
locally-weighted

• SWE computed 
similarly

• Temp uses OLS



Obtaining Assimilation Data

• 1D EnKF needs data everywhere
• Convert SWEobs to Z-score
• Interpolate & cross validate
• Get SWEmod via model hindcast
• Model-space, unbiased value

U

U



Obtaining “Truth”

• Model-space equivalent of observed SWE
• Match the non-zero SWE CDF’s



53 Upper C.R.B.  SNOTEL Stations



Example: Lake Eldora (forcing)

Obs IQR   Total



Example: Kiln (forcing)

Obs IQR   Total



Rank Probability of Temperature (All Stations)



EnKF Sample Results

Interpolated SWE 
Mean & Std. Dev

Model

Truth



White without Red = B.L.U.E

• SWE contains red (time correlated) noise
• Only want to use “new” information
• Example – assimilate at same timestep 
• Filter Divergence = potential problem



Final Assimilation Results



Requirement : new & better information



SWE Assimilation – Results Summary

• Analysis superior to Model or Observations

• Correlation structure removed

• Only one area of uncertainty covered so far

• Limited data sources, so far

• Model rebalanced for forecasting 

• Improves short term forecasting 

• Potential operational capabilities



Assimilation of Satellite SCA Information
• Experiments with a “toy” model

Temperature index snow model
Conceptual series of soil reservoirs

• Applied to the middle Boulder Creek at Nederland

x



Errors in Model Parameter Choice
• Monte Carlo Markov Chains

100 chains (ensemble members) = 100 parameter sets
• Randomly couple each parameter set with each forcing ensemble



…uncertainty due to forcing plus parameters

[ensemble streamflow simulations at Middle Boulder Creek]



Application—subgrid SWE parameterization

Model framework of Luce et al., 1999; Liston, 2004

Variability in SWE determined by total accumulation and
coefficient of variability parameter

Melt assumed to be constant over the grid cell



Application—subgrid SWE parameterization

swe = 100mm
swe = 200mm

CV = 0.3
CV = 0.7



Identical twin experiments—SCA assimilation
• 1D EnKF—SCA used to update the sub-grid distribution of SWE as well as the 

basin water balance (augment state vector with CV parameter)
• One model ensemble member assumed to be “truth”
• The “truth” ensemble is used to update all other model ensembles

• “Observed SCA” is lower than the model ensemble
• Variability parameter increased; more SWE variability = more ground exposed



Identical twin experiments—SCA assimilation
Similar updates to other 
model state variables

…with subsequent effects 
on streamflow simulation



SCA Assimilation:  Results Summary

• 1200 synthetic water years
• Small improvement near the 

end of the melt season

• Limitations on the use of SCA 
information:

A significant amount of melt 
may occur before any bare 
ground is exposed
The transition between 100% 
snow cover and 0% snow 
cover may occur rather quickly

• What is “significant” and what is 
“quick” will be basin dependent



MODIS Assessment & Field Validation

Photo : A. Slater



MODIS SCA 
vs 
SNODAS SWE

Slater, Clark, et al (in prep)



SNODAS SWE & MODIS SCA: Sub-Basins

Slater, Clark, et al (in prep)

B7 = 300mm SWE

B10 = 1000mm SWE



SNODAS SWE & MODIS SCA: Total-Basin

Slater, Clark, et al (in prep)



Snow Distribution

• LiDAR depth data

• 1x1 km

• NASA CLP-X

• Colorado

McCreight et al, in prep



Passive Microwave SWE Estimation  



AMSR-E Snow Products in Mountains

• Some information exists – can we exploit it?

• Global algorithm (Chang) is not ideal

• RT theory for Passive Microwave explains data

AMSR-E SWE at Colorado SNOTEL sites

Nov 2002 May 2003



Albedo: WRF (physics set 1) vs. MODIS

WRF MODIS: MOD43C

Albedo



The End

Thank You

University of Colorado                     Boulder
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