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A nonlinear perspective on the dynamics of the MJO

Abstract

The 30-60 day intraseasonal atmospheric oscillation in theequatorial atmosphere, the Madden-Julian os-
cillation (MJO), is most visible in its signature of outgoing longwave radiation and associated convective
centers. Diabatic processes related to tropical convection and two-way atmosphere-ocean interaction are
hence generally believed to be crucial in explaining the origin of the MJO phenomenon. However, reliable
deterministic forecasting of the MJO in global circulationmodels and understanding its mechanism remains
unsatisfactory. Here a different approach is taken, where the hypothesis is tested that eastward propagat-
ing MJO-like structures originate fundamentally as a result of nonlinear (dry) Rossby wave dynamics. A
laboratory-scale numerical model is constructed, where the generation of solitary structures is excited and
maintained via zonally propagating meanders of the meridional boundaries of a zonally-periodicβ -plane.
The large-eddy simulations capture details of the formation of solitary structures and of their impact on the
convective organization. The horizontal structure and thepropagation of anomalous streamfunction pat-
terns, a diagnostic typically used in tracing the equatorial MJO, are similar to archetype solutions of the
Korteweg-deVries equation, which extends the linear shallow water theory — commonly used to explain
equatorial wave motions — to a weakly nonlinear regime for small Rossby numbers. Furthermore, the char-
acteristics of the three-dimensional laboratory-scale numerical results compare well with observed features
of the equatorial MJO and thus the study provides indirect evidence of the basic principles underlying the
wave-driven eastward propagation of the MJO.

1 Introduction

The Madden-Julian oscillation (MJO) (Madden and Julian, 1971, 1972) is an influential intraseasonal atmo-
spheric fluctuation in the equatorial troposphere, resulting in slowly eastward propagating severe weather where
it occurs. Therefore, the MJO is of interest to extended medium range numerical weather prediction (NWP)
and climate modelling (ECMWF, 2003). It is not strictly an oscillation as its period varies and its appearance is
episodic (Hartmann and Hendon, 2007). Diabatic processes associated with tropical convectionand two-way
atmosphere-ocean interaction are generally believed to besignificant for an explanation of the MJO. Exist-
ing theories stress the importance of the feedback mechanisms between convection, large-scale dynamics and
surface fluxes; seeZhang(2005) for a comprehensive review. However, while a synthesis of the theories and
observations explains important aspects of the MJO life cycle, a unifying theory is still elusive for the basic
mechanism that would also explain the ubiquitous modellingdifficulties with state-of-the-art global NWP and
climate models. The atmospheric processes involved appearto be of a complex, multi-scale nature (Moncrieff,
2004; Biello and Majda, 2005), ranging from small-scale turbulence to convectively-driven meso-scale cloud
clusters in an equatorial environment, where large-scale atmospheric waves prevail.

An intriguing aspect of modelling MJO phenomena has been reported recently byMiura et al.(2007) and by
Lin et al. (2008). In the former case an MJO-like structure — albeit propagating too fast — has been simulated
utilizing a “cloud-permitting” model with 7 km global grid resolution. Whereas in the latter case “no convective
parametrization” global circulation model (GCM) simulations produced “one of the most realistic MJO signals
in terms of variance, eastward propagation, and prominenceof the spectral peak”. Because both works tend in
effect to de-emphasize the role of moist convection, the present paper revisits in detail the theoretical importance
of resolved nonlinear dry dynamics for MJO-like phenomena.

