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NH-IFS/ARPEGE

Abstract

In preparation for global applications at horizontal scales finer than about 10 km, where nonhydrostatic
dynamics becomes important, the efficacy and stability of the nonhydrostatic model developed by the AL-
ADIN group and made available by Météo-France in the global IFS/ARPEGE model are assessed. The main
attraction of this nonhydrostatic dynamical core is its algorithmic similarity to the existing hydrostatic IFS
(H-IFS). The performance of the nonhydrostatic model (NH-IFS) is assessed for a wide range of scales and
for a set of canonical test cases relevant to atmospheric flows. The results obtained for a range of idealised
nonhydrostatic flow problems compare satisfactorily to Cartesian-domain analytic solutions, where avail-
able, and to the nonhydrostatic research code EULAG. At hydrostatic scales (for grid-sizes upto 10 km) the
NH-IFS gives very similar forecasts to the operational hydrostatic IFS, and can be run stably with the rather
long timesteps used with the latter model. However, the computational cost of the NH-IFS per timestep
is substantially larger than with the H-IFS (double at 10 km resolution). It is concluded that the NH-IFS
dynamical core is a possible choice for future, globally-uniform high resolution applications at ECMWF,
provided its cost can be reduced.

1 Introduction

The Centre plans to implement a horizontal resolution of 10 km by 2015 for its assimilation and determinis-
tic forecast system, beyond which a nonhydrostatic dynamical core will be required. The current dynamical
core of the IFS model is based on the hydrostatic primitive equations and is likely to be of limited use at hor-
izontal resolutions finer than about 10 km, where non-hydrostatic effects will become important. (ECMWF,
2000; Wedi and Smolarkiewicz, 2009). Rather than developing such a dynamical core for the Centres model
from scratch or investigate other existing formulations itwas decided to evaluate whether the nonhydrostatic
formulation developed by the ALADIN group (Bubnová et al., 1995), (ALADIN , 1997) and made available
by Météo-France in the global IFS/ARPEGE model (Yessad, 2008) is able to fulfil the requirements of high
accuracy, efficiency and robustness imposed by ECMWFs various global operational applications and has the
potential to form the basis of the Centre’s future nonhydrostatic dynamical core. This report presents the various
tests performed during this assessment, discusses the results and draws some provisional conclusions.

The assessment addresses the following questions:

1.) How does the nonhydrostatic model compare in terms of robustness, accuracy and computational cost with
the Centre’s successful hydrostatic IFS model (H-IFS) in the hydrostatic regime?

2.) How accurately does it handle nonhydrostatic effects when these are resolved and how stable is it numeri-
cally when run at such ultra high horizontal resolutions?

Since the finest horizontal resolution at which the (global)IFS can be run to date (T2047, grid mesh of 10 km)
is still too coarse to resolve nonhydrostatic phenomena, a testbed has been developed that enables testing of
the global nonhydrostatic dynamical core at nonhydrostatic scales at an affordable computational cost. Rather
than create a 2D vertical slice model of the 3D global model asin e.g. Hundertmark and Reich(2007) or de-
velop a limited area version of the IFS, a testing framework more suited for the global code was developed. It
is based on the idea of shrinking the radius of the planet such, that with an affordable number of grid-points
covering the globe, the desired resolution resolving nonhydrostatic phenomena is achieved, but without incur-
ring the prohibitive cost associated with such a fine resolution on the full-sized planet (Smolarkiewicz et al.,
1999; Kuang et al., 2005; Wedi and Smolarkiewicz, 2009). The size of the computational domain is reduced
without changing the depth or the vertical structure of the atmosphere. The underlying assumption is that the
essential flow characteristics remain unchanged when the separation of horizontal and vertical scales is reduced
(Kuang et al., 2005). A number of test cases from the literature, designed to test the handling of various nonhy-
drostatic phenomena have been adapted to the reduced-size planet testbed; seeWedi and Smolarkiewicz(2009)
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for details.The results of the global nonhydrostatic IFS (NH-IFS) are compared with numerical solutions of the
multi-scale anelastic research code EULAG (Prusa et al., 2008) and against LES benchmarks of limited-area
models and Cartesian-domain analytic solutions where suchsolutions exist.

This report is organised as follows. The next section summarises the set of prognostic and diagnostic equations
on which the nonhydrostatic model is based and outlines the discretisation and numerical solution procedure.
Section 3 shows results from the various test cases run at different scales, summarises the performance of the
NH-IFS in medium-range and seasonal forecasting at variousresolutions and discusses its numerical stability
as well as the computational cost. Discussions and conclusions are given section 4.

2 Model formulation

The evolution equations of the IFS are cast in a terrain following mass-based coordinate

π = A(η)+B(η)πs(λ ,φ , t), (1)

whereA(η), B(η) define a set of constants andη denotes the hybrid vertical coordinate;πs is the surface
value of the vertical coordinateπ (Laprise, 1992) and is equivalent to hydrostatic surface pressure in a shallow,
vertically unbounded, planetary atmosphere. The temporalevolution ofπs is obtained by vertically integrating
the continuity equation as

∂πs

∂ t
= −

∫ 1

0
∇η · (mvh)dη , (2)

wherevh denotes the horizontal velocity vector and∇η indicates the gradient on a constantη-surface. The
vertical metric factor is defined asm≡ ∂π/∂η . The remaining prognostic equations of the IFS dynamical core
were derived under the philosophy of gradually extending the hydrostatic shallow-atmosphere equations to the
fully compressible Euler equations (Ritchie et al., 1995; Laprise, 1992; Bubnová et al., 1995; Temperton et al.,
2001; Bénard et al., 2005; Yessad, 2008; Bénard et al., 2009), and they can be summarised as

dvh

dt
= −RT

p
∇η p− 1

m
∂ p
∂η

∇η Φ−2Ω×vh+Pv, (3)

dD

dt
= d(∇η ·vh−D3)−

gp
mRdT

(

∂
∂η

(

g
m

∂ (p−π)

∂η

)

−∇ηw · ∂vh

∂η

)

+
dX

dt
− gp

mRdT
∂Pw

∂η
,

dT
dt

= −RT
cV

D3 +PT,

dQ

dt
= − cp

cV
D3−

1
π

dπ
dt

+Pp,

dq
dt

= Pq,

dqk

dt
= Pqk.

HereT, p,Φ are temperature, pressure, and geopotential;D3 ≡ ∇ ·v denotes the three-dimensional divergence;
R= Rd +(RV −Rd)q−∑kRdqk is the specific gas constant of the multiphase air mixture with the gas constants
of water vapourRV and dry airRd; q is the specific humidity andqk symbolises other constituents, such as cloud
liquid water and ice. The specific heat constants of the air mixture at constant pressure and at constant volume
arecp andcV , respectively1, g is the gravitational acceleration,Ω the angular velocity vector of the planetary

1Since these values are not constant in time or space in the general case, one may consider an alternative form of the equations,
wherecp andcV are included into the advection operator (Catry et al., 2007).
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rotation andPv,Pw,PT ,Pp,Pq,Pqk symbolise physical forcings. In the current form of the model the pressure
equation is approximated by settingPp = 0. Two equations and two prognostic variables are added whenthe
hydrostatic approximation is relaxed. The two new prognostic variables are: pressure departureQ ≡ log(p/π)
andD ≡ d+X , whered denotes the vertical divergence defined asd≡−g(p/mRdT)∂w/∂η , with w denoting
vertical velocity, and whereX , the residual, is given byX ≡ (p/RTm)∇ηΦ ·∂vh/∂η . With these variables
the three-dimensional divergence is given asD3 = ∇η ·vh +X +(Rd/R)d. The total derivative of the residual
X in (3) is evaluated along a semi-Lagrangian trajectory (Bénard et al., 2005, 2009). These particular choices
for the new prognostic variablesQ andD have aided the construction of a stable semi-implicit scheme of the
elastic equations, seeBénard et al.(2004, 2005, 2009) for a discussion. The system of prognostic equations (2)
and (3) is completed by the following diagnostic relations:

Φ = Φs+
∫ 1

η

mRT
π

e−Qdη , (4)

m
dη
dt

= B(η)

∫ 1

0
∇η(mvh)dη −

∫ η

0
∇η · (mvh)dη ,

dπ
dt

= vh ·∇η π −
∫ η

0
∇η · (mvh)dη ,

∇η(gw) = ∇η(gws)+

∫ 1

η
∇η

(

d
mRdT

p

)

dη,

ws = vh,s ·∇η Φs,

where subscripts denotes surface values.

The total derivative operator on the left-hand sides of equations (3), d/dt ≡ ∂/∂ t + vh ·∇η + (dη/dt)∂/∂η ,
is discretised in a two-time-level semi-Lagrangian fashion. The Coriolis term may be treated as part of the
advected velocities or implicitly, where the Coriolis force is added to linear terms to be treated in the semi-
implicit scheme (although such a formulation can be implemented only in the unstretched unrotated version
of IFS/ARPEGE) (Temperton, 1997). For the NH-IFS the implicit treatment of the Coriolis force had to be
suitably modified to fit the revised semi-implicit elimination process of the nonhydrostatic model (Yessad,
2008).

