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Satellite observations
- Soil moisture
- Snow
- Land surface temperature (LST, a.k.a. “skin” temperature)
- Terrestrial water storage (TWS)

Algorithms
- EnKF and ensemble smoothing
- Dynamic bias correction
- Adaptive estimation of error parameters

Systems
- GEOS-5 LDAS (Catchment model; EnKF, bias, adaptive)
- Land Information System (LIS)

- multiple land models (Catchment, Noah, CLM, HTESSEL…)
- includes GMAO EnKF and bias estimation
- coupled to WRF
- parameter estimation tools

So far, mostly “uni-variate” and “off-line” (land-only).

Summary of activities
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for each ensemble member i=1…N
Kk = Pk (Pk + Rk)-1

with Pk from ensemble spread

Andreadis and Lettenmaier (2005); Durand and Margulis (2007); Kumar et al. (2008a, 2008b, 2009); Pan and Wood (2006); Reichle et al. (2002a, 2002b, 2007, 2008a, 
2008b, 2009);  Reichle and Koster (2003, 2004, 2005);  De Lannoy et al. (2007); Crow and Reichle (2008); Zaitchik et al. (2008); Zhou et al. (2006)

Nonlinear ensemble
propagation approximates 
model errors.
Apply small perturbations to 
each ensemble member (model 
forcings and states) at every 
time step.
Dynamic bias estimation.
Adaptive estimation of error 
parameters.
Developed in GEOS-5 LDAS 
and integrated into LIS.
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NASA Soil-Moisture-Active-Passive (SMAP) mission
First of NRC Earth Science Decadal Survey missions

Platform and instruments
L-band (1.4 GHz) synthetic aperture radar 
(active) and radiometer (passive) with 6-m 
rotating antenna
Orbit: Sun-synchronous

~680km altitude
6am/pm overpass

Swath width: 1000 km
Resolution:  1-3 km (radar)

40 km (radiometer)
Revisit: 2-3 days
Duration: 2015-18
Sensing depth: ~5 cm

Science objectives

• Global land surface 
water, energy, and 
carbon fluxes.

• Enhance weather and 
climate forecast skill.

• Improve flood 
prediction and drought 
monitoring.

Soil 
freeze-
thaw 
drives 
boreal 
carbon 
balance

(Cahill et al., 1999)N
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Soil moisture

Latent 
heat flux 
depends 
on soil 
moisture

(Frolking et al., 1996)

Only surface 
soil moisture!



SMAP Baseline Science Data Products

Abbreviation Description Resolution Latency*

L1B_S0_LoRes Low Resolution Radar Backscatter (σo) ~ 30 km 12 hours

L1C_S0_HiRes High Resolution Radar Backscatter (σo) ~ 1-3 km 12 hours

L1B_TB Radiometer Brightness Temperature (TB) ~ 40 km 12 hours

L1C_TB Radiometer Brightness Temperature (TB) ~ 40 km 12 hours

L3_F/T_HiRes Freeze/Thaw State ~ 3 km 24 hours

L3_SM_HiRes Radar Soil Moisture (internal product) n/a n/a

L3_SM_40km Radiometer Soil Moisture ~ 40 km 24 hours

L3_SM_A/P Radar/Radiometer Soil Moisture ~ 10 km 24 hours

L4_SM Surface & Root-zone Soil Moisture ~ 10 km 7 days

L4_C Carbon Net Ecosystem Exchange ~ 10 km 14 days

NASA Soil-Moisture-Active-Passive (SMAP) mission

GSFC develops L4_SM algorithm and generates L4_SM and L4_C products.

L4_SM builds on experience with AMSR-E soil moisture assimilation.
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AMSR-E soil moisture assimilation

Anomaly RMSE 
v. in situ observations [m3/m3]

N AMSR-E Model Assim.

Surface s.m. 36 0.049 0.051 0.048
Root zone s.m. 32 n/a 0.039 0.036

Anomaly R 
time series correlation coeff. v. in situ observations, with 95% confidence interval

N AMSR-E Model Assim.

Surface s.m. 36 .42±.01 .38±.01 .47±.01
Root zone s.m. 32 n/a .37±.01 .45±.01

Validate with USDA SCAN stations
(only 36 of 103 suitable for validation)Soil moisture [m3/m3]

Assimilate AMSR-E 
surface soil moisture 
(2002-08) into NASA 
Catchment model

Results UPDATED from Reichle et al. (2007) J Geophys Res, doi:10.1029/2006JD008033.