In particular, here the hypothesis is tested that episodic MJO-like structures propagate eastward as a result
of nonlinear Rossby wave dynamics in a background flow preconditioned with lateral coupling to the extra-
tropics. In the equatorial troposphere a correlation between eastward propagating signals and extratropical
wave activity appears to be in agreement with observations and theory (Mak, 1969; Strauss and Lindzen, 2000;
Hoskins and Yang, 2000; Straub, 2003). In Majda and Biello(2003) a reduced set of coupled Korteweg-deVries
(KDV)-like equations is derived under the assumption of weak nonlinearity. Their reduced asymptotic model
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describes the fundamental (nonlinear) process of energy transfer between long-wavelength equatorially trapped
baroclinic Rossby waves and barotropic Rossby waves with large meridional wavelengths in the presence of
both meridional and vertical wind shear (Biello and Majda, 2004a). Importantly, solitary wave solutions are
admitted by their novel equations, in which a quadratic nonlinearity A∂A/∂ξ and a balancing dispersion term
∂ 3A/∂ξ 3 of the waves’ amplitude evolution (as in the classical KDV equation (8)) occur in different equa-
tions of the coupled set, resulting from the interaction of barotropic (extra-tropical) and baroclinic (equatori-
ally trapped) wave-packets. What makes solitary wave theories with KDV-like solutions particularly attrac-
tive is that they extend the linear shallow water theory (Matsuno, 1966), commonly used to explain different
modes of equatorial wave motions, to the weakly nonlinear regime. Remarkably, most or all spectral signals of
satellite-observed outgoing long-wave radiation (OLR) — aproxy for cloudiness — can be explained via the
linear theory of equatorially trapped waves1, except for the dominant low-frequency spectral peak of theMJO
(Wheeler and Kiladis, 1999).

There have been earlier attempts to explore the role of non-linearity for low-frequency equatorial waves (Tuyl,
1987; Zou and Cho, 2000), but their findings have been either negative or inconclusive. In an attempt to explain
the anomalous eastward propagation bothTuyl (1987) andZou and Cho(2000) tried to establish a link between
a locally prescribed large-scale (internal to the tropics)diabatic heating and the dynamic evolution governed
by the nonlinear shallow water equations. However, this is fundamentally different to the approach adopted in
the present paper, where episodic eastward propagating solitary structures emerge as a result of the specified
fluctuations of the meridional boundaries. More recently, anonlinear view of intraseasonal oscillations in the
Earth’s atmosphere has been offered based on resonant triadinteractions of a discrete set of planetary waves
(Kartashova and L’vov, 2007). Their interpretation of intraseasonal oscillations as an intrinsic atmospheric
wave phenomenon is akin to the KDV theory, as the KDV equationand triads of interacting planetary waves
adopted inKartashova and L’vov(2007) are related via the nonlinear Schrödinger equation (Boyd and Chen,
2001); the latter may be derived from quartic wave interactions (Phillips, 1981). Inasmuch as reduced models
elucidate fundamental aspects of the dynamics of MJO-like phenomena, they guide the design of focused nu-
merical experiments. Herein, numerical evidence is presented of the realizability of episodic solitary structures
from nonlinear wave dynamics. As such the results substantiate the view taken inKartashova and L’vov(2007).
Moreover, the results shown offer an explanation for the ubiquitous modelling difficulties of GCMs.

The fundamental aspect of MJO dynamics isolated in this paper shows some parallelism to the investigations
of Jovian vortex dynamics, and the Great Red Spot (Redekopp, 1977; Yano et al., 1997) in particular. For
geophysical vortices the notion of weak non-linearity is often criticized and superseded with more general non-
linear theories of long-lived solitary vortices, namely modons (Flierl, 1987). IndeedDelayen and Yano(2009)
suggest that modon theory may provide a good analog for convectively-coupled equatorial waves. Notwith-
standing, Rossby solitary waves epitomize the underlying dynamical component relevant to the formation of
episodic, solitary equatorial modes.

To illustrate the formation and subsequent evolution of solitary waves in a more realistic laboratory-like frame-
work, the authors have extended their virtual laboratory for internal wave motions (Wedi and Smolarkiewicz,
2004, 2006) to the case of rotating fluids on an equatorialβ -plane (Wedi and Smolarkiewicz, 2008, hereafter
WS08b). In large-eddy simulations (LES) utilizing this framework, an eastward propagating large-scale Rossby
solitary structure emerges after a long time compared to thetime-scale of the external forcing. In the idealized
setting, laterally meandering boundaries provide a translating and pulsating forcing to the equatorial flow in
analogy to the lateral coupling to extratropical motions, eg. a lateral coupling to the meanderings of the subtrop-
ical jets (Charney, 1963). The forcing adopted in WS08b is similar to the one used inMalanotte-Rizzoli et al.
(1988) for the study of long-lived horizontal structures observed in the vicinity of the Gulf stream meanders.