The semi-implicit time discretisation — initially proposed byRobert et al.(1972) for the hydrostatic equations
— is derived by subtracting from the governing model equations a system of equations linearised around an
isothermal, quiescent, hydrostatically balanced and horizontally homogeneous reference state. The linear part
is treated implicitly, whereas the discretisation of the nonlinear residual is explicit (Bénard, 2004; Bénard et al.,
2004, 2005). As described inBénard et al.(2009) the semi-implicit (SI) time discretisation is augmented by
an iterative-centred-implicit (ICI) procedure, where theprognostic variables used in the computation of the
nonlinear explicit residual as well as in the semi-Lagrangian trajectory calculations are updated at every iter-
ation. The resulting linear system of equations can be reduced by suitable elimination of variables to a single
Helmholtz equation — which is solved in spectral space (at every iteration of the ICI scheme) — provided that
the discretised vertical operators fulfil the constraintCOR= 0 with

COR=
cvd

R2
dTr

γτ − cvd

Rdcpd
γ − cvd

RdTr
τ +

cvd

cpd
ν , (5)

whereγ , τ , ν are generic notations for the semi-implicit linear operators defined inRitchie et al.(1995); Yessad
(2008), cvd,cpd denote the specific heat constants for dry air, andTr is the reference temperature introduced to
control the stability of the numerical procedure in the presence of vertically propagating gravity waves.

There are two options for the choice of the advected verticalprognostic variable: Either the vertical velocity
w is advected (GWADV-NH) or the new variableD (Bénard et al., 2009). The former case is closer to the
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natural choice of prognostic vertical variable. However, this choice requires an explicit conversion fromw to
D , because the variableD is used in the linear part of the semi-implicit scheme.

If the ICI scheme is used, the total derivative of the residual X is also updated every time-step and implicitly
contains all contributions from the physical parametrizations if these are included at the beginning of the time-
step, cf. Wedi (1999) for a review. This is theND4SYS= 1 option used in the ARPEGE, ALADIN and
AROME setup (Bénard et al., 2009). However, in the NH-IFS only the adiabatic advective part of dX /dt is
taken into account in all iterations of the ICI scheme, as thephysics are currently called only once at the end of
the last iteration. This lead to an instability which is remedied by recomputingX using provisional values at
t + ∆t (including physics) and updatingD = d+X before the spectral computations (optionND4SYS= 2).
Notably, optionND4SYS= 2 appears to be equally beneficial in removing some near surface noise over steep
orography in adiabatic runs.

The horizontal discretisation of the NH model is spectral and identical to that of the hydrostatic IFS. The vertical
discretisation is finite-difference (FD) as described inBubnová et al.(1995) andBénard et al.(2009).

In the operational version of the H-IFS a vertical finite-element (VFE) discretisation based on cubic B-splines
is used (Untch and Hortal, 2004). An equivalent VFE scheme has not yet been successfully implemented in
the NH model. The difficulties arise in the semi-implicit computations because the VFE discretised equivalents
of the operators in (5) do not fulfil this constraint. However, an intermediate idea has been implemented and
tested, where the FD discretisation is used in the linear (implicit) part and the VFE discretisation for the non-
linear (explicit) part. The vertical integrals occurring in the non-linear part of the NH-IFS are similar to those
in the H-IFS, and this part of the model remains very close to its hydrostatic counterpart, e.g. the calculation
of Φ, ∇η Φ, the pressure gradient terms,gw, g∇ηw, and the integral of the horizontal divergence resulting from
the continuity equation (cf. equations (3)-(4)). Details of this “intermediate” VFE discretisation are given in
the Appendix.

The above nonhydrostatic equations currently assume the shallow-atmosphere approximation. Work is in
progress towards evaluating the deep-atmosphere formulation following Wood and Staniforth(2003) and its
deep-hydrostatic counterpart (White and Bromley, 1995).

3 Performance assessment of the NH-IFS

In contrast to the filtered anelastic (e.g. EULAG) or hydrostatic equations (e.g. H-IFS), the fully compressible
equations contain characteristic solutions with all threedistinct wave propagation speeds: acoustic, gravity and
advective. For validation purposes, a range of test cases aim to investigate the behaviour of the numerical im-
plementation in NH-IFS for all these waves before assessingthe overall model performance for global weather
forecasts at hydrostatic and nonhydrostatic scales. The small-scale test cases adopt the testing framework de-
scribed inWedi and Smolarkiewicz(2009), where the size of the spherical computational domain is reduced by
reducing the radius of the sphere without changing the depthor the vertical structure of the atmosphere. The
shallow-atmosphere approximation is applied in all test cases shown and for NH-IFS (GWADV-NH) is used
unless stated otherwise.

3.1 Spherical acoustic wave

This test is designed to validate the effectiveness of the semi-implicit algorithm in the nonhydrostatic model.
The classical problem of a spherical acoustic wave is studied; cf. Landau and Lifschitz(2004), Problem 1 in
section 70, chapter VIII. The problem considers “a sound wave in which the distribution of density, velocity
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and other flow variables, depends only on the distance from some point”. The analytic solution describes a
spherical shell of thickness 2r, wherer ∈ [cot − r0,c0t + r0], propagating away from the initial perturbation of
radiusr0 with the acoustic propagation speedc0 =

√
γ0RdT0, whereRd is the specific gas constant for dry air,

T0 = 288.15 K is the temperature of the assumed isothermal atmosphereandγ0 = 7/5. An initial hemispheric
pressure perturbation withr0 = a/6 is set in an isothermal atmosphere at rest at the equator of asphere with a
radius one hundred times smaller than the radius of the EarthaE = 6371.229 km (a = aE/100). Withinr ≤ r0

the constant initial (hydrostatic) pressure perturbationis prescribed asδ p/p0 = 0.082 wherep0 = 1000 hPa.
The analytic solution for the pressure distribution withinthe propagating spherical shell is

p(r) = p0 +
(r −c0t)

2r
(γ0δ p). (6)

The air is compressed in the outer portion of the shellr > c0t and rarefied in the inner portionr < c0t;
cf. Smolarkiewicz and Szmelter(2008). For prescribing the initial condition in the model and forplot-
ting purposes, the vertical and horizontal distances are computed separately, with the horizontal distancerh

measured along a great circle on the sphere withrh(λ ,φ) = acos−1[sinφ sinφc + cosφ cosφccos(λ − λc)]
from the reference point centred at(λc,φc) = (3π/2,0). The vertical distance forrh < r0 is computed from
rv = rh tan(cos−1(rh/r0)).
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Figure 1: Spherical sound wave from the explicit simulationwith timestep∆t = 0.01 s (panel a) and from the semi-
implicit simulation with Tr = 350K, Tra = 100K and timestep∆t = 10s (panel b). The figure shows normalised pressure
perturbationδ p/p0 at the lowest model level after100s.

Figure1 illustrates the horizontal propagation of the pressure perturbation for the explicit simulation, requiring
for numerical stability the prohibitively short time-step∆t = 0.01 s, and the semi-implicit simulation with
∆t = 10 s. The propagation speed of the acoustic wave in the horizontal direction is not modified by the semi-
implicit integration with 1000 times the explicit timestepbut the amplitude is distorted. Both simulations give
the correct spherical shell with thickness 2r0 and a propagation speedc0 ≈ 340 ms−1 reflecting the theoretical
value of the acoustic speed given above.

The stability of the semi-implicit NH-IFS model is controlled by the setting of a reference temperature for the
propagation of gravity wavesTr and another reference temperatureTra controlling the propagation of acoustic
waves. The over-implicitness of the semi-implicit scheme is given by the ratioTr/Tra. Also in this acoustic
wave case (in a stably stratified atmosphere) it is verified that the numerical model is only stable forTr > T0

(Temperton and Simmons, 1997).

A series of tests show that the choice ofTra is restricted for this case to 10 K< Tra < Tr . Panel b in Fig.1
has been obtained withTra = 100 K andTr = 350 K and 5 iterations of the ICI scheme (Niter = 5). Figure2
illustrates the propagation of the sound wave in the vertical direction. Panel a shows the explicit solution and
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Figure 2: Spherical sound wave: comparison of the pressure perturbation after100s in the vertical direction with the
analytic solution (dashed) for a) the explicit NH-IFS simulation (solid) with timestep∆t = 0.01s and b) the semi-implicit
NH-IFS simulation (solid) with timestep∆t = 10s.

panel b the semi-implicit solution after 100 s. The amplitude is reduced in the explicit simulation compared
to the analytic solution. The propagation speed, however, remains approximately 340 ms−1. In contrast, the
semi-implicit simulation with∆t = 10 s gives a distorted amplitude and the sound wave is artificially slowed
down in the vertical direction as expected. The near surfaceperturbation seen in panel b of Fig.2 oscillates in
amplitude with time. Notably, the semi-implicit case with timestep∆t = 1 s and the explicit case are nearly
identical, with the semi-implicit even better representing the analytic solution (not shown). The number of
iterations of the ICI scheme do not affect the qualitative nature of the result but they affect the amplitude of the
perturbation and its oscillation in time. This behaviour may be of some concern, when acoustic perturbations
are excited near the surface in real weather applications, although the amplitude is likely to be much smaller
compared to the much exaggerated initial pressure perturbation discussed here.

3.2 Bubble experiments

This example illustrates the failure of the hydrostatic model version at nonhydrostatic scales for the evolution
of a large cold bubble with a tiny warm bubble added to break the symmetry (Robert, 1993) — prescribed
as potential temperature perturbations in a neutrally stratified environmentθ ≡ T(p/p0)

−R/cp = θ0 = const.
with p0 = 1000 hPa andθ0 = 300 K. Notably, the results presented here are three-dimensional simulations
in contrast to the original proposal inRobert(1993). The IFS is run on the reduced-size planet with radius
a = 30km in a standardTL159 resolution with an equivalent linear reduced Gaussian grid (320 points along the
equator) with the operational 91 vertical level distribution. Potential temperature perturbations of the bubbles
are of the form

θ(r i) =

{

θ ′
i if r i ≤ 1,

θ ′
i e

−r2
i /s2

otherwise,
(7)

wheres= 1/3 andr i =
√

(l i/Lli )
2 +((h−hi)/Lhi )

2 with h=−Rdθ0/glog(p/p0) andl i = acos−1[sinφ sinφc+
cosφ cosφccos(λ − λci )]. The cold bubble (i = 1) has a perturbation amplitudeθ ′

1 = −0.5 K with its centre
located at(λc1,φc) = (3π/2,0) and heighthi = 15 km. The horizontal width and height of the cold bubble are
Ll1 = 10 km andLh1 = 4 km, respectively. The warm bubble (i = 2) has perturbation amplitudeθ ′

2 = +0.15 K
with dimensionsLl2 = 0.6 km andLh2 = 0.6 km, with its centre location offset by six gridpoints in longitudinal
direction at heighth2 = 6 km. There is no analytic solution for this case. The resultsare compared with the
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Figure 3: Potential temperature distribution in an equatorial cross section at t=0 (Panel a) and after t=1000s (Panel b-d)
for a run with an initial large cold bubble and a small warm bubble as depicted in panel a. Panel b is from the EULAG
simulation while panel c and d are from the hydrostatic and the NH-IFS model simulations, respectively. Contour interval
is 0.025K.

solutions of EULAG, which utilises a latitude-longitude grid of 320×144×421 withdz= 300 m. The time-
step is 5 s, and both models use a semi-Lagrangian scheme. EULAG makes the Boussinesq approximation in
this case.