Anomalies ≡ mean 
seasonal cycle removed

Root zone critical 
for applications 
but not observed 
by satellite.

• Assimilation product 
agrees better with 
ground data than 
satellite or model 
alone.
• Modest increase may 
be close to maximum 
possible with imperfect 
in situ data. 
• Higher quality SMAP 
obs will provide better 
improvements.



AMSR-E (Δ):
ΔR=0.06

SMMR ( ): 
ΔR=0.03

Soil-Moisture-Active-Passive (SMAP) mission design

Results
• Assimilation of (even poor) soil moisture retrievals adds skill (relative to model product). 
• Published AMSR-E and SMMR assimilation products consistent with expected skill levels.
• Derive error budget analysis for SMAP.

Skill (R) of retrievals (surface soil moisture)

Skill improvement of assimilation over model (ΔR)
(root zone soil moisture)

Q: How uncertain can retrievals be and still add 
useful information in the assimilation system? 
A: Synthetic data assimilation experiments.

Skill measured in terms of R
(=anomaly time series 
correlation coefficient against 
synthetic truth).

Each plus sign indicates result 
of one 19-year assimilation 
integration over Red-Arkansas 
domain. Sk
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Reichle et al. (2008) Geophys Res Lett, doi:10.1029/2007GL031986.



SMAP L4_SM uncertainty estimates 

Interpreting the OSSE for SMAP yields: 

Assimilation of SMAP obs will provide improvements (over model) of 0.01 
m3/m3 for surface and 0.005 m3/m3 for root-zone soil moisture.

We expect the L4_SM product to meet the 0.04 m3/m3 error requirement.

The above numbers probably underestimates the skill improvement for 
regions with less reliable precipitation data (compared to the US).

Expected anomaly RMSE [m3/m3]
Skill 

scenario
L3_SM1,3 

(A/P) Model2,3 L4_SM3 |Δ|

Surface soil 
moisture

High 0.028 0.046 0.035 0.012
Low 0.037 0.051 0.038 0.012

Root zone soil 
moisture

High n/a 0.036 0.031 0.005
Low n/a 0.038 0.031 0.007

1Source: SMAP measurement requirements.
2Source: USDA/SCAN results.
3Source: OSSE results.

|Δ| ≡ | Model – L4_SM | 
(skill contribution of SMAP 
to model products)

Anomalies ≡ mean 
seasonal cycle removed



CLM

Noah

Catch

Mosaic
Stronger coupling between 

surface and root zone anomalies

CLM

Noah

Catch

Mosaic
Stronger coupling between 

surface and root zone anomalies

Normalized ROOT ZONE soil moisture improvement 
from assimilation of surface soil moisture

Catchment or MOSAIC “truth” easier to 
estimate than Noah or CLM “truth”.

Catchment and 
Mosaic work better 
for assimilation than 
Noah or CLM.

Catch Mos Noa CLM
Catch 0.71 0.54 0.36 0.38 0.50
Mos 0.55 0.69 0.31 0.33 0.47
Noa 0.43 0.43 0.36 0.26 0.37
CLM 0.11 0.21 0.10 0.45 0.22

0.45 0.47 0.28 0.36 0.39

M
od

el

NIC rzmc Synthetic observations from Avg

Avg

Stronger coupling between surface and 
root zone provides more “efficient” 
assimilation of surface observations.

Multi-model soil moisture assimilation
How does land model formulation impact 

assimilation estimates of root zone soil moisture?

Kumar et al. (2008) Water Resour. Res., in press.



Root zone soil moisture skill improvement

Binning the spatially distributed results of all fraternal 
twin experiments according to VCS values yields:

Stronger coupling 
between surface and 
root zone leads to more 
efficient assimilation.

The slight asymmetry 
(across the diagonal) 
suggests that it is 
prudent to overestimate 
the VCS in the 
assimilation model.NIC = normalized information contribution

VCS = vertical coupling strength



Impact of model and obs error inputs on assimilation skill 

RMSE of assimilation estimates v. truth for:Each “+” symbol 
represents one 
19-year assim. 
experiment over 
the Red-Arkansas 
with a unique 
combination of 
input model and 
observation error 
parameters.