1After Wheeler and Kiladis(1999) equatorial wave patterns in the spectral analysis of satellite-observed data records have been
termed as “convectively-coupled equatorial waves”.
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The organization of the paper is as follows: the next sectionpresents the theoretical background for the MJO
based on equatorial Rossby solitary waves in a horizontallyinhomogeneous background flow. Section3 de-
scribes idealized 3Dβ -plane simulations, shows numerical evidence of anomaloussolitary structures and ex-
amines sensitivities leading to the destruction of solitary waves. Section4 discusses the results and section5
concludes the paper.

2 Theoretical background

In order to explain the occurrence of eastward propagating solitary horizontal structures like the MJO, we
consider near-equatorial motions in a stratified fluid with long time-scalesεT = 1/βLT ≪ 1 and relatively
large length-scales2 εL =U/βL2 ≪ 1; whereU ,L,T denote velocity, length, and time scales respectively, andβ
denotes the constant latitudinal gradient of the linearized Coriolis parameter. The assumptionεT ≪ 1 is satisfied
in the equatorial troposphere forL & 1000 km andT & 10 days, whereasεL ≪ 1 is satisfied forL & 2000 km
andU = 10 ms−1.

Before proceeding a few comments on atmospheric scales of motion in equatorial regions are in order. In
Yano and Bonazzola(2009) the authors identify three main tropical regimes, depending on the relative impor-
tance of the Coriolis force. Because of their potential relevance to the MJO, in the following, only the first
two are considered: the synoptic scale, where the Coriolis force is in balance with all other terms in the equa-
tions; and the planetary scale, where the Coriolis force is assumed to dominate over the horizontal advection.
With the absence of latent heating, a vertical scale comparable to the density scale height of the atmosphere
and a dominating advective time-scaleT = L/U , synoptic-scale tropical circulations (1000. L . 3000 km)
are characterized by essentially barotropic, quasi-horizontal motions with small divergence of the horizontal
wind (Charney, 1963; Holton, 1992, chap.11.2). The recent analysis of observational data (Yano et al., 2009;
Yano and Bonazzola, 2009) confirms and extends the relevance of this synoptic-scale regime, indicating the
persistence of quasi non-divergent motions beyond the validity limits of the scale analysis. The elementary
predictive tool for synoptic-scale tropical circulations, envisioned to be primarily driven by lateral coupling
with extratropical and precipitating tropical motions, isthe barotropic vorticity equation derived byCharney
(1963) for Rossby numbers Ro= U/βL2 & 1, where U denotes a characteristic zonal velocity andL denotes a
characteristic length scale.3

Planetary scalesL & 3000 km in the tropics are commonly viewed as dominated by linear waves — described
by the linear shallow-water theory with advective terms neglected — with characteristic time scale signif-
icantly shorter than that of synoptic-scale systems (Matsuno, 1966; Gill , 1980; Wheeler and Kiladis, 1999;
Yano and Bonazzola, 2009). Consistently, a substantial part of the observed large-scale tropical variability
is explained by linear equatorial wave motions. This is illustrated by the finding inZagar et al.(2005) that
convectively-coupled equatorial waves (cf. footnote 1) match a dominant portion of the horizontal structure
of statistical deviations from a linear wave model, which isemployed instead of a quasi-horizontal “balance”
model4 for optimizing the multivariate use of observations in the ECMWF global data assimilation for NWP.
However, low-frequency planetary-scale waves in the tropics, with relatively small meridional-to-zonal wave-
length aspect ratio, can be described by the same barotropicvorticity equation as obtained byCharney(1963)
for synoptic-scale motions (Maicun, 1987b).

2The geometric scales have to be sufficiently short, however,to not invalidate theβ -plane assumption.
3A similar equation, for an incompressible fluid with variable depth, has been used byRossby(1940) in his model of the midlatitude

barotropic atmosphere (Kuo, 1972).
4In contrast to the geostrophic theory of midlatitudes, a balance model valid across a wide range of scales, does not existfor the