Panel a in Fig.3 shows the initial state for this problem. Panel b shows the result from the EULAG simulation
while panel c and d show the solution with the hydrostatic andthe NH-IFS, respectively after 1000s of sim-
ulation. The IFS and EULAG results are similar at this point but IFS is more diffusive. The test case clearly
discriminates between the hydrostatic and the nonhydrostatic solution, as can be seen by comparing panel c and
d of Fig.3. Figure4 depicts the time instants att = 1800 s andt = 2400 s for both the IFS and EULAG. A faster
downward propagation is noted in the case of EULAG and the bubble shapes differ at the later time. Once the
bubble interacts with the lower boundary, further differences are noted in the subsequent roll-up motion with
faster propagation again in the case of EULAG (not shown). The overall evolution is indicative of the correct
nonhydrostatic behaviour. The bubble shape is sensitive tothe details of the numerical scheme such as the
amount of explicit or implicit diffusion and the truncationerror, as has been noted by other authors, cf.Robert
(1993); Grabowski and Smolarkiewicz(1990).

3.3 Orographically-forced flow in the limit of marginally re solved topographic features

The flow past a given terrain profile under stably stratified atmospheric conditions is a canonical problem in
meteorological studies, since it illustrates the far-fieldeffect via long-range transport of waves, affecting large
parts of the computational domain.

Simulations of orographically-forced atmospheric gravity waves have been conducted with NH-IFS for a range
of orographic profiles: bell-shaped, Gaussian, quasi-2D elliptic, a Himalaya-like step-mountain, and the moun-
tain profile proposed inSchär et al.(2002). The latter two stress the numerical implementation in thelimit of
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Figure 4: Potential temperature distribution at t= 1800s (Panel a and b) and t= 2400s (Panel c-d) for EULAG (panel
a and c) and the NH-IFS (panel b and d). Contour interval is0.025K.

marginally resolved orographic features. The selected parameters of the problem favour bifurcation into a qual-
itatively incorrect solution; cf. (Klemp et al., 2003) for a discussion. The specific terrain profile (Schär et al.,
2002) is given as

h(λ ,φ) = h0e−l2/L2
λ cos2

(

π l
ζ

)

, (8)

with l(λ ,φ) = acos−1[sinφ sinφc +cosφ cosφc cos(λ −λc)] centred at(λc,φc) = (3π/2,π/6); h0 = 0.25 km,
Lλ = 5 km andζ = 4 km, defining the deviation from a bell-shaped hill. Ambientconditions consist of the
uniform wind profileue(z) = U = 20 ms−1, (ve = 0,we = 0) and a Brunt-Väisälä frequencyN = 0.018 s−1.
The vertical spacing used in the IFS simulation is equivalent to the operational 91 level configuration with
∆z≤ 600 m until approximately 200 hPa. The IFS is run with a reduced-size sphere of radiusa = 30 km in
a standardTL159 resolution with an equivalent linear reduced Gaussian grid (320 points along the equator),
which is approximately equivalent to∆x = ∆y = 589 m. The time-step is 10 s.

The correct solution is a weak-amplitude mountain wave above the main topography profile. In the three
dimensional adaptation presented here, there is in addition a large-amplitude nonhydrostatic response in the
lee of the mountain, which is not found in the 2D simulations (Klemp et al., 2003). The EULAG model result
(not shown) has the same 3D behaviour as in IFS for this test case, while being equivalent to the 2D result
in a corresponding 2D simulation (Wedi and Smolarkiewicz, 2004), suggesting that this is a feature of the 3D
setup. This test is particularly useful in exposing problems with the discretisation near the lower boundary as
shown in Fig.5. Vertical ”chimneys” in vertical velocity are excited at the low points of the wavy mountain
profile and extend vertically throughout the whole atmosphere. These have also been found in limited-area
simulations with the NH-ALADIN model (Geleyn, 2005). Notably, the hydrostatic model H-IFS does not
show this problem but a qualitatively different solution with larger amplitude (panel b in Fig.5, contour interval
four times larger). Two solutions have been proposed as summarised inGeleyn(2005). In the preferred option
GWADV-NH (panel d in Fig.5) the specification of the lower boundary ofw is straight forward, since the
vertical velocity is on half-(model) levels, thus coincides with the lower boundary. Otherwise, it is necessary to
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Figure 5: Vertical velocity for the flow past the terrain profile given in (8) after 1 hour of simulation. Panel a shows the
development of vertical “chimneys” in the control NH-IFS simulation. Panel b is the result with the hydrostatic model
H-IFS. Panel c is the NH-IFS result with LRDBBC= T and panel d is the NH-IFS result for GWADV-NH. The contour
interval in panels a,c-d is the same as inKlemp et al.(2003), 0.05ms−1. Panel b has contour interval0.2 ms−1.

suitably modify the lower boundary condition consistent with the semi-Lagrangian advection scheme (Geleyn,
2005; Bénard et al., 2009), that is to calculatedws/dt in a semi-Lagrangian fashion (optionLRDBBC= T)
(panel c in Fig.5), rather than constructing the total derivative from the expression forws in the last equation of
(4).

3.4 Quasi two-dimensional orographic flow with linear vertical shear

This classical problem — studied in, e.g.,Wurtele et al.(1987); Keller (1994) — constitutes a particularly
discriminating test, because in the presence of shear the nonhydrostatic and hydrostatic equations predict a fun-
damentally different propagation of orographically-forced gravity waves. While hydrostatic models produce a
vertically propagating mountain gravity wave, the correctsolution is that of a trapped, horizontally propagating
gravity wave. For a direct comparison with the published analytical results the same parameter space as in
Keller (1994) is explored but with a suitably modified mountain to accommodate the global spherical geometry
of the models.

The mountain is a three-dimensional elliptic adaptation ofthe classical “witch of Agnesi” profile centred at the
equator

h(φ ,λ ) = h0

(

(1+(lλ /Lλ )2)+
(

lφ/Lφ
)2
)−1

(9)

with lλ = acos−1[sin2 φc + cos2φccos(λ − λc)] and lφ = acos−1[sinφcsinφ + cosφccosφ ], where the moun-
tain half-width isLλ = 2.5 km, and the meridional extent of the ellipse is defined byLφ = |L2

λ − L2
f |1/2, the

centre position of the mountain(λc,φc) = (3π/2,0), and the focus point distanceL f = acos−1[sinφd sinφc +
cosφd cosφc cos(λd − λc)] with (λd,φd) = (3π/2,π/3); mountain height ish0 = 100 m. All distances and
formulae are expressed following great circles on the sphere. Ambient conditions consist of the linearly
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sheared wind profileue(φ ,z) = U0(1+cz)cos(φ) below the tropopause located at 10.5 km, and constant aloft;
U0 = 10 ms−1 andc = 2.5×10−4 m−1; (ve = 0,we = 0) and the Brunt-Väisälä frequencyN = 0.01 s−1. The
Richardson number of the flow in the troposphere isRi≡ N2/(U0c)2 = 16 and in the stratosphereRi = ∞. To
facilitate comparison with the IFS — formulated in temperature rather than potential temperature — the mod-
els are set in isothermal ambient conditions without the stability jump employed inWurtele et al.(1987). This
simplifies the specification of a constant stability, since with potential temperatureθ = T(p/p0)

−R/cp and the
hydrostatic relation∂ ln p/∂z= −g/RT the atmospheric stability may be expressed as

S=
∂ lnθ

∂z
=

∂ lnT
∂z

− R
cp

∂ ln p
∂z

=
∂ lnT

∂z
+

g
cpT

. (10)

Thus, an atmosphere with constant stabilityS= N2/g is equivalent to an isothermal atmosphere withT0 =
g2/(cpN2). In both models, the same sheared, isothermal, zonal flow on the sphere is analytically prescribed at
initial time and is maintained in the absence of other forcings.

a b

Figure 6: Vertical cross-section at the equator of verticalvelocity after two hours of simulation, comparing the NH-IFS
(Panel a) with EULAG (Panel b) for a linearly-sheared flow past a quasi-two-dimensional “witch of Agnesi” obstacle on
the sphere. The wind velocity is constant above10.5 km (or≈ 687hPa). Contour interval is0.05 ms−1. Solid/Dashed
lines denote positive/negative contours. The vertical axis is pressure in hPa.

Figure 7: Same as in Fig.6 for the hydrostatic version of the IFS after two hours of simulation. The solution is consistent
with the hydrostatic analytic solution (Keller, 1994, Fig. 2). In contrast to Fig.6 the wave propagation is entirely vertical.
Contour interval is0.2 ms−1.