Surface soil moisture m3/m3

input obs error std-dev

Q = model error
(including 
errors in precip, 
radiation, and 
soil moisture 
tendencies)

P = P(Q)
= soil moisture 
error variancefo
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Reichle et al., doi:10.1029/2007WR006357

sqrt(P(Q_true))



sqrt(P(Q_true))

RMSE of assimilation estimates v. truth for:

Surface soil moisture m3/m3

• “True” input error covariances yield minimum estimation errors.
• Wrong model and obs. error covariance inputs degrade assimilation estimates.
• In most cases, assimilation still better than open loop (OL).

Reichle et al., doi:10.1029/2007WR006357

Impact of model and obs error inputs on assimilation skill 



Diagnostics of filter performance and adaptive filtering

innovations ≡ obs – model prediction 
(internal diagnostic)

state err cov + obs err cov
(controlled by inputs)

Find true Q, R by enumeration?  
• RMSE plots require “truth” (not usually available).  
• Too expensive computationally.
Use diagnostics that are available within the assimilation system.

Filter update: x+ = x− + K(y – x−)
K  = P (P + R)−1 = Kalman gain

Diagnostic:  E[(y − x−) (y – x−)T]   =   P + R

time

so
il 

m
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ur

e Example: Average “obs. 
minus model prediction” 
distance is much larger 
than assumed input 
uncertainties

x− = model forecast
x+ = “analysis”
y =  observation



Adaptive v. non-adaptive EnKF

Non-adaptive Adaptive Difference

• Adaptive filter: X- and Y-axis of contour plot based on initial guess of R, P(Q).
• Adaptive filter yields improved assimilation estimates for initially wrong model and 
observation error inputs (except for R0=0).

Contours: Surface soil moisture RMSE of assimilation estimates v. truth

Reichle et al., doi:10.1029/2007WR006357
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Model v. satellite land surface temperature (LST)
July 2004 LST: GEOS-5 DAS minus MODIS 

[Bosilovich et al, NASA/GMAO, Mar 2008]

10:30am

1:30pm

10:30pm

1:30am



Strategies for LST assimilation

Kalman filter state update: x+ = x- + Kx(y − Hx-)
Kx = PxHT(HPxHT + R)-1

Bias update (2nd Kalman filter): b+ = b- − Kb(y − H(x-−b-)) 

Assume: Pb ~ λ Px   Kb = λ Kx

STRATEGIES

1. A priori scaling

Assimilate anomalies 
(after removing 
climatological bias prior 
to data assimilation; 
broken down by season 
and time-of-day).

2. Bias estimation.

Dynamically estimate 
bias (Dee, Da Silva, 
Bosilovich).

Simple assumption 
allows use of regular 
Kalman filter machinery 
to update bias.

Bias estimate is 
effectively time average 
of increments.

Bosilovich et al., JMSJ 2007

LST lacks memory.



Land surface temperature (LST) assimilation

“Model” LST much better than ISCCP.

Assimilation reduces anomaly RMSE by ~0.3 K.

Bias estimation necessary.

Model formulation impacts assimilation strategy.

Assimilate ISCCP LST into 
off-line land models: 
Catchment (CLSM) & Noah.

Validate against CEOP obs. 
(48 stations; 2003-2004).

Anomalies ≡ mean 
seasonal cycle removed

LST: Land surface temp.
LH: Latent heat flux
SH: Sensible heat flux
GH: Ground heat flux



A few days at MGS in Tibet…

Dynamic bias correction 
without a priori scaling
can force the land models 
out of their “comfort zones” 
and leads to unrealistic flux 
estimates.
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Without scaling

With scaling
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Model fills spatial 
and temporal data 
gaps, provides 
continuity and 
quality control.

Assimilation output 
• agrees better 
with IMS snow 
cover (top middle)
• contains more 
information 
(~hourly SWE) 
than MODIS 
(~daily snow 
cover) 

Rodell and Houser (2004) J. Hydrometeorology

Snow cover assimilation
O

bservations
M

osaic LSM
 

Control Run SWE (mm)

MODIS Snow Cover (%)

Assimilated SWE (mm)

IMS Snow Cover
(Reference)

Observed SWE (mm)

SWE Change (mm)

21Z 17 January 2003

Use MODIS snow cover to update model snow water equivalent (SWE)



Zaitchik and Rodell, J. Hydromet., 2009, doi:10.1175/2008JHM1042.1

High Plains (n=103)High Plains (n=103)

Southwest (n=28)
―Open
―Push
―Pull
• In situ

Sep-05 Jan-06 May-06 Sep-06 Jan-07 May-07

sn
ow

 w
at

er
 e

qu
iv

al
en

t, 
m

m
Snow cover assimilation

Forward-looking “pull” algorithm (smoother): 
• Assess MODIS snow cover 24-72 hours ahead
• Adjust air temperature (rain v. snowfall, snow melting v. frozen)