tropics (Saujani and Shepherd, 2006).
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The multiscale MJO model ofBiello and Majda(2005) bridges synoptic- and planetary-scale regimes discussed
above. In technical terms, the leading idea of their approach is to solve the linear equatorial planetary-scale
wave equations, forced by the synoptic-scale heating fluctuations coarsened to the planetary scale. Their multi-
scale MJO model has successfully reproduced the vertical structure of observed MJO events. Most importantly,
the analytic tractability of the underlying quasi-linear formulation makes it an attractive tool for studying se-
lected aspects of the MJO evolution. The numerical results presented below, however, support the view taken
in Majda and Biello(2003), Mak (1969) andCharney(1963), stressing the chronological importance of quasi-
horizontal, nondivergent motions at synoptic and planetary equatorial scales, governed by the conservation
of absolute vorticity. The latter view thus offers an explanation for the persistence of MJO-like structures in
the absence of large heating rates — a prerequisite of the multiscale MJO model inBiello and Majda(2005),
thought to be induced by eastward moving cloud superclusters (Majda and Biello, 2004).

The MJO possesses a characteristic length scale well aboveL∼ 3000 km (Yano and Bonazzola, 2009). Charac-
teristic time- and length-scales of observed equatorial Rossby waves are also large with a dominant wavenumber
6 and periods of 10-15 days (Kiladis and Wheeler, 1995; Wheeler and Kiladis, 1999). Motions at such large
characteristic time- and length-scales thus satisfyεT ≪ 1 and Ro≡ εL ≪ 1, and are governed by a barotropic
potential vorticity equation, derived from an asymptotic expansion of the nonlinear shallow water equations
for small Rossby number and length scalesL ∼ LR (Pedlosky, 1987, p. 86), whereLR =

√
gHe/βL denotes

the external Rossby deformation radius, with gravitational accelerationg and equivalent depthHe (Gill , 1982,
p. 437). In contrast to the scale assumptions for linear, planetary-scale equatorial waves, the nonlinear advec-
tion terms are assumed to be of equal importance (Pedlosky, 1987, p. 88) with a dominant advective time-scale
L/U . In the tropics, the Rossby number of atmospheric motion is typically larger than in mid-latitudes and
consequently, the nonlinear effect of advection becomes more important (Maicun, 1987a).

The quasi-geostrophic potential vorticity equation extends the shallow-water theory to a rotating, density-
stratified fluid (Pedlosky, 1987, ch.6.8, p.362).Verkley (2009) recently developed a global version of the
potential vorticity equation, in which replacing the constant Coriolis parameterf0 in the equatorial region by the
variable f = βy is justified for large-scale atmospheric flows with small horizontal divergence. Consequently,
the nonlinear, quasi-horizontal evolution in a rotating, density-stratified fluid with constant Brunt-Väisällä fre-
quencyN in the equatorialβ -plane is given as

∂q
∂ t

+J (ψ ,q+ βy) = ηQ, (1)

whereψ(x,y,z, t) denotes the streamfunction, andq+ βy is the potential vorticity with

q = ∇2ψ + σS −2∂ 2ψ
∂z2 +(σ −1)αψ (2)

as defined inMalanotte-Rizzoli et al.(1988). Hereσ andη denote binary switches, with the values of either
1 or 0, for a stratified vs. a homogeneous shallow-water fluid and the addition of an external heating function
Q; S 2 = (LD/L)2 is the squared ratio of the internal Rossby deformation radius LD = NH0/βL with the
characteristic horizontal length scale of the motion (H0 is the fluid depth);α = 1/L2

R is the reciprocal of the
squared external Rossby deformation radius; the Jacobian operator is defined asJ (a,b) = (∂a/∂x)(∂b/∂y)−
(∂a/∂y)(∂b/∂x) and the Laplacian∇2 = ∂/∂x2 +∂/∂y2. Equations (1) and (2) are in nondimensional form,
assuming the dimensionless variables such that

(x′,y′) = L(x,y),z′ = H0z, (3)

t ′ = (L/U)t,ψ ′ = ULψ ,β ′ = (U/L2)β ,

where primes denote dimensional variables, cf.Redekopp(1977).
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The authors inMalanotte-Rizzoli et al.(1988) solved equation (1) numerically, withσ = η = 0 and with a
northern boundary forcing of the form

ψ(x,1, t) = ψ0yN(x, t), (4)

using a few distinct space-and-time dependent profilesyN(x, t). In particular, a propagating and pulsating shape
resulted in the emergence of self-advecting solitary structures, their “modon” regime (Malanotte-Rizzoli et al.,
1988). The structures obtained in WS08b and in section33.2, where the fully nonhydrostatic equations of mo-
tion have been employed, are consistent with the numerical solutions of (1) presented inMalanotte-Rizzoli et al.
(1988).