The EULAG domain size is 512× 228× 121 with a horizontal and vertical grid spacing of 250 m, which
corresponds to a radius of the spherea= 20.3718 km. The IFS is run with aTL255 resolution with an equivalent
linear reduced Gaussian grid (512 points along the equator)with 115 vertical levels. The lowest 15 km have
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the same vertical spacing of 250 m as in EULAG. The integration time is 2 h with a time step∆t = 5 s for
both models. For the hydrostatic IFS, the solution is characterised by an entirely vertical response to the
mountain forcing; cf.Keller (1994). Here vertical absorbers are important to avoid reflectionat the model
top and to obtain the analytic solution for an unbounded atmosphere. Therefore, the damping profileα =
τ−1sin2(Z− Zthres)/(Ztop− Zthres)} (Klemp and Lilly, 1978) has been applied in the hydrostatic IFS above
Z = Zthres= 350 hPa with attenuation time scaleτ = 50 s. The upper limit of the IFS is formally always atp= 0,
whereas a rigid lid upper boundary at 25 km was chosen in EULAGfor computational efficiency. While in the
NH-IFS no absorbers are used, in EULAG the damping profileα = τ−1max{0,(Z−Zthres)/(Ztop−Zthres)} is
applied withZthres= 20 km andτ = 300 s.
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Figure 8: Running sum ofρ0(u− [u])(w− [w]) at 700hPa, meridionally averaged over±10degrees latitude. The dashed
line is for the NH-IFS (Fig.6 a), the solid thick line denotes EULAG (Fig.6 b) and the dot-dashed line shows the
hydrostatic IFS solution. The mountain is centred at90◦ W. Values are relative to the final integrated value.

Panel a in Fig.6 shows the vertical velocity after two hours simulated with the NH-IFS, and panel b shows the
reference solution with EULAG. The nonhydrostatic solutions may be compared with the solution obtained with
the hydrostatic IFS (Fig.7), which is consistent with the analytic solution (maximum contours 0.6ms−1) of the
same case presented inKeller (1994). The hydrostatic model fails to represent the trapping andthe horizontal
propagation of lee waves. The nonhydrostatic solutions in Fig. 6compare quantitatively well. Specifically, there
are closed cells behind the mountain with an approximate horizontal wavelength of 14 km in agreement with the
linear analysis and with the numerical solution of a similarcase inWurtele et al.(1987). The numerical solution
(cf. Wurtele et al., 1987, Fig.11) was obtained with a stability jump between troposphere and stratosphere and
a mountain height of 500 m. However, as the amplitude of the analytic solution scales with the mountain
height, the amplitudes in Fig.6 may simply be multiplied by a factor five, which gives amplitudes in EULAG
of 1.75−1ms−1 and in IFS 2.25−1ms−1, compared to 1.6−0.8ms−1 in Wurtele et al.(1987). Given, that the
same horizontal wavelength (14 km) is obtained in Fig.6, it suggests that the stability jump mostly influences the
leakage of wave energy above the tropopause, located at 10.5 km. Thus in comparison toWurtele et al.(1987),
a different decay of amplitude with distance from the mountain is expected, but not the qualitative nature
of the lee wave solution. Interestingly, both models show the same albeit weak second mode — indicated
by the increase in amplitude of some of the cells — which is notexpected according to the linear analytic
theory and the numerical solution inWurtele et al.(1987). In agreement with the dispersion relation, after
two hours the stratospheric gravity waves already arrive upstream of the mountain. The gravity waves leaked
into the stratosphere are reflected at the model top and the downward and horizontally propagating waves
are modulated by the shear transition imposed at 10.5 km, which leads ultimately to differences between the
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two solutions in Fig.6, with IFS being noisier. The time evolution of the flow (not shown) indicates that the
differences arise due to the different upper boundary condition. The damping profile applied in the hydrostatic
simulation proved ineffective for the NH-IFS. Experimentsshowed that the effectiveness and the applicability
of “sponge” layers at the IFS model top, such as recently proposed inKlemp et al.(2008), were limited due to
the (vertical) derivative prognostic variable and the typeof vertical coordinate.
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Figure 9: Running sum ofρ0(u− [u])(w− [w]) at 700 hPa, meridionally averaged between±10 degrees latitude, for
hydrostatic (H, dotted lines) and NH-IFS (NH, solid lines) simulations with gridsizes dx= 10 km (squares), dx= 2.5 km
(triangles) and dx= 1 km (circles), respectively. The mountain is centred at90◦ W. Values are relative to the final
integrated value. Because the angular grid increment is fixed, the linear distance for each graph is different.

The nonhydrostatic wave is associated with a characteristic downstream shift of the vertical flux of horizontal
momentum, which represents an additional measure for quantifying the difference between hydrostatic and
nonhydrostatic solutions; cf. the corresponding Figs. 11 and 12 inKeller (1994). In Fig. 8 the running sum of
the wave-momentum flux along the equator is compared for the cases depicted in Fig.6 and Fig.7, respectively.
The accumulated wave-momentum flux is evaluated at a constant pressure surface as

Sik =
〈 ik

∑
i=is

ρ0(u(λi ,φ)− [u])(w(λi ,φ)− [w])
〉

, (11)

where[ ] denotes the zonal average andρ0 = p/RT0; the〈 〉 symbolises an average over±10 degrees latitude.
The zonal indexis of the running sum corresponds to 30 degrees west of the centre of the mountain, and
ik = is, .., in with index in corresponding to 210 degrees east of the mountain, cf. section 4d inKeller (1994) for
a discussion. The results in Fig.8 are qualitatively similar to the analytic results inKeller (1994) and both the
NH-IFS and EULAG simulations show the characteristic downstream shift of the nonhydrostatic solution.

In addition, a series of cases with half the ratioLλ/dxused above (i.e.Lλ/dx≡ 5) fordx= 10.,5.,2.5,1.,0.25 km,
and the correspondingly reduced radii of the computationalsphere, were run to illustrate the transition be-
tween the hydrostatic and the nonhydrostatic regime in NWP models with marginally resolved orography.
Figure9 quantifies the convergence towards hydrostatic model behaviour with increasing grid-size. The char-
acteristic solution disparity between the nonhydrostaticand the hydrostatic IFS appears belowdx= 2.5 km,
but only atdx = 1 km the results are significantly different in the lee of the mountain. Fordx = 1 km and
dx= 0.25 km (Fig.8) the difference of the solutions in the lee of the mountain persists over some distance,
while at dx = 10 km both solutions show the characteristic hydrostatic behaviour. However, the hydrostatic
IFS produces a larger amplitude of the wave momentum flux right above the mountain top. In general, the
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transitional resolution between hydrostatic and nonhydrostatic regimes depends on the ratio of the characteris-
tic horizontal and vertical scales involved. Although the simulations represent only a narrow region in a large
parameter space, the results are consistent with estimatestypically obtained from a heuristic scale analysis of
nonhydrostatic motions in NWP, i.e. horizontal scalesL = O(10 km) resolved with grid intervalsdx= O(2 km).

3.5 The critical level effect on linear and non-linear flow past a three-dimensional hill

The transfer of energy and momentum from smaller scale fluctuations toward an emerging mean flow rep-
resents a fundamental mechanism influencing the predictability of weather and climate. The numerical re-
alisability of propagating waves at internal critical layers is equally important for mesoscale orographic flows
(Grubišić and Smolarkiewicz, 1997) as for the planetary circulation, e.g. the quasi-biennialoscillation
(Wedi and Smolarkiewicz, 2006). The critical level is a preferred location for internal wave breaking, with the
resulting flow locally nonlinear and nonhydrostatic. Yet, when mean wind curvature vanishes everywhere and
the mean wind velocity decreases with height, the hydrostatic approximation can be justified — given horizontal
wavenumbersk≪N/U(z= 0) < ∞ — thus facilitating the development of linear solutions. The effect of a crit-
ical level on the airflow past an isolated axially symmetric hill has been studied inGrubišić and Smolarkiewicz
(1997). In their work nonhydrostatic effects were minimised to verify the linear theory with a nonlinear non-
hydrostatic model. This test case thus represents a nonhydrostatic benchmark with an analytic solution in the
hydrostatic limit. It is used here to test the asymptotic behaviour of NH-IFS.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

dimensionless time

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

no
rm

al
iz

ed
 d

ra
g

EULAG
Analytic
nonhydrostatic IFS
hydrostatic IFS

Figure 10: Comparison of the zonal drag history for NH-IFS, hydrostatic IFS, and EULAG for the linear crit-
ical flow past a three-dimensional hill on the sphere (LS2). The drag is normalised by D0 = π/4ρ0NU0ah2

0
(Grubišíc and Smolarkiewicz, 1997). Time is nondimensionalised by t∗ ≡ tU0/Lλ .The analytic solution is denoted by
the thin solid line. The dashed line is for the NH-IFS, the solid thick line denotes EULAG and the dot-dashed line shows
the hydrostatic IFS solution.

Two examples fromGrubišić and Smolarkiewicz(1997), LS2 for a linear and LS5 for a non-linear flow, are
adapted to the sphere. The bell-shaped mountain is represented by

h(λ ,φ) = h0
(

1+ l(λ ,φ)2/L2
λ
)−3/2

(12)

with l(λ ,φ) = acos−1[sinφ sinφc + cosφ cosφccos(λ − λc)] with (λc,φc) = (3π/2,0). To facilitate a com-
parison with the results inGrubišić and Smolarkiewicz(1997), their setup is followed closely by specifying
U0/NLλ = 0.2 in all experiments, withU0 = 10 ms−1, N = 0.01 s−1, andLλ = 5000 m. The ambient wind

Technical Memorandum No. 594 13



NH-IFS/ARPEGE

profile with a reverse linear shear is prescribed asue(φ ,z) = U0(1− z/zc)cos(φ), wherezc = (U0/N)
√

Ri is
the height of the critical level for the stationary mountainwave. Both linear and nonlinear flow simulations are
characterised byRi = 1 and dimensionless mountain heightĥ = h0N/U0. In the linear casêh = 0.05 (LS2),
whereas in the non-linear caseĥ = 0.3 (LS5). As in previous test cases isothermal conditions areassumed to
facilitate an equivalent setup in the IFS.

a b

Figure 11: Zonal velocity perturbation from the LS2 run at initial time (t∗ = 0) for (a) EULAG and (b) for the NH-IFS.
Contours are from−0.01ms−1 to 0.4 ms−1.