Highly accurate 
measurement of 
distance between 
twin satellites

GRACE measurements

Gravity anomaly

15.0-15.0
Water Storage Anomaly (cm)

Terrestrial water 
storage (TWS) 
anomaly

“Fast” signal (weekly to 
monthly; after correction for 
atmospheric pressure)



Ensemble Kalman smoother

1.) Run high-
resolution land 
model forecast for 
one month

Zaitchik et al. (2008) 
J. Hydrometeorology, 
doi:10.1175/2007JHM951.1



Ensemble Kalman smoother

1.) Run high-
resolution land 
model forecast for 
one month

2.) Diagnose large-
scale TWS on the 
5th, 15th, and 25th, 
compute 
innovations (ΔY)ΔY = Y – M[X]

Zaitchik et al. (2008) 
J. Hydrometeorology, 
doi:10.1175/2007JHM951.1



Ensemble Kalman smoother

1.) Run high-
resolution land 
model forecast for 
one month

2.) Diagnose large-
scale TWS on the 
5th, 15th, and 25th, 
compute 
innovations (ΔY)

3.) Compute gain 
(K) and increments 
(ΔX)

ΔX = K ΔY
ΔY = Y – M[X]

Zaitchik et al. (2008) 
J. Hydrometeorology, 
doi:10.1175/2007JHM951.1



Ensemble Kalman smoother

1.) Run high-
resolution land 
model forecast for 
one month

2.) Diagnose large-
scale TWS on the 
5th, 15th, and 25th, 
compute 
innovations (ΔY)

3.) Compute gain 
(K) and increments 
(ΔX)

4.) Apply 
increments during 
second integration

5.) Repeat for next 
month…

ΔX = K ΔY
ΔY = Y – M[X]

Zaitchik et al. (2008) 
J. Hydrometeorology, 
doi:10.1175/2007JHM951.1



Assimilation of GRACE terrestrial water storage (TWS)

GRACE Assimilation
Terrestrial water storage anomaly (Jan. 2003 – Jun. 2006 loop)

Zaitchik, Rodell, and Reichle (2008) J. Hydrometeorol., doi:10.1175/2007JHM951.1

GRACE measures 
large-scale TWS
= groundwater 
+ soil moisture 
+ snow
+ surface water

Assimilation yields:
• fine-scale information subject to 

GRACE basin-scale constraints
• better runoff  than model (not shown).



Assimilation disaggregates GRACE data into snow, soil moisture, and groundwater.
Assimilation estimates of groundwater better than model estimates.

Validation against 
observed 
groundwater:

RMSE = 18.5 mm

R2 = 0.49

Assimilation of GRACE terrestrial water storage (TWS)

Zaitchik, Rodell, and Reichle (2008) J. Hydrometeorol., doi:10.1175/2007JHM951.1

RMSE = 23.5 mm

R2 = 0.35



Assimilation disaggregates GRACE data into snow, soil moisture, and groundwater.
Assimilation estimates of groundwater better than model estimates.

Validation against 
observed 
groundwater:

RMSE = 18.5 mm

R2 = 0.49

Assimilation of GRACE terrestrial water storage (TWS)

Zaitchik, Rodell, and Reichle (2008) J. Hydrometeorol., doi:10.1175/2007JHM951.1

RMSE = 23.5 mm

R2 = 0.35

Application: US Drought Monitor



Soil moisture
- SMAP Level 4 Products
- Multi-model soil moisture assimilation
- Adaptive filtering

Land surface temperature
- Bias

Snow data and terrestrial water storage
- Smoothing
- Multi-scale assimilation
- Vertical and horizontal disaggregation

LIS examples
- Soil moisture and sea-breeze
- Boundary layer mixing diagrams
- Parameter estimation

Outline



• More detail in LIS initial condition (as expected)
• LIS/WRF drier over Northern FL & Southern GA
• Difference in 12-h forecast of 2m air temp. (sea breeze)
• LIS/WRF better than control (independent validation)

Case et al. (2008) J. Hydrometeorol., doi: 10.1175/2008JHM990.1, in press.