Analytic solutions of the linearized form of (1) with and without topography under a specific northern boundary
forcing (4) are discussed in detail inMalanotte-Rizzoli et al.(1987), where particular attention is given to the
transition to the nonlinear regime. The full initial value problem of the nonlinear equation (1) with a north-
ern boundary forcing is analytically intractable (Malanotte-Rizzoli et al., 1988). Notably, the linear shallow
water theory of equatorially trapped waves is typically solved on the equatorialβ -plane withψ vanishing at
the meridional boundaries. Equation (1) possesses linear plane-wave-form solutions for uniform zonal flow
(U = const.,V = 0) (Pedlosky, 1987, p.108) as well as periodic and solitary solutions in the asymptotic limit
of weakly nonlinear dispersive waves. In the absence of a meridionally varying background flow the terms
including α ensure the theoretical existence of solitary structures for the homogeneous shallow-water case
(σ = η = 0) and for moderate Rossby radii (Boyd, 1980). The influence of a horizontally inhomogeneous
background flow on the solution has been discussed in the context of midlatitude flows inHodyss and Nathan
(2002), where it is shown that Rossby solitary waves emerge as a result of a meridional shear of the background
wind and that these waves can propagate eastward under certain conditions, thus resembling a characteristic
feature of the MJO.

Given a time-independent background windU(x,y,z) ≡−∂ψU(x,y,z)/∂y andV(x,y,z) ≡ ∂ψU(x,y,z)/∂x; the
perturbation streamfunction is

Ψ(x,y,z, t) = ψ(x,y,z, t)−ψU (x,y,z). (5)

Considering motions with eitherα ≪ 1 or σ ≡ 1 and inserting (5) into (1) allows to write
[

∂
∂ t

+U
∂
∂x

+V
∂
∂y

]
(∇2Ψ+ σS −2∂ 2Ψ

∂z2 ) (6)

+J (Ψ,∇2Ψ+ σS −2∂ 2Ψ
∂z2 )

+J

(
Ψ,

∂V
∂x

− ∂U
∂y

+ βy+ σS−2∂ 2ΨU

∂z2

)
= ηQ′,

where the background streamfunction is required to satisfy

J

(
ΨU ,

∂V
∂x

− ∂U
∂y

+ βy+ σS−2∂ 2ΨU

∂z2

)
= ηQ, (7)

andQ′ = Q−Q denotes a perturbation of the external heating with respectto the background stateQ(x,y,z).
Considering relation (5), the streamfunction solution of (6) may be interpreted as the evolution of a time-mean
anomaly, that is, the spatio-temporal deviation from the time-averaged streamfunction, if (i) the time-mean
field satisfies (7); and (ii) the time-mean of the self-interaction termJ (Ψ,∇2Ψ + σS −2∂ 2Ψ/∂z2) is small.
Notably, it is this self-interaction term that provides theessential nonlinearity, necessary to obtain solitary wave
solutions. An evolution equation for the amplitude of solitary waves (i.e. a KDV equation) can be derived from
equation (6) for weakly nonlinear dispersive waves (Hodyss and Nathan, 2002; Dodd et al., 1982, chap. 2 and
references therein). Although the derivation of the potential vorticity equation (1) is based on an asymptotic
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Figure 1: Instantaneous temporal anomaly of wind (vectors)in the nonlinear 2D simulation with a propagating and
meridionally pulsating lateral forcing as described by eq.(11).

expansion for small Rossby number, it has been shown inMalanotte-Rizzoli(1980) that the permanence of
solitary structures persists beyond the validity of the analytic theory upto Ro→ 1, after which a transition from
wave-like to turbulent behavior ensues.