The radius of the sphere is set asa = 63.662 km. EULAG utilises a latitude-longitude grid of 320×144×91
with dz= 35 m. The IFS is run atTL159 resolution with an equivalent linear reduced Gaussian grid (320 points
along the equator) with 120 vertical levels with constant spacingdz= 35 m in the lowest 2 km. The integration
time is 6 h with a time step∆t = 10 s for both models. A simple sponge layer with the inverse ofthe attenuation
time scaleα = τ−1max{0,(Z−Zthres)/(Ztop−Zthres)} has been added to both models. Particularly for the IFS
this filters out some high frequency noise. For EULAGZthres= 2.5 km was chosen withτ = 300 s. In the IFS
the sponge was applied in pressurep with Z = −p, Zthres= −930 hPa,Ztop = 0, andτ = 1000 s.

To quantify the overall performance of NH-IFS, the drag — thetotal force exerted on the mountain by the flow
— is measured as

∫ +∞

−∞

∫ +∞

−∞
p(x,y,z= h)∇h dxdy. (13)

Figure10 compares the zonal drag history in the linear LS2 case for thethree different models, EULAG, the
hydrostatic IFS and the NH-IFS. The analytic linear solution (Grubišić and Smolarkiewicz, 1997) is indicated
by the thin solid black line. Initially, the NH-IFS differs strongly from EULAG, showing an oscillation of
the zonal drag around the analytic solution. This can be explained by the different initialisation procedure
between both models. While the identical analytic initial state is prescribed, in EULAG the “suitability” of the
initial conditions is ensured by imposing a potential-flow perturbation on the prescribed ambient flow. This
ensures that the initial conditions form a solution to the governing numerical problem; seeTemam(2006) for
a discussion. In contrast, the IFS was started from the analytic initial conditions without initialisation; thus,
the mountain forces the system impulsively. In NWP the initialisation problem is well-known (cf.Daley, 1991,
chap. 6), and in real weather applications the “suitability” of the initial condition for IFS is ensured through
the process of variational data assimilation. For completeness, the initialised and the uninitialised zonal flow
perturbation att∗ = 0 is illustrated in Fig.11 for the LS2 case.

The resulting oscillations decay in time, and all numericalresults approach the analytic steady-state. The
zonal drag evolution in Fig.10 is a running average over 100 points to filter out high frequency noise, initially
present in the IFS solutions but decaying in time due to the vertical absorber applied. In the linear case,
after an integration timet∗ ≡ tU0/Lλ = 14 (dimensionless) all models reach a near equilibrium state and the

14 Technical Memorandum No. 594



NH-IFS/ARPEGE

a b

c

Figure 12: Vertical vorticity (×10−4 s−1) and corresponding velocity vectors from the LS2 run at t∗ = 28.8. Panel a
shows the EULAG solution in the horizontal plane at z= 0.94zc. Panels b and c show the corresponding solutions for
hydrostatic IFS and NH-IFS, respectively; panels b-c show the nearest IFS model level equivalent to0.94zc shifted by3dz
(see text for an explanation).
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a b

c d

Figure 13: Vertical velocity from the LS5 run at t∗ = 43. Panel a shows the EULAG result, panel b shows the solution
with the NH-IFS, panel c the hydrostatic IFS solution. Contour interval is0.03ms−1. For comparison, panel d shows the
IFS solution for the linear LS2 case (contour interval0.015ms−1). The vertical axis is pressure in hPa.
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drag results are reasonably close to the analytic solution;compare also to Fig. 9 inGrubišić and Smolarkiewicz
(1997). The linear analytic solution is essentially hydrostatic, and both nonhydrostatic models correctly recover
the hydrostatic balance on the reduced-size sphere.

Vertical cross-sections at the equator of vertical velocity in the LS2 run at equilibrium (not shown) compare
well between all three models. However, the steady state is reached later with the IFS than with EULAG, as
already indicated by the drag evolution in Fig.10. Panel a in Fig.12shows the corresponding vertical vorticity
in the horizontal plane at 0.94zc aftert∗ = 28.8 for EULAG. Panels b and c show solutions from the hydrostatic
IFS and the NH-IFS, respectively. While in EULAG the physically observable (locally Cartesian) vorticity
components are evaluated at each grid point of the model domain, by accounting formally for all the metric
terms (Smolarkiewicz and Prusa, 2005), in the IFS the component normal to constant model levels isused. The
latter is routinely computed in the IFS at every time-step during the direct spectral transforms, whereby the
local wind components — in the semi-Lagrangian formalism — are transformed into a spectral representation
of vorticity and divergence — used in the semi-implicit solution procedure. In the LS2 case, the vorticity
component normal toη = const. closely approximates the vertical vorticity. Best comparison with EULAG has
been found if the nearest model level equivalent to 0.94zc is shifted upward by 3dz. Cross-sections of vertical
velocity (Fig.13d) indicate, that the damping to zero of vertical velocity amplitude at the critical level occurs
slightly higher up in the IFS than in EULAG, despite the same prescribed height of the critical level. The
imbalanced impulsive initial condition employed in the IFScalculations may be contributing to this disparity.
In the EULAG solution a slightly poleward directed flow is noted together with a more elongated shape of
the vorticity contour and a third contour maximum in the nearequatorial region. Apart from these relatively
minor differences, the results of both global models are in agreement with the limited-area solutions presented
in Fig. 14 b,c inGrubišić and Smolarkiewicz(1997). Vertical cross-sections of vertical vorticity obtainedwith
EULAG show essentially zero vorticity above the critical level in the vicinity of the mountain; see Fig. 14a in
Grubišić and Smolarkiewicz(1997). However, the IFS results show weak but non-zero magnitudeof vertical
vorticity abovezc over the mountain (not shown).

In the nonlinear case (LS5) the solution is less trapped below the critical level (Grubišić and Smolarkiewicz,
1997), and both the IFS and EULAG capture these effects similarly. Panel a in Fig.13 represents the vertical
velocity cross-section aftert∗ = 43 for the EULAG model results, panel b and panel c show the results for
the nonhydrostatic and the hydrostatic IFS, respectively.Panel d shows the vertical velocity for the linear LS2
case and the same critical level height. A comparison with a lower vertical resolution simulation (not shown)
indicates that the behaviour is more influenced by vertical resolution than by the choice of the hydrostatic or
nonhydrostatic model equations for this case. Note however, that this is not a priori obvious, since vertical and
horizontal length scales in the nonlinear resolved motionsare similar, hence this represents a nonhydrostatic
regime. Indeed a closer examination shows that the hydrostatic solution is noisier and oscillatory below the
critical level and in the lee of the mountain. This is reminiscent of the breakdown of the (hydrostatic) shallow
water flow assumption for the critical flow case of a hydraulicjump, illustrated inWedi and Smolarkiewicz
(2004). The drag history in Fig.14reaches an equilibrium state for the EULAG simulation approximately after
t∗ = 43. The analytic solution of the linear case (LS2) is shown for reference. The amplitude of the normalised
drag varies more strongly between the models. Both the NH-IFS and the hydrostatic IFS model (shown until
t∗ = 43) give relatively larger drag compared to the nonhydrostatic EULAG solution at that time. Untilt∗ = 10
the resulting drag agrees more closely between EULAG and theIFS; then the IFS solution oscillates around
the EULAG value and slowly converges towards the same solution (normalised drag 1.14 at t∗ = 168). In
Grubišić and Smolarkiewicz(1997) the drag history is only shown tot∗ = 18, where the drag evolution reaches
a normalised maximum value of 1.25 in agreement with the EULAG solution presented here. The NH-IFS
reaches a normalised maximum drag value of 1.6.

The solution departure of the hydrostatic and the nonhydrostatic results is illustrated for the nonlinear LS5
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Figure 14: Comparison of the normalised drag history for theNH-IFS and the hydrostatic IFS, and EULAG for the
nonlinear critical flow past a three-dimensional hill on thesphere (LS5). The linear analytic solution (LS2 case) is given
by the thin solid line. The dashed line is for the NH-IFS, the solid thick line denotes EULAG, and the dot-dashed line
shows the hydrostatic IFS solution.

a b

c

Figure 15: Vertical velocity from the LS5 case at t∗ = 216with U0/NLλ = 1. Panel a shows the EULAG result, panel b
shows the solution with the NH-IFS, panel c the hydrostatic IFS solution. Contour interval is0.2 ms−1. The vertical axis
is pressure in hPa.
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case with three simulations for a narrower mountain, such that U0/NLλ = 1. To keep the ratioLλ/dx≡ 4,
the horizontal resolution is enhanced todx= 250 m by reducing the radius toa = 20.3718 km. The resulting
nonhydrostatic solution is trapped below the critical level for both models (Fig.15a-b). The structure of the
vertical velocity in the lee of the mountain and in the vicinity of the critical level is consistent with the formation
of a homogeneous mixed layer — resulting from convective andshear instabilities — that acts as a perfect
reflector to all incoming waves;Grubišić and Smolarkiewicz(1997) and references therein. In contrast, the
hydrostatic model result (Fig.15c) evinces a strong wave response above the critical layer. The corresponding
zonal drag is overestimated by 25 percent compared to the nonhydrostatic solutions, which are similar to the
linear analytic solution (Fig.16). Thus, in terms of the drag, the linear analytic solution also provides the
asymptotic limit for high resolution fully nonlinear nonhydrostatic simulations.
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Figure 16: Comparison of the zonal drag history for the NH-IFS and the hydrostatic IFS, and EULAG for the LS5 case
with U0/NLλ = 1. The linear analytic solution is denoted by the thin solid line. The dashed line is for the NH-IFS, the
solid thick line denotes EULAG and the dot-dashed line showsthe hydrostatic IFS solution.