Sea-breeze evolution with LIS/WRF

LIS/WRF 
minus 
Control

[K]

0-10cm soil moisture initial condition 
(6 May 2004 12z)

LIS Control 
(Eta)

LIS minus 
Control

[m3/m3]

[m3/m3]

12-h forecast

12-hour forecast:
2m air temp. difference
(valid 7 May 2004 0z)

MSFC/GSFC collaboration:
Impact of land initial condition on short-term weather forecast



Wet
Dry

Dry Soil

Land-atmosphere coupling with LIS/WRF

Entrainment
fluxes

7am

Surface 
fluxes

“Mixing Diagram” quantifies 
land-atmosphere fluxes and 
feedbacks through the 
evolution of 2-meter 
temperature and humidity.

7 pm

7am

7pm

Diurnal evolution of 2m 
temperature and humidity 
reflects land surface (soil 
moisture) and atmospheric 
(boundary-layer depth) 
conditions and is a 
diagnostic of local land-
atmosphere coupling.

The LIS-WRF mesoscale 
modeling system is a tool 
for testing several land 
surface models and PBL 
schemes in a consistent 
framework.

Soil moisture anomalies 
lead to significantly 
different signatures of heat 
and moisture evolution.

Daytime evolution of 
specific humidity vs. 
potential temperature

----- Observations
(IHOP 2002)

Model Range

Wet 
Soil

Soil Moisture (m3/m3)

Santanello et al. (2009) JHM

vector length = flux
vector slope = Bowen ratio



Land-atmosphere coupling with LIS/WRF

0

100

200

300

400

500

-500 -400 -300 -200 -100 0 100 200 300 400 500

Sfc
Ent
Tot
Sfc AE
Obs-Sfc
Obs-Ent
Obs-Tot

Noah

Noah

Noah

CLM

CLM

CLM

Heat and moisture 
budgets for different 
PBL-land model 
combinations can be 
derived from mixing 
diagrams and 
compared against 
observations.  

E4 – 6 Jun 2002

LE   [Wm-2]

H
   

[W
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Peters-Lidard et al (2008) Water Resources Research
Santanello et al. (2007) Remote Sensing of Environment

Soil parameter estimation with LIS

“after”

obs
Soil parameter estimation can 
improve soil moisture fields.

Soil Moisture (m3/m3)

“before”

Soil texture [%]



Outlook

Surface soil moisture 
(SMMR, TRMM, AMSR-E, 
SMOS, Aquarius, SMAP)

Snow water 
equivalent

(AMSR-E, SSM/I, 
SCLP)Land surface temperature 

(MODIS, AVHRR,GOES,… )

Water surface elevation 
(SWOT)

Snow cover fraction 
(MODIS, VIIRS, MIS)

Terrestrial water storage (GRACE)

Precipitation 
(TRMM, GPM)

Radiation 
(CERES, CLARREO ) Vegetation/Carbon 

(AVHRR, MODIS, DESDynI, 
ICESat-II, HyspIRI, LIST, 

ASCENDS )

SUMMARY
• Assimilation products better than model or satellite data.
• Obs. can be extrapolated and downscaled (space & time).
• Improvements are modest because the skill of land models 
(given observations-based forcings) is comparable to that of 
satellite observations.
• Ensemble-based assimilation is appropriate for the problem.
• Bias is everywhere.
• Validation is difficult for lack of in situ observations. 
• Assimilation system contributes to mission design & products.



Outlook

Surface soil moisture 
(SMMR, TRMM, AMSR-E, 
SMOS, Aquarius, SMAP)

Snow water 
equivalent

(AMSR-E, SSM/I, 
SCLP)Land surface temperature 

(MODIS, AVHRR,GOES,… )

Water surface elevation 
(SWOT)

Snow cover fraction 
(MODIS, VIIRS, MIS)

Terrestrial water storage (GRACE)

Precipitation 
(TRMM, GPM)

Radiation 
(CERES, CLARREO ) Vegetation/Carbon 

(AVHRR, MODIS, DESDynI, 
ICESat-II, HyspIRI, LIST, 

ASCENDS )

FUTURE PLANS
• Multi-variate assimilation of soil  moisture, land surface 
temperature, snow cover, and snow water equivalent.
• Customize system for SMAP, incl. novel technique for 
assimilation of freeze-thaw information. 
• Integrate LDAS with GEOS-5 ADAS; assimilate LaRC near-
real time LST.
• Investigate feedback of land analysis on atmospheric state 
in coupled land-atmosphere analysis system. 
• Assimilate satellite-based vegetation observations.
• Multi-variate “Integrated Earth System Analysis”

(atmosphere + ocean + land)



THANK YOU FOR YOUR ATTENTION!
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