Deutscher Wetterdienst

The NWP system at DWD

12th Workshop on Meteorological Operational Systems

ECMWF

02-06 November 2009

Thomas Hanisch GB Forschung und Entwicklung (FE) Deutscher Wetterdienst, Offenbach, Germany Thomas.Hanisch@dwd.de

New Headquarter and computer system Migration of NWP model suite

NWP models

GME / COSMO-EU / COSMO-DE Operational Schedule Operational changes 2007-2009

Recent developments

GME30L60 GME-SMA COSMO-DE EPS ICON

DWC

New DWD Headquarters by June 2008

NEC SX-9

Two identical systems: Operations and research, each

- 14 x 16 = 224 vector processors
- 23 Teraflop/s peak performance
- 4.5 Teraflop/s sustained performance
- 7168 GByte main memory

٦

SUN Login nodes

Two SUN Fire x4600 clusters: Operations and research

- 11 nodes with 8 AMD Opteron QuadCore 2.3 GHz CPUs
- SuSE Linux SLES 10 SP 2
- 128 GByte RAM per node
- 300 Gigaflop/s peak
- Used as frontend system of NEC SX-9 and for pre- and post-processing

SGI database server

- SGI Altix 4700, 2 nodes each with
- 92 x Intel Itanium dual core 1.6 GHz CPUs
- 1104 GByte RAM
- SuSE Linux SLES 10 SP 2
- Runs Oracle database for observations and model fields

Silo Storage

Two Sun/Storage SL8500 Silos

- 10.000 tape cassettes each
- 50 tape units and 16 robot arms
- Storage capacity: up to 40 Petabyte in 2012

DMRZ (OF) – Configuration HPC Systems 2009

Status: October 2009 Keys: (number systems)/number processors/memory in GiB/disk space in GiB

IBM P5 / AIX / MPI ► NEC SX-9 / Super UX / MPI (via NEC SX-8R)

- NWP-models (GME, COSMO-EU, COSMO-DE, WAVE, LPDM)

IBM P5 / AIX / MPI > SUN Fire / Linux / MPI

- non-vectorizing parallel programs (1Dvar, probabilities, statistics, ...)
- serial programs (surface analysis, postprocessing, ...)
- parallel execution of serial commands and shell-scripts via MPI
- data transfer to databases (grib, bufr, ..)

IBM P4 / AIX > SGI Altix / Linux

- Oracle databases, database interfaces, archive software

New computer system: lessons learnt

- Sun servers initially quite unstable; Bug in Kernel of Novell SLES10; upgrade to service pack 2 solved the problem.
- Slow meta data retrieval on SGI data base server (millions of files); new configuration of disks necessary.
- Several MPI-bugs on NEC SX-9; latest MPI library (Sept. 2009) solved the problems.
- It took almost one year to fully migrate the operational NWP suite to the new computer system!
- Since 29 Sept. 2009 the operational NWP system is smoothly running on NEC SX-9.
- Significant delay of some essential projects.

Infrastructure

New Headquarter and computer system Migration of NWP model suite

NWP models

GME / COSMO-EU / COSMO-DE

Operational Schedule Operational changes 2007-2009

Recent developments

GME30L60 GME-SMA COSMO-DE EPS ICON

DWD

The operational model chain of DVVD

COSMO-EU

(LME)

hydrostatic parameterised convection $\Delta x \approx 40 \text{ km}$ 368642 * 40 GP $\Delta t = 133 \text{ sec.}, T = 7 \text{ days}$

GME

non-hydrostatic parameterised convection $\Delta x = 7 \text{ km}$ 665 * 657 * 40 GP $\Delta t = 40 \text{ sec.}, T = 78 \text{ h}$ non-hydrostatic resolved convection $\Delta x = 2.8 \text{ km}$ 421 * 461 * 50 GP $\Delta t = 25 \text{ sec.}, T = 21 \text{ h}$

COSMO-DE

(LMK)

Supporting Regional NWP Worldwide

Countries running DWD's regional NWP model HRM based on GME data

Global Model GME

Operational since 27.09.2004

triangular grid

- horizontal resolution: 40 km (NI=192)
- vertical levels: 40
- grid cell area: 1384 km²
- hydrostatic
- 7-layer soil model including freezing/melting of soil water
- sea ice model
- seasonal variation of plant cover based on NDVI data
- aerosol climatology

COSMO-EU

Operational since 28.09.2005

horizontal resolution: 7 km

- vertical levels: 40
- grid cell area: 49 km²
- forecast area: Europe
- non-hydrostatic
- parametrized convection
- 7-layer soil model including freezing/melting of soil water
- during forecast observation nudging
- prognostic variables: p, u, v, w, T, q_v , q_c , q_i , q_r , q_s , TKE
- SSO scheme
- boundary data from GME hourly