3.6 Held-Suarez climate

The synoptic- and planetary-scale simulations presented in this section evaluate the influence of the dynami-
cal core formulation on an idealised ’climate’ state on the sphere, while the spectrum of the resolved scales
is shifted with decreasing radii towards a smaller physicalwavelength. It thus enables the study of basic at-
mospheric processes on the sphere and their numerical realisability with increasing yet affordable resolution.
Planetary simulations on reduced-size spheres have been successfully demonstrated inSmolarkiewicz et al.
(1999).

In the test cases discussed in previous sections near analytic results can be equivalently achieved on reduced-
size planets with no further rescaling. However, since the planetary climate crucially depends on the evolution
of Rossby waves, and it is our desire to keep such evolution Earth like, the Rossby numberRo≡ U/2ΩL
(assuming a characteristic horizontal speed U and length scaleL ∼ a) is kept constant in the following test case,
which facilitates an intercomparison with the Earth’s climate. In particular, it is important for maintaining the
relative latitudinal positions of zonal jet cores, which establish in sufficiently long simulations (Held and Hou,
1980).

For Held-Suarez climate simulations a friction term−kvv is added on the right-hand side of the horizontal
momentum equations and a relaxation term−kT(T−Teq) is added on the right-hand side of the thermodynamic
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equation. For completeness the Held-Suarez setup is summarised below, seeHeld and Suarez(1994) for details:

Teq =max
{

200 K,
[

315 K− (∆T)y sin2(φ) (14)

− (∆θ)z log

(

p
p0

)

cos2φ
]

(

p
p0

)κ
}

kT =ka +(ks−ka)cos4 φ max

{

0,
σ −σb

1−σb

}

kv =kf max

{

0,
σ −σb

1−σb

}

kf =1 day−1, ka = kf/40, ks = kf/4,

(∆T)y = 60 K, (∆θ)z = 10 K, σb = 0.7,

day=2π/Ω, p0 = 1000 hPa, κ = R/cp.

With fixed Ro, reducing the radius of the planet implies an equivalent increase of the rotation rate and, thus, a
corresponding increase in the frictional/heating time factors kf ,ka,ks. The setup is otherwise as described in
Smolarkiewicz et al.(1999, 2001) for EULAG.

Simulations are performed for spheres with radiia = (aE,aE/10,aE/20) whereaE = 6.371·106 m. The IFS is
run with the operational set of 91 vertical levels and the topmodel level located at 0.01 hPa (model top atp= 0).
In EULAG 40 vertical layers are used with a top-height fixed at32 km. Both models start from identical initial
conditions and use the same timestep, respective for the radius of the experiment,∆t = 300,30,15 s, chosen such
as to keep the maximum Courant number (a−1(Umax∆t/∆λ )) of both the IFS and EULAG simulations similar
(close to 0.6) and minimising the difference in the truncation error; cf. section 6.1 inDurran (1999). The
equivalent gridsizes of the simulations are 125, 12.5, and 6.25 km. The latter two are close to possible future
resolutions at ECMWF but use only a fraction of the computational cost normally required for simulations at
such fine resolution. Thus idealised simulations on reducedplanets may be run at a cost comparable to the
current high resolution forecast at ECMWF but with one orderof magnitude higher resolution. This enables an
in-depth evaluation of various features of the global modelbefore such a high resolution is routinely affordable.

Figure17 shows the solutions for the case ofa = aE/10. It compares the zonal mean zonal flow of the NH-
IFS (panel a), the hydrostatic IFS (panel b), and EULAG (panel c) averaged over the integration period of
275 simulation days (skipping the first 10 simulation days).A simulation day is defined as the time period
of one planetary rotation. The zonal jet positions and magnitudes in the zonally averaged solutions compare
well in all simulations for different models and radii. Figure 18 compares the change of the zonally-averaged
mean state for three different horizontal resolutions obtained with the NH-IFS and Fig.19 for EULAG. In
agreement with theoretical predictions there is remarkably little difference between the averaged solutions for
each model. Despite differences in the upper boundary and the vertical coordinate the solutions agree closely.
The asymmetry seen for example in Fig.18b and Fig.19b indicate a small equatorward shift of the southern
hemispheric jet for both IFS and the EULAG simulation witha = aE/10, showing that the zonal mean state
does not reach a steady state after 275 simulation days.

Fig.20shows the time-averaged horizontal kinetic energyE = 0.5(u2 +v2) distribution against the total spheri-
cal harmonic wavenumbern for the NH-IFS and EULAG, each with radiia= aE anda= aE/10. The horizontal
kinetic energy spectrum remains nearly identical, if all numerical parameters (including for example horizontal
diffusion as applied in IFS) are appropriately rescaled. The spectrum has been obtained by averaging in time
over the last 100 simulation days. Notably, for both models small differences can be seen in the well-resolved
range of total wavenumbers 6−20 approximately2, which are associated with the dominant midlatitude baro-

2The zonal and meridional physical wavenumbers,k andl , respectively, are related to the eigenvalues of the Helmholtz equation of
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a b

c

Figure 17: Held-Suarez dry climate simulation on the reduced-size sphere with a= 0.1aE. Panel a-b show the zonal mean
zonal flow for the NH-IFS and the hydrostatic IFS, respectively. Panel c shows the result for EULAG. Fields are averaged
over 275 simulation days (defined as the time for one planetary rotation). The vertical axis is pressure in hPa.

a b

c

Figure 18: NH-IFS Held-Suarez dry climate simulations on the sphere with (a) horizonal resolution dx≈ 125km (a= aE),
b) the difference between the dx≈ 125km and the dx≈ 12.5 km (a= aE/10) simulation, and c) the difference between
dx≈ 125km and dx≈ 6 km (a= aE/20). The zonal mean zonal flow is averaged over 275 simulation days.
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a b

c

Figure 19: EULAG Held-Suarez dry climate simulations on thesphere with (a) horizonal resolution dx≈ 125km (a= aE),
b) the difference between the dx≈ 125km and the dx≈ 12.5 km (a= aE/10) simulation, and c) the difference between
dx≈ 125km and dx≈ 6 km (a= aE/20). The zonal mean zonal flow is averaged over 275 simulation days.

Figure 20: Alog10-log10 presentation of horizontal kinetic energy [m2s−2] at 200hPa averaged over the last 100 simu-
lation days for the IFS and the EULAG simulations with different Earth’s radii. The abscissa shows the total spherical
harmonic wavenumber n. The solid line denotes the IFS simulation with a= aE, the dashed line is the IFS simulation with
a = aE/10; the grey dotted line denotes the EULAG simulation with a= aE, and the grey dash-dotted line is the EULAG
simulation with a= aE/10. Wavenumber spectra n−5/3 and n−3 have been added for reference.
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clinic waves arising in the Held-Suarez climate. At radiia = aE anda = aE/10 NH-IFS shows substantially
higher amplitude compared to EULAG (maximal 24 percent difference) in the 6−20 total wavenumber range,
whereas EULAG shows significantly higher amplitude at totalwavenumbers> 20, in particular at the tail end
of the spectrum.

The richness and variability of the different solutions forthe Held-Suarez test case — known for the intercom-
parison of its atmospheric zonal mean states — is further illustrated in Fig.21 and Fig.22. Figure21 shows the
temporal anomalies of 200 hPa zonal wind averaged between 30N-50N latitudes, a display method often used
for the illustration of intraseasonal oscillations. The data has been lowpass filtered to attenuate all frequencies
higher than 2π/10 day−1. The eastward propagation and the persistence of these anomalies in both models is
sensitive to the diffusive character of the numerical solution (not shown), with more diffusion implying more
persistent propagating anomalies (cf.Piotrowski et al.(2009)). Figure22 shows for both models, the NH-
IFS and EULAG, the power in frequency (cycles per simulationday≡ 1/period) and wavenumber space for
200 hPa zonal wind averaged between 30N and 50N. The two models show similar dominant wavenumbers
but differences in both amplitude and frequency, albeit identical initial conditions, the same physical forcing
and a similar zonally-averaged mean state. The spurious persistence of the anomalies and the differences in the
spectra warrant further investigation, given the potential importance for medium range weather prediction and
climate.

a b

Figure 21: Hovm̈oller diagram of the temporal anomaly of200hPa zonal wind for275simulation days averaged between
30N and 50N for a) the NH-IFS and b) EULAG on the reduced-size sphere (a= aE/10). Contours are in ms−1.

3.7 Medium-range NH-IFS performance and model climate

The medium-range forecast performance of the NH-IFS at hydrostatic resolutions is assessed in comparison
to the hydrostatic IFS. All NH-IFS experiments shown use theGWADV-NH option. However, earlier ex-
periments indicate insignificant differences in performance of the NH-IFS with or without the GWADV-NH
option in medium-range forecasts at hydrostatic scales. Notably, the NH-IFS simulations presented here use
finite-difference discretisation in the vertical, whereasthe hydrostatic control simulations use the finite-element
scheme. Both models employ the implicit treatment of the Coriolis force as it leads to slightly better forecast
scores and formally minimises the departure from “inertness” in the two-time-level numerical discretisation.

The initial conditions for the two additional nonhydrostatic variables are obtained by assuming a hydrostatically
balanced vertical motion together with a pressure field thatis free of elastic perturbations, cf.Bénard et al.

the spherical harmonic functions and thus to the total spherical wavenumbern via (k2 + l2) = n(n+1)/a2 (Phillips, 1990).

