The role of terrestrial routing process and shallow groundwater in landatmosphere coupling

> David J. Gochis Research Applications Laboratory National Center for Atmospheric Research Boulder, CO USA

Principle Questions

- How does land surface physiography (terrain features) affect the spatial and temporal distribution of moisture availability?
- How does the spatial distribution of soil moisture in complex terrain impact land-atmosphere fluxes and convective circulations?
- What forcing feedbacks do these circulations impart back to the land surface?

- Terrain features affecting moisture availability (scales ~1km)
 - Routing processes: the redistribution of terrestrial water across sloping terrain
 - Overland lateral flow (dominates in semi-arid climates)
 - Subsurface lateral flow (dominates in moist/temperate climates)
 - Shallow subsurface waters (in topographically convergent zones)
 - Other land surface controls:
 - Terrain-controlled variations on insolation (slope-aspect-shading)
 - Soil-bedrock interactions

©The COMET Program

 Shallow groundwater (Fang, Miguez-Macho, Niu and Yang, Rajagopal)

 Terrain routing (Maxwell and Kollet)

SWDOWN (W m-2)

west_east

clouds

Range of SWDOWN: 0 to 1232.24 W m-2 Range of west_east: 0 to 600 Range of south_north: 0 to 500 Current Time: 7 Frame 8 in File data_6_21.nc

NCAR

 Terrain insolation (Zangl, Whiteman, Egger)

 Shallow groundwater (Fang, Miguez-Macho, Niu and Yang, Rajagopal)

Sensitivity of Noah modeled LE to specification of water table depth (Rajagopal et al, J. Hydromet, sub.)

Groundwater Depth (m)	Percent bias in ET (w.r.t. observed ET @ GW depth of 2.5m)
1.5	31.22
2.5	1.8
4.0	-38.8

 Terrain routing (Maxwell and Kollet)

 Terrain insolation (Zangl, Whiteman, Egger)

 Shallow groundwater (1-D: Fang, Miguez-Macho, Niu and Yang, Rajagopal)

 Terrain routing (3-D: Maxwell and Kollet, Famig.&Wood)

Maxwell et al., Adv. Water Res. 2007

Terrain circulations:

Background circulation

 Increased circulation (dry peaks)

 Suppressed circulation (wet/snow peaks)

UCAR Confidential and Proprietary. © 2008, University Corporation for Atmospheric Research. All rights reserved.

Terrain circulations: Complications

- How do routing processes influence these circulations?
 - How do wet valley-dry peak or dry valley-wet peak conditions influence the terrain circulation? Similarly for mountain-plain circulations?
 - At what spatial and temporal scales do these processes become significant?
 - Is there a detectable difference from an NWP/QPF perspective?
 - What are the potential reasons for such differences?

Outline

 Experiment: Explore the influence of routing processes on the simulation of a flood producing convective event in the lee of orography

Coastal Plain Foothills Sierra Madre Occ.

Courtesy E. Vivoni

UCAR Confidential and Proprietary. © 2008, University Corporation for Atmospheric Research. All rights reserved.

Coupled WRF-Hydro Flash Flood Forecasting in the Colorado Front Range:

- WRF Model Options
 - No convection parameterization
 - Purdue/Lin 6-class microphysics
 - RRTM LW, Dudhia SW
 - Yonsei PBL, M-O sfc lyr
 - Noah land surface model w/ and w/out coupled Noah-distributed routing
 - Operational runs from 00z (research run from 12z)

NCAR

4 km and 1 km WRF Domains

Recent Model Development Activities: Distributed hydrological routing

Jointly developed LSM (NCAR, NCEP, AFWA, Universities)

- Full suite of land surface physics for energy and water exchange
- Capable of running coupled to NWP or 'offline'
 - Center piece of the NCAR HRLDAS and NASA-LIS

National ter or

Recent Model Development Activities: Distributed hydrological routing

Explicit dynamical hydrologic/hydraulic modeling (< 1km):</p>

- Integration of landscape resolving LSMs with Cloud Resolving Models
- Parallelized for High Performance Computing Platforms

Distributed routing processes in Noah:

UCAR Confidential and Proprietary. © 2008, University Corporation for Atmospheric Research. All rights reserved.

Model Experiments

- July 28, 1997 Fort Collins flood event
 - 1. Spin up land surface initial conditions with and without terrestrial routing (2mo. spin-up, avoiding snowmelt)
 - 2. (NOT SHOWN) Run WRF with fully-coupled routing and compare against fully-coupled non-routing case: Some minor differences in QPF over timescale on the order of 18-24 hours but largely offsetting in space (similar to Trier et al., 2008)
 - 3. Compare/contrast fully-coupled WRF simulations with spun-up land surface conditions (w/ and w/out routing) but no routing during simulation
- Aim: Assess the impact of land surface initializations on simulated storm event

The 1997 Forth Collins Flood:

UCAR Confidential and Proprietary. © 2008, University Corporation for Atmospheric Research. All rights reserved.

Case Study: 1997 Ft. Collins Flood

Event Mesoscale Analysis

1 km WRF-w/out routing: Init. July 27 12z 1 km WRF-w/ routing: Init. July 27 12z

Case Study: 1997 Ft. Collins Flood

Event Mesoscale Analysis

Case Study: 1997 Ft. Collins Flood

Event Mesoscale Analysis

Case Study: 1997 Ft. Collins Flood Event Mesoscale Analysis

1 km WRF-w/ routing:

Init. July 27 12z

1 km WRF-w/out routing: Init. July 27 12z

Case Study: 1997 Ft. Collins Flood Event Mesoscale Analysis

1 km WRF-w/out routing: Init. July 27 12z

1 km WRF-w/ routing: Init. July 27 12z

Case Study: 1997 Ft. Collins Flood Event Accumulated Precipitation

Results: Untangling land-atmo feedbacks

- Trying to diagnose the 'pre-storm' mechanisms causing the difference in a fully coupled mode for a single event is difficult due to:
 - Internal feedbacks
 - Differing cloud fields
 - Differing amounts of surface available energy
 - Changes in advective fields

UCAR Confidential and Proprietary. © 2008, University Corporation for Atmospheric Research. All rights reserved.

June 21 2001, 14 hr simulation (12z-02z), IHOP Field Campaign

- Identical initial conditions, coupled WRF sims w/ and without routing
- Detectable differences with some spatial coherence
- However differences in precipitation largely offset one another (i.e. shifting of events

Complicating Factor: Model Calibration

Surface Evap (0-250 mm)

Deep Drainage (0-500 mm)

Deep soil moisture (+/- 1%)

- Routing minus no-routing simulations show more soil moisture, more surface evap and more deep drainage in routing case
- Spatial patterns of differences exhibit complex interplay between terrain and soils

Conclusions

- Several modeling studies now showing that routing processes can be important to high resolution NWP, but how real is this sensitivity and are there any consistent mechanisms?
- For the Ft. Collins flash flood case study:
 - Use of routing during coupled runs had minimal impact over the timescale of the event studied
 - In routing vs. no-routing spin-up experiment, storm initiation was earlier and had slow movement compared to when routing is not used during spin-up
 - Due to internal feedbacks (cloud forcing) it is likely that impacts of routing, like in other convective studies, will be difficult to generalize
- For Noah-d, permitting routing changes the soil moisture climatology to wetter conditions if re-calibration is not taken into account