COSMO-DE

Operational since 16.04.2007

- horizontal resolution: 2,8 km
- vertical levels: 50
- grid cell area: 7,84 km²
- forecast area: Germany
- non-hydrostatic
- resolved convection
- 7-layer soil model including freezing/melting of soil water
- during forecast observation nudging
- prognostic variables: p, u, v, w, T, q_v , q_c , q_i , q_r , q_s , q_g , TKE
- latent heat nudging (LHN) of radar data
- boundary data from COSMO-EU hourly
- output sequence: 15 min

16

COSMO-DE: LHN

Radar Data

Composite of 16 stations (reflectivity)

- terrain following scan, elevations: 0.5°-1.8°
- spatial resolution: 1km x 1km
- timeliness: 5 minutes
- quality check of spurious data
- variable Z-R relation (radar reflectivity rainfall rate) to derive rain rates

RADAR COMPOSITE valid: 23 AUG 2007 06 - 07 UTC

1h PRECIPITATION

17

COSMO-DE: LHN

Latent Heat Nudging

- Special nudging technique to assimilated radar derived precipitation
- Goal: Trigger the model's dynamic that it is able to produce the observed precipitation by its own
- Precipitation will have only little influence of thermodynamic
- Therefore temperature is used as it is strongly connected with precipitation formation

COSMO-DE: LHN - Impact Study

+ 6 h

COSMO-DE: Case study

Radar composite / Model reflectivity 15 June 2007

0706150730

7 20070615, 00 UTC + 7.50 h 30

- The COSMO-DE forecasts provide a good guidance where and when strong convection might develop.
- Exact deterministic forecasts cannot be expected on the convective scale

COSMO-DE: Forecasting of Supercells

DWD

Radar composite / Model reflectivity 21 May 2009

20090521, 00:00

20090521, 00 UTC + 0.00 h

Ο

rotating updrafts (supercells)

- Many supercells in the COSMO-DE simulations, especially in Northern Germany
- An F2 tornado was indeed observed and confirmed near Plate/Schwerin

New Headquarter and computer system Migration of NWP model suite

NWP models

GME / COSMO-EU / COSMO-DE

Operational Schedule Operational changes 2007-2009

Recent developments

GME30L60 GME-SMA COSMO-DE EPS ICON

DWD

Operational schedule

Operational timetable of the DWD model suite GME, COSMO-EU, COSMO-DE and WAVE

GME, COSMO: Analysis / Nudging
GME, COSMO: Forecast
WAVE (GSM, LSM, MSM)
COSMO-EU: Surface moisture analysis
Testsuite
Main run
Pre-Assimilation
Assimilation
real time [UTC]
model time

Data assimilation scheme

Modell	GME	COSMO-EU	COSMO-DE
assimilation interval	3 hourly	3 hourly	3 hourly
assimilation type	3+1DVar + 3 hour forecast	cont. data assimilation (nudging)	cont. data assimilation (nudging)
sea surface temperatur	00 UTC	00 UTC	00 UTC
SNOW (density, depth, temperatur)	3 hourly	6 hourly	6 hourly
surface moisture	- (planed)	00 UTC	-
additional data	-	-	LHN (radar data)

Operational schedule

	type	time [UTC] / interval	forecast time [h]	cut off time X + ??	ready time X + ??
GME	main forecast	00, 12 06, 18	174 48	+ 2:14 + 2:15	+ 4:20 + 3:05
	pre-assimilation	3 hourly	3	+ 4:45	+ 5:15
	assimilation	00, 12 03, 15 06, 18 09, 21	3 3 3 3	+ 12:00 + 9:30 + 7:00 + 4:30	+ 12:30 + 10:00 + 7:30 + 5:00
COSMO-EU	main forecast	00, 12 06, 18 03, 09, 15, 21	78 48 24	+ 2:30 + 2:30 + 2:30	+ 3:30 + 3:10 + 2:50
	assimilation	3 hourly	3 (cont.)	+ 4:50 (7:50)	+ 5:00
COSMO-DE	main forecast	3 hourly	21	+ 0:40	+ 1:00
	assimilation	3 hourly	3 (cont.)	+ 3:20 (6:20)	+ 3:30

Operational changes: GME

05.12.2007 modified diagnostic determination of T2M (significant reduction of RMSE and BIAS)

- 12.03.2008 "Targeted Smoothing of vater vapor fields (avoid "Grid point storms" with extreme precipitation)
- 17.09.2008 implemention of a 3-dimensional variational data assimilation scheme (no more "pseudotemps")