Technical Memorandum No. 594 23



NH-IFS/ARPEGE

a b

Figure 22: Power in frequency (cycles per day) and wavenumber space for200hPa zonal wind averaged between 30N
and 50N for a) the NH-IFS and b) EULAG on the reduced-size sphere (a= aE/10).

(2009).

Scores from 10-day forecasts atTL799 and atTL1279 with 91 vertical levels are shown in Fig.23 and Fig.24,
respectively. Both hydrostatic and nonhydrostatic forecasts were run with the same timestep (the default for the
H-IFS): ∆t = 720 s atTL799 and∆t = 450 s atTL1279. The left figures in Fig.23 and Fig.24 show anomaly
correlation and the right figures root mean square error for 500 hPa geopotential height for the extratropical
northern hemisphere (panel a) and southern hemisphere (panel b) from 10-day simulations for different initial
dates spread over the period 2007-2008. Panel c shows absolute correlation and root mean square error for the
200 hPa winds in the tropics. All forecasts are verified against the operational analysis. The forecasts atTL1279
were run with model versionCY35R1 and those atTL799 withCY35R2.

The differences in scores between the nonhydrostatic and hydrostatic runs are small and not significant. This
is also the case for other parameters, areas and heights in the troposphere. The only significant difference is in
the stratosphere, where the hydrostatic simulations are consistently better. This difference is explained by the
difference in vertical discretisation schemes used in the two models. By default the H-IFS is using the vertical
finite-element discretisation (VFE) while the NH-IFS a vertical finite-difference discretisation (VFD), and, as
was noted inUntch and Hortal(2004) with the H-IFS, the former gives better stratospheric forecasts. When
both models are run with their respective VFD discretisations, the scores in the stratosphere are very similar,
but inferior to those of the H-IFS with VFE discretisation. However, if the “intermediate” VFE discretisation,
described in the Appendix, is used in the NH-IFS, its stratospheric scores are improved and compare well with
those of the H-IFS with VFE discretisation.

Additional diagnostics on the position of the departure points of the semi-Lagrangian trajectories near the model
surface and the model top shown that both models are having occasional problems at individual points near the
surface over steep orography with excessive vertical velocities that lead to the semi-Lagrangian trajectories
originating from outside of the model domain. However, for the NH-IFS this happens up to four times more
often than for the H-IFS atTL799 and gets worse with increasing horizontal resolution. The stability of the semi-
implicit scheme in the NH-IFS is controlled via the acousticreference temperature chosen to beTra = 75 K
and the standard reference temperature controlling the propagation of gravity wavesTr = 350 K (same as for
H-IFS) (see also section3.1). For the semi-implicit reference pressurepr a smaller value of 850 hPa is chosen
for stability than in the H-IFS (pr = 1000 hPa). It is noted, that the empirically determined range of stability
for Tra of 50< Tra < 100 — guided by the experiments in section3.1— is quite restrictive.

Additionally two 10-day simulations have been run withTL2047 (10km grid-size) and 91 vertical levels. The
results indicate a stable integration and a similar evolution of the rms-error and anomaly-correlation of the

24 Technical Memorandum No. 594



NH-IFS/ARPEGE

a

Population: 41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41 (averaged)
Mean calculation method: standard

Date: 20070301 12UTC to 20081101 12UTC
N.hem  Lat  20.0 to 90.0 Lon  -180.0 to  180.0

Anomaly correlation forecast
500hPa Geopotential

Mean curves

0 1 2 3 4 5 6 7 8 9 10
Forecast Day

40

50

60

70

80

90

100

110

f1il nh-ifs

f1b7 h-ifs

Population: 41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41 (averaged)
Mean calculation method: standard

Date: 20070301 12UTC to 20081101 12UTC
N.hem  Lat  20.0 to 90.0 Lon  -180.0 to  180.0

Root mean square error forecast
500hPa Geopotential

Mean curves

0 1 2 3 4 5 6 7 8 9 10
Forecast Day

0

10

20

30

40

50

60

70

80

90

100

f1il nh-ifs

f1b7 h-ifs

b

Population: 41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41 (averaged)
Mean calculation method: standard

Date: 20070301 12UTC to 20081101 12UTC
S.hem  Lat  -90.0 to -20.0 Lon  -180.0 to  180.0

Anomaly correlation forecast
500hPa Geopotential

Mean curves

0 1 2 3 4 5 6 7 8 9 10
Forecast Day

30

40

50

60

70

80

90

100

110

f1il nh-ifs

f1b7 h-ifs

Population: 41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41 (averaged)
Mean calculation method: standard

Date: 20070301 12UTC to 20081101 12UTC
S.hem  Lat  -90.0 to -20.0 Lon  -180.0 to  180.0

Root mean square error forecast
500hPa Geopotential

Mean curves

0 1 2 3 4 5 6 7 8 9 10
Forecast Day

0

20

40

60

80

100

120

140

f1il nh-ifs

f1b7 h-ifs

c

Population: 41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41 (averaged)
Mean calculation method: standard

Date: 20070301 12UTC to 20081101 12UTC
Tropics  Lat  -20.0 to 20.0 Lon  -180.0 to  180.0

Absolute correlation forecast
200hPa vw

Mean curves

0 1 2 3 4 5 6 7 8 9 10
Forecast Day

65

70

75

80

85

90

95

100

105

f1il nh-ifs

f1b7 h-ifs

Population: 41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41 (averaged)
Mean calculation method: standard

Date: 20070301 12UTC to 20081101 12UTC
Tropics  Lat  -20.0 to 20.0 Lon  -180.0 to  180.0

Root mean square error forecast
200hPa vw

Mean curves

0 1 2 3 4 5 6 7 8 9 10
Forecast Day

0

2

4

6

8

10

12

f1il nh-ifs

f1b7 h-ifs

Figure 23: Comparison of the TL799simulations using the H-IFS and the NH-IFS model formulation (CY33R2). Panel
a and b show the average over41 days of500hPa geopotential height root mean square error and anomaly correlation
for the northern and the southern hemisphere, respectively. Panel c shows the absolute correlation and root mean square
error of the200hPa winds in the tropics.
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Figure 24: Comparison of the TL1279simulations using the H-IFS and the NH-IFS model formulation (CY35R1). Panel
a and b show the average over49 days of500hPa geopotential height root mean square error and anomaly correlation
for the northern and the southern hemisphere, respectively. Panel c shows the absolute correlation and root mean square
error of the200hPa winds in the tropics.
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500 hPa geopotential height compared to the correspondingTL1279 simulations, for both H-IFS and NH-IFS.
Precipitation patterns are very similar upto day 6 of the forecasts. Although not believed to be significant, if a
fine contour interval< 2mm/day is chosen, different wave patterns can be seen at day 6. In thenonhydrostatic
TL2047 runs the problem of trajectories outside the model domain is increased, with a ratio 15 : 1 compared to
the corresponding H-IFS simulation.

The sensitivity of the model climate to the model formulation is studied using a 4-member ensemble of 13-
month-long integrations with cycle 32r3 using the atmospheric component of the ECMWF Integrated Fore-
casting System only. A horizontal resolution ofTL159 is used with 91 levels in the vertical. Observed sea
surface temperatures are prescribed as lower boundary conditions. Forecasts are started 1 August 2000 00UTC
and shifted by 30 hours for each subsequent ensemble member.The timestep used is∆t = 3600s. The tropo-
spheric model climate in hydrostatic and non-hydrostatic simulations is found to be nearly identical and the
differences manifest themselves only in a stratospheric temperature bias related to the vertical discretisation.

A number of similar experiments have been conducted in the rotated and stretched (factorc = 2.4) ARPEGE
framework (Courtier and Geleyn, 1988; Courtier et al., 1991; Yessad and Bénard, 1996) with TL538 and with
60 vertical levels. (Note that the ARPEGE vertical level distribution differs from the IFS 60 levels.) In this
configurationND4SYS= 1 is used and the physics package is called at the beginning ofthe time-step. The
option to compute the Coriolis force implicitly is not available for the stretched and rotated system. Notably,
the instability over steep orography found with the NH-IFS setup (originating from the discretisation of theX -
term) does not occur with the ARPEGE setup. Otherwise, similar results with respect to stability and accuracy
are obtained when compared to the corresponding ARPEGE hydrostatic version.

3.8 Computational cost

The computational cost of the NH-IFS model is related to the numerical stability of the iterative centred-implicit
(ICI) scheme. If the same timestep as used for the hydrostatic model is desired, the nonhydrostatic simulations
require at least one iteration (Niter = 1) of the ICI scheme to be stable. This means that the dynamicscom-
putations are executed twice per timestep, the physical parametrizations are called only once at the end of the
iteration over the dynamics. For theTL159 model climate simulations this results in a 35 percent computational
cost increase compared to the hydrostatic model (in the current operational configuration). The cost increase
can be reduced to approximately 24 percent ifNiter = 0, i.e. the standard (un-iterated) semi-implicit scheme is
used, and the timestep is optimally reduced to ensure stability. While comparable results are obtained at this
low resolution, this is no longer the case at higher resolutions. The cost increase in the 10-dayTL799 simu-
lations is approximately 70 percent, atTL1279 it is about 80 percent, and atTL2047 106 percent. Figure25
shows a breakdown of the cost for the different parts of the model (dynamics in gridpoint space, computa-
tions in spectral space, spectral transforms, physical parametrizations and other computations) atTL2047 for
NH-IFS and H-IFS. While the absolute cost of the physical parametrizations remains the same, the cost of the
dynamics (gridpoint and spectral-space computations) andin particular the cost of the spectral transforms grow
substantially because of the iteration over the dynamics inthe ICI scheme. As a result the overall balance of
the computational costs in the IFS shifts. Figure26 shows the relative contribution to the total cost for the
hydrostatic IFS and NH-IFS atTL2047. In the hydrostatic model 39 percent of the time is spentin the physical
parametrizations, whereas in the NH-IFS model with one iteration of the ICI scheme only 16.9 percent of the
cost are apportioned to the physics.

