

Observations and their importance in the verification process: view of the Joint Working Group on Forecast Verification Research (JWGFVR)

Anna Ghelli

Thanks to: Simon Mason, Laurie Wilson, Barbara Casati, Barbara Brown, Beth Ebert, Joel Stein, Pertti Nurmi

Slide 1

12 MOS Workshop, ECMWF, November 2009

Vision:

To promote best practices and understanding of verification methods

Activities:

- Verification guidance and support for WMO Forecast **Demonstration Projects**
- Participation in activities of other WMO groups
- Documentation of recommended methods for specific application
- Education

Who are we?

Barbara Brown (NCAR) Beth Ebert (BOM) Anna Ghelli (ECMWF) Marion Mittermaier (UK MetOffice) Pertti Nurmi (FMI) Joel **Stein** (Meteo France) Clive **Wilson** (UK MetOffice)

Barbara **Casati** (Ouranos) Harold **Brooks** (NOAA) Martin Goeber (DWD) David Stephenson (Uni. Exeter) Laurie **Wilson** (Env. Canada)

ECMWF

International Verification Methods Workshop June 4 – 10, 2009 To be held at FMI, Helsinki, Finland

utorial Session: June 4-6 Scientific Workshop: June 8-10

Where in WMO?

http://www.wmo.int/pages/prog/arep/wwrp/new/Forecast Verification.html

GE

History and achievements:

2002 Birth

2002 1st workshop (Boulder, Colorado, USA)

2004 2nd workshop (Montreal, Canada)

- 2007 3rd workshop (ECMWF, Reading, UK) the workshop included for the first time tutorials
- **2008** Special issue of Meteorological Applications vol. 15 no. 1 with papers from the 3rd international workshop.
- **2009** Publication WMO/TD-No. 1485 "Recommendations for verification of QPF"
- 2009 4th workshop (FMI, Helsinki, Finland), tutorials were run as integral part of the workshop

12 MOS Workshop, ECMWF, November 2009

3rd International Workshop on Verification Methods, ECMWF, Reading, January 2007

outline

- Quality control
- Observation uncertainty: how to account for it
- Observation dataset independency
- The role of analyses in verification
- Conclusions

ECMWF

Quality control

Quality control

- Remove gross errors
- Remove instruments and reporting errors
- Remove biases

Properties

- Standardized procedures
- Model independent

(P. Lopez, ECMWF, Tech. Memo. 569, 2008)

Mean differences OPERA–dataset (mm day⁻¹) Period: 10 April – 8 June 2008 (60 days)

-- Comparisons with other datasets -- Common procedures

ECMWF

(P. Lopez, ECMWF, Tech. Memo. 569, 2008)

OPERA-dataset mean correlation vs OPERA–dataset mean difference (various domains) Period: 10 April – 8 June 2008 (60 days)

Quality control in Data Assimilation

Comparing two norms: Huber (red) Gaussian (blue)

- More weight in the middle of the distribution
- More weight on the edges of the distribution
- More influence of data with large departures

-Weights: 0 – 25%

(Lars Isaksen and Cristina Tavolato, ECMWF)

FCMWF

French Storm

WGFVR French Storm

1362: VarQC-rejections: Flag1 (green), Flag2 (orange), Flag3 (red), MSL analysis (black) 066 57 50°N 50°N 0 57 57 32⁵¹ 000 VarQC weight = 50-75% VarQC weight = 25-50% VarQC weight = 0-25% 00 **ECMWF**

12 MOS Workshop, ECMWF, November 2009

Slide 11

-- not model independent

Uncertainty in observations

Slide 12

Sources of Uncertainty

- Observation error
- "Under-sampling" of station data
- Interpolation (time and space)
- Analysis errors

_ _ _ _ _ _ _ _ _ _

How can we cope with observational uncertainty?

Verification using RADAR and rain gauges

- QPF in pre-specified area \rightarrow River / Lake catchment
- Three independent components addressing the quality

Structure	- S -	-2	0	+2
		object too small or too peaked	Perfect	objects too large or too flat
Amplitude	- A -	-2	0	+2
		Averaged QPF under- estimated	Perfect	Averaged QPF over- estimated
Location	- L -	-2	0	+2
For a perfect forecast: S = A = L = 0			Perfect	wrong location of Total Center of Mass (TCM) and / or of objects relative to TCM

Wernli, Paulat, Hagen, Frei, 2008 (MWR, 136, 4470-4487)

ECMWF

Medium-size catchment

17 August 2008;24 hour accumulated precipitation

ECMWF ~ 25 km HIR_RCR ~ 16 km HIR_MB71 ~ 7.5 km MET_Edit ~ 15 km S: 0.76 S: 0.48 S: 0.06 S: 1.13 A: 0.50 A: -0.42 A: 0.15 A: -0.64 L: 0.17 L: 0.15 L: 0.22 L: 0.15

12 MOS Workshop, ECMWF, November 2009

Medium-size catchment

17 August 200824 hour accumulated precipitation

ECEMWF

Largest/flattest precip objects ref. winter/spring

Amplitude strongly overestimated Amplitude somewhat overestimated 0.66 2 0.50 0.27 ∢ 0 ∢ -1 -2 ⊾ -2 -2 -2 -1 0 2 1 -1 2 0 S **ECMWF** vs GAUGES **ECMWF vs RADAR** Pertti Nurmi, FMI Slide 16 12 MOS Workshop, ECMWF, November 2009

-- Which is the truth? -- Observation uncertainty

Too large/flat precip objects, on average

Direct approaches for coping with observational uncertainty

Compare forecast error to known observation error

- If forecast error is smaller, then
 - A good forecast
- If forecast error is larger, then
 - A bad forecast

•Bowler (2008)

-Methods for reconstructing contingency table statistics, taking into account errors in classification of observations

•Ciach and Krajewski (1999)

-Decomposition of RMSE into components due to "true" forecast errors and observation errors

Direct approaches for taking uncertainty into account

- Candille and Talagrand (2008)
 - Treat observations as probabilities (new Brier score decomposition)
- Briggs et al. (2005)
 - Incorporating mis-classification errors using a "gold standard"
- Casati (2008)
 - Wavelet reconstruction
- Roberts and Lean (2008)
 - Perturb pixels in the observed field to obtain error bars
- Hamill (2001)
 - Rank histogram perturbations
- Mittermaier (2008)
 - Incorporation of uncertainty in radar-rainfall estimates

Approaches:

The matching game: Strive for an independent dataset

- Model to observations → model output is manipulated to become comparable to observations
- Observations to model → observations are manipulated to become comparable to model output

The matching game

VOCALS field experiment off Chile

GOES12 10.8µm GOES12IR10.8 20081018 18 UTC

ECMWF 10.8µm

ECMWF

The role of the analysis in verification

Analyses are model dependent

- Allows to use a number of different type of sensors to provide a coherent analysis for the model
 this out-weight the drawback of model contamination
- Good if used for specific purposes e.g. when performance needs to be assessed for scales that the model can resolve and for comparison of same model (operational vs. experimental suite)
- Multi-analysis against observations scores better than single analysis
- Use of randomly drawn analyses for comparative verification of multiple models.

What do we need for verification purposes?

12 MOS Workshop, ECMWF, November 2009