18.05.2009 implementation of an aerosol climatology (adaptation of aerosol properties within radiation scheme)

satellite usage AMV-winds from MTSAT-1R polar vector winds from AVHRR AMSU-A of NOAA 19 "direct broadcast" MODIS winds

- 12.12.2007 revision of turbulent gust diagnostics (avoid overestimation of wind gusts)
- 12.03.2008 modified diagnostic determination of T2M (significant reduction of RMSE and BIAS)
- 23.07.2008 modified cumulus convection scheme (Tiedke) (improved forecast of heavy precipitation – decrease)
- 12.11.2008 sub-grid scale orography (SSO) scheme (Lott and Miller 1997) (improve of speed and direction of near surface wind, reduction of RMSE and BIAS of surface pressure)

Operational changes: COSMO-DE

12.12.2007 revision of turbulent gust diagnostics (avoid overestimation of wind gusts)

- 12.12.2007 modified broad band diagnostics of radar data (allows usage of radar data within LHN in winter)
- 16.01.2008 output of SDI (supercell detection index) and ceiling (experimental diagnostic feature)
- 12.03.2008 modified diagnostic determination of T2M (significant reduction of RMSE and BIAS)
- 08.04.2008 probabilities of severe events (1 and 6 hourly)
- 02.11.2008 semi-langrange advection of humidity variables and TKE (instability of Bott-advection at lower boundary in winter)
- 29.04.2009 Bott-advection of humidity variables and TKE (unrealistic precipitation maxima of semi-langrange adv. sch.)

Infrastructure

New Headquarter and computer system Migration of NWP model suite

NWP models

GME / COSMO-EU / COSMO-DE Operational Schedule Operational changes 2007-2009

Recent developments

GME30L60

GME-SMA COSMO-DE EPS ICON

DWD

GME30L60 vs. GME40L40

fully operational: february 2010

	GME40L40 (oper.)	GME30L60
mesh width	40 km (NI=192)	30 km (NI=256)
vertical levels	40	60
top model level	10 hPa	5 hPa
prognostic precipitation	-	QR, QS
convection scheme	Tiedke	Bechthold
surface moisture analysis	-	- (planed)
number of gridpoints	14.7 Mio	39.3 Mio
Time step	133.33	100.00

GME30L60: Orography

31

GME30L60

max. height 2672m

GME40L40

max. height 2551m

GME30L60: height of vertical levels

Thomas Hanisch, DWD/FE13

DWD

GME30L60: Prognostic precipitation

Processes considered in the grid-scale precipitation scheme.

Currently, rain and snow are treated diagnostically.

Prognostic treatment of rain and snow (with/without advection) is now being tested.

Thomas Hanisch, DWD/FE13

GME30L60 vs. GME40L40

02.11.2009

Thomas Hanisch, DWD/FE13

New Headquarter and computer system Migration of NWP model suite

NWP models

GME / COSMO-EU / COSMO-DE Operational Schedule Operational changes 2007-2009

Recent developments

GME30L60 GME-SMA COSMO-DE EPS ICON

DWD

Why do we need a soil moisture assimilation ?

- Soil moisture determines on clear/partially cloudy days the maximum temperature, ABL depth, low level clouds as well as the initiation of convection to a large extend.
- If the soil moisture is too high, the model will develop a cold bias. If it is too low, a warm bias will result.
- Soil moisture has a long "memory".

2d Var (z,t) SMA

Cost function considers deviations from initial soil moisture and screen level observations.

$$J = (w - w_b)^T B^{-1} (w - w_b) + (T_{2m} - T_{2m}^{obs})^T O^{-1} (T_{2m} - T_{2m}^{obs})$$

Goal: Minimisation of screen level forecast error

Analyses in different time zones need background field with different forecast lead time

Analysis for main run at 0:00 UTC, Observations at 12:00, 15:00 LT

Soil moisture increments based on T2m fc-error

39

DWD

Effective reduction in Bias and Rmse of T2m

Domain average Bias and Stdv in T2m over Europe , avg 12, 15 GMT

DWC

New Headquarter and computer system Migration of NWP model suite

NWP models

GME / COSMO-EU / COSMO-DE Operational Schedule Operational changes 2007-2009

Recent developments

GME30L60 GME-SMA COSMO-DE EPS ICON

DWD

COSMO-DE Ensemble Prediction System

42

Benefits of COSMO-DE

Thomas Hanisch, DWD/FE13

COSMO-DE Ensemble Prediction System

43

Benefits of COSMO-DE

Thomas Hanisch, DWD/FE13

COSMO-DE EPS

need for probabilistic approach

 \rightarrow so that user really gets benefit

mm/h

DWD

COSMO-DE EPS

Evaluation of COSMO-DE forecasts show that single deep moist convective cells are hardly predictable, i.e. the spatial-temporal localization is extremely difficult.