A reduction in cost can be made by computing the semi-Lagrangian trajectory, and thus the departure point
interpolations, only once. While this removes the benefit ofupdating the trajectory with information due to
the previous iteration, the impact on the scores is neutral and the cost saving is approximately 10 percent
independent of resolution (same saving atTL799 and atTL2047). However, numerical noise develops in the
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Figure 25: Comparison of the cost of the NH-IFS against the hydrostatic IFS at TL2047resolution: breakdown of the to-
tal cost into the contributions from the gridpoint dynamics(GP DYN), the spectral computations (SPDYN), the spectral
transforms (TRANS), the physical parametrizations (PHYSICS), and the remaining computations (other) such as postpro-
cessing and diagnostics. The horizontal axis shows elapsedtime in seconds for the different parts of the model in a 5-day
forecast on 2048 processors.
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Figure 26: Relative cost of the individual contributions tothe total computation time for the hydrostatic IFS (left) and the
NH-IFS (right).
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stratosphere with this formulation. The cause for this instability is not well understood and requires further
investigation.

Further reductions in cost may be possible if some a priori filtering of acoustic modes enhances the stability
properties of the NH-IFS model and potentially eliminates the need for an iterative procedure. In addition,
advances in the speedup of the spectral transforms (fast Legendre transforms) may be sought.

4 Discussion and conclusions

The NH dynamical core developed by the ALADIN partnership (Bubnová et al., 1995) (ALADIN , 1997) and
made available by Meteo-France in the global IFS/ARPEGE model (Yessad, 2008) has been tested in the
ECMWF global modelling environment and its performance hasbeen assessed in terms of accuracy, stability
and cost by comparing to the Centre’s operational hydrostatic model (H-IFS) at hydrostatic resolutions and to
LES benchmarks at ultra high resolutions where nonhydrostatic phenomena are resolved.

The test cases studied at nonhydrostatic resolutions have shown that the NH-IFS captures the essential nonhy-
drostatic effects and, apart from relatively minor differences,the NH-IFS solution compares quantitatively well
with Cartesian-domain analytic solutions and LES benchmarks.

The forecast quality obtained with the NH-IFS in global medium-range and seasonal simulations at hydrostatic
resolutions is very similar to the quality obtained with theH-IFS. This was, however, only achieved after up-
grading the original NH IFS/ARPEGE model with two options available and used by default in the hydrostatic
IFS: implicit computation of the Coriolis force and a finite-element discretisation in the vertical, albeit only an
“intermediate” finite-element version (see Appendix for details).

Based on the performance of the NH-IFS model in terms of accuracy, it can be concluded that the NH-IFS
dynamical core is a possible choice for future, globally-uniform high resolution applications at ECMWF. An
assessment of moist simulations with the NH-IFS model at nonhydrostatic scales is ongoing. In the hydrostatic
regime, forecasts of moist quantities with the NH-IFS and H-IFS in medium- and seasonal-range are nearly
identical up to≈ 10 km grid-length, using the ECMWF physical parametrization package “as is”. At cloud-
resolving resolutions, various aspects of moist dynamics need further assessment, in particular, the coupling
of the physical parametrizations to the NH dynamical core and the projection of diabatic heating on both
pressure and temperature, the need for moist-conservativevariables for advection, and the efficacy of the semi-
Lagrangian advection scheme per se.

The numerical stability of the NH-IFS has been assessed for global weather applications at full complexity
with long timesteps (as used for the H-IFS) and horizontal grid-sizes up to≈ 10 km. At least one iteration
of the iterative centred-implicit scheme is required to stabilise the NH integrations with such long timesteps.
This means the dynamical core computations are executed twice per timestep (the physics package is called
only once), leading to a very substantial increase in cost compared to the hydrostatic model, e. g. for 10-day
forecasts atTL799 (25km grid-size) the cost increase is about 70 percent, while at TL2047 (10km) the cost
doubles. Therefore, the NH-IFS is not competitive with the H-IFS for hydrostatic scale applications. If efforts
directed at reducing substantially the cost of the NH-IFS prove to be unsuccessful, the H-IFS will have to be
maintained and used for the Centre’s low and medium resolution applications in the future, e.g. in the inner
loops of the 4D-Var assimilation system. However, maintaining both models does not require an unduly large
effort because the two dynamical cores share large parts of the code, since the NH model is designed as an
extension to the existing hydrostatic model (Bubnová et al., 1995). It would, however, be desirable to have the
same dynamical core for all applications at all scales. For this the efficiency of the NH dynamical core will
have to be improved substantially, a demanding project which will require a considerable amount of research.
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In Proc. 1991 Seminar on Numerical Methods in Atmospheric Models II, Reading, UK, pp. 193–231. Eur.
Cent. For Medium-Range Weather Forecasts.

Courtier, P. and J.-F. Geleyn (1988). A global model with variable resolution. application to the shallow water
equations.Q.J.R. Meteorol. Soc. 114, 1321–1346.

Daley, R. (1991).Atmospheric data analysis. Cambridge, New York: Cambridge University Press.

Durran, D. R. (1999). Numerical methods for wave equations in geophysical fluid dynamics. New York:
Springer-Verlag.

ECMWF (2000). Proc. ECMWF Workshop on Developments in numerical methods for very high resolution
global models, Workshop proceedings, Reading, UK. ECMWF.

Geleyn, J.-F. (2005). New findings about the orographic chimney problem’ in aladin-nh dynamical core and
tentative conclusions for the code policy. http://www.rclace.eu.

Grabowski, W. W. and P. Smolarkiewicz (1990). Monotone finite difference approximations to the advection-
condensation problem.Mon. Weather Rev. 118, 2082–2097.

30 Technical Memorandum No. 594



NH-IFS/ARPEGE
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A Appendix: An “intermediate” finite-element discretisati on in the vertical

A finite-element discretisation for the vertical of the NH model has not been successfully implemented yet,
because it leads to an unstable semi-implicit scheme. Nevertheless, the NH model can still benefit in part from
the higher computational accuracy of the vertical integrals and derivatives in vertical finite-element (VFE) dis-
cretisation based on cubic B-spline elements compared to the vertical finite-difference (VFD) discretisation (cf.
Untch and Hortal(2004)) by using the VFE discretisation for selected terms in the explicit part of the model,
while performing the semi-implicit computations in VFD discretisation. This “intermediate” VFE discretisation
for the NH-IFS is described below.

In the VFE discretisation as implemented in the IFS, discretised analogues of vertical operators are constructed
by using the Galerkin method in cubic B-spline space (FE space). The resulting discrete operators (matrices)
in FE space are then transformed to physical space (vertical-level space) and used there, cf.Untch and Hortal
(2004). In the NH model, both vertical integrals and vertical derivatives have to be evaluated. In contrast,
in the hydrostatic IFS with semi-Lagrangian advection onlyvertical integrals are required, a fact that greatly
facilitated the construction of a stable semi-implicit scheme in VFE discretisation for the hydrostatic IFS. The
same VFE integral operator computed for the hydrostatic model is also used in the NH model and in addition
a VFE derivative operator has been constructed in a similar way (also based on cubic B-splines) by M. Hortal
and J. Vivoda. It is noted that this VFE derivative operator is not the exact inverse of the VFE integral operator
as in the continuous case. Using the inverse of the VFE integral operator as derivative operator does not give
accurate numerical derivatives.

The VFE integral operator is denoted here byRI ()
l
m, wheremandl denote the integration limits (i.e. integration

from levelm to level l ). The VFE derivative operator is denoted byRD.

The terms in the equations (3) and (4) which are discretised with VFE are listed below.

• The integrals in the second and third equation in (4) are discretised as for the hydrostatic VFE model, cf.
Untch and Hortal(2004).

• The integral in the first equation in (4) is discretised on model layersl as

Φl = Φs+RI

(

−π
p

RTδ
∆η

)l

s
(15)

where s denotes the surface. The gradient∇η Φ is discretised as

(∇ηΦ)l = ∇η Φs+RI

(

−∆η−1
(

π
p

∇η(RT)δ − π
p

∇η ln
p
π

RTδ +
π
p

RT∇η δ
))l

s
(16)

Hereδ denotes the average pressure depth of a layer, divided by theaverage pressure of this layer. In
NH-IFS δl = ∆πl/πl is used.

• The pressure gradient term is formulated as

(

1
m

∂ p
∂η

∇η Φ+RT
∇η p

p

)

l
=

(∆p)l

(∆π)l
(∇η Φ)l +(RT)l (∇ηQ)l +(RT)l

(

∇η π
π

)

l
(17)

where the computation of(∆p)l requires a vertical derivative in finite-element discretisation as outlined
below.
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• The termgw is discretised as

(gw)l = gws+RI

(

−π
p

dRdTδ
∆η

)l

s
(18)

and it’s derivative requires the relation
(

∇η

(

π
p

dRdTδ
))

l
=

(

π
p

)

l
(dl δl ∇η(RdTl )+RdTl δl ∇ηdl +RdTl dl ∇η δl )+RdTl dl δl ∇η

(

π
p

)

l
. (19)

• The total pressure depths needed in the pressure gradient term and in thedw/dt expression for the
GWADV-NH option is discretised as

(∆p)l = (∆π)l

(

∂ p
∂π

)

l
, (20)

where
(

∂ p
∂π

)

l
=

pl

πl
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∂ lnπ
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(21)

with
(

∂
( p−π

π
)

∂ lnπ

)

l

= RD

(

p−π
π

)

l

(∆η)l

δl
. (22)

A VFE discretisation of the remaining explicit terms involving vertical derivatives has also been tried, but
resulted in an unstable model. More research is needed to understand why.
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