On the convective scale ensemble prediction systems (EPS) are really necessary. At DWD, first pre-operational runs of COSMO-DE-EPS with 20 members are planned for Q1 2010.

COSMO-DE EPS: Ensemble setup

Uncertainity of forecasts is due to

Χ

model physics

X

Currently perturbed nudging system and anomaly fields, later EnTKF data assimilation.

Multi-model boundary condition using different global models

SREPS GME IFS UM NCEP Perturbed parameters in physical parameterizations.

Possible alternative: Stochastic physics

Run: D-3, 12UTC, <u>H+00</u>, <u>H+06</u>, <u>H+12</u>, <u>H+18</u>, <u>H+24</u>, <u>H+30</u>, <u>H+36</u>, <u>H+42</u>, <u>H+48</u>, <u>H+54</u>, <u>H+60</u>, <u>H+66</u>, <u>H+72</u>

500hPa Height & Temperature Models X Boundaries

İM)

Ε

	AVN	-BCs	ECMV	VF-BCs	GME	C-BCs	UM	-BCs
Models / Boundaries				Ó		MetOffice		
Hirlam	HH+24							
	Graphics Loop							
HRM	HH+24							
	Graphics Loop	Craphics Loop	Graphics Loop	Graphics Loop	Graphics Loop	Craphics Loop	Graphics Loop	Graphics Loop
MM5 Community Wodel	HH+24 Graphics Loop							
UM	HH+24							
Met Office	Graphics Loop							
	HH+24							
	Graphics Loop							

Thomas Hanisch, DWD/FE13

DWD

Pertubation strategy of boundary data

COSMO-DE EPS: Early User Feedback

EPS Product Example: Probability Maps

Thomas Hanisch, DWD/FE13

COSMO-DE EPS: A Challenge

Pre-operational: Q1 2010

• EPS runs per day: 8 number of ensemble members: 20 forecast time: 21h observation cut off time: X + 0:45 h ready time of model run: X + 1:15 h • data amount per ensemble run (full / red.): ca. 766 / 300 Gbyte data transfer rate into database (full / red.): ca. 3.4 / 1.3 Gbit/s

New Headquarter and computer system Migration of NWP model suite

NWP models

GME / COSMO-EU / COSMO-DE Operational Schedule Operational changes 2007-2009

Recent developments

GME30L60 GME-SMA COSMO-DE EPS ICON

DWD

The next generation global model at DWD and MPI-M http://www.icon.enes.org

Main goals of the ICON-Project

- Centralize Know-how in the field of *global modelling* at DWD and the Max-Planck-Institute (MPI-M) in Hamburg.
- Develop a nonhydrostatic global model with static local zooming option

•	At DWD:	Replace global model GME and regional model COSMO-EU by ICON with a high-resolution window over Europe
		Establish a library of scale-adaptive physical parameterization schemes (to be used in ICON and COSMO-DE).
•	At MPI-M:	Use ICON as dynamical core of an Earth System Model (COSMOS)
		replace regional climate model REMO
		Develop an ocean model based on ICON grid structures and operators.
•	DWD and MPI-M:	Contribute to operational seasonal prediction in the framework of the Multi- Model Seasonal Prediction System EURO-SIP at ECMWF

ICON

Grid topology and geometry

- Inscribe icosahedron inside the unit sphere
- The 12 vertices touching the surface define the basic mesh consisting of 20 spherical triangles.
- Further mesh refinement by one "root division" followed by successive bisections (connect midpoints of the edges for each triangle by great circle arcs)

- Primal (Delaunay) grid: triangles
- Dual (Voronoi) grid: hexagons
 - (+ 12 pentagons at the icosahedron vertices)

3D arrangement of the discrete variables

- Cell center: center of triangle circumcircle
 - ⇒ Arc connecting two mass points is orthogonal to and bisects triangle edge

ICON - Grid refinement

Higher resolution windows at three refinement levels (one-way or two-way nesting)

Circular window

Latitude-Longitude window

02.11.2009

- In the ICON project DWD and the German Climate Research Centre MPI-M jointly develop the next generation global weather forecast and climate simulation model.
- A shallow water and a hydrostatic 3D dynamical core have been developed and evaluated in the past three years.
- The grid refinement allows for locally resolving finer-scale structures while properly interacting with the larger-scale flow.
- In 2009 the nonhydrostatic core will be developed.
- A first operational NWP model version will be ready by 2011.

Thank You

Thanks to:GMEHelmut.Frank@dwd.deSMA-GMEMartin.Lange@dwd.deCOSMO-DE EPSSusanne.Theis@dwd.deICONDetlev.Majewski@dwd.deSDIAxel.Seifert@dwd.de