In WS08b the multi-scale anelastic research code EULAG (Prusa et al., 2008) was introduced with a pulsating
and zonally propagating meridional boundary meander. Suitably modified — by assuming an incompressible
fluid confined between free-slip rigid-lid boundaries and novariability in the vertical — it has been employed
to mimic the nonlinear barotropic shallow water equations on a zonally-periodicβ -plane. Using this 2D model
the authors reported a robust low-wavenumber and low-frequency anomalous signature in the results, thought
to be induced by the boundary meander. Figure1 shows a snapshot of the instantaneous anomalous flow field
in the 2D simulation with the meridional boundary meander, specified later in eq. (11). The anomaly has been
calculated with respect to the time-mean field. The anomalous counter-rotating vortices are pulsating and pro-
gressing eastward. In the 2D simulation, a quadrupole structure forms first and persists for some time, to later
change into a single pair of anomalous counter-rotating vortices. With a single-sided forcing smaller anoma-
lous vortices can be seen to merge into a single, larger anomalous flow vortex that is maintained throughout the
simulation unless the lateral forcing is stopped. In the latter case we find that the vortex propagates for a while
and then dissipates. This is in agreement with the results found inMalanotte-Rizzoli et al.(1988), where such a
vortex depending on the nonlinearity of the forcing can persist for a long time against the effects of dispersion
(numerical or physical).

The horizontal structure found in the 2D simulation corresponds to the prototype Rossby soliton (cf. Fig. 2 of
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Figure 2: Instantaneous temporal anomaly of wind (vectors)obtained from a weakly-nonlinear analytic streamfunction
solution of the KDV equation (8) with time mean coefficientsµ = −1.51, γ = −0.043, and δ = +0.05. The solution
utilized the time-mean zonally-averaged background wind U(0) from the 2D numerical simulation.

Boyd (1980)) — a solution of the KDV equation

∂A
∂τ

+ δ
∂A
∂ξ

+ µA
∂A
∂ξ

+ γ
∂ 3A
∂ξ 3 = 0, (8)

whereA describes the amplitude evolution, in zonal directionξ and in timeτ , of the streamfunction anomaly
Ψ(1) = A(ξ ,τ)Y(1)(y), where Y(1) is a meridional structure function found by solving

Y(1)
yy +

[
(β −U (0)

yy )/(U (0) −c0)
]
Y(1) = 0 andδ ,µ ,γ are non-dimensional coefficients (cf.Fu et al.(2005));

U (0) denotes the time-mean zonally-averaged background wind and c0 = −β/(k2 + l2) is the linear Rossby
wave’s propagation speed, andk, l denote zonal and meridional wavenumbers, respectively. The horizontal
structure of solitary Rossby waves is anisotropic with meridional winds weaker in comparison to the zonal
winds near the equator. An analytic solution of the KDV equation (8) is obtained with the time mean coef-
ficients µ = −1.51( 0.02), γ = −0.043( 0.0001), andδ = +0.05( 0.082), where the values in parentheses
indicate the standard deviations. The computation of the coefficients and of the meridional structure func-
tion utilized the time-mean zonally-averaged background wind U (0) from the 2D numerical simulation;Y(1)

is found∝ Hn(y)e−y2
with Hn(y) denoting thenth Hermite polynomial, characteristic of equatorially trapped

waves (Matsuno, 1966; Boyd, 1980). The analytic solution using the time mean coefficients (Fig. 2) repro-
duces a pair of eastward propagating anomalous counter-rotating vortices. While the structure of the anomaly
is comparable to those in the 2D numerical results, the amplitude of the zonal velocities and the propagation
speed is much larger in the analytic solution. Furthermore,the anomalous time-variation of the coefficientδ
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Figure 3: Temporal anomaly of wind (vectors) after t∗ ≡ U/LDt = 797 in the 3D simulation at0.04 m height (ap-
prox.0.4Ho) with a propagating and meridionally pulsating lateral forcing as described by eq. (11).

is inconsistent with the slow time-scale assumed for the KDVtheory. In conclusion, although a simple KDV
model illustrates some aspects of solitary equatorial dynamics, the discrepancies between the analytic and the
fully nonlinear numerical results are significant. Nevertheless, Rossby solitary structures are a distinct feature
of the large-eddy simulations presented in the next section.

3 Large-eddy simulations on the equatorial β -plane

The laboratory experiment ofPlumb and McEwan(1978) and their numerical equivalents (Plumb and Bell,
1982; Wedi and Smolarkiewicz, 2005, 2006) were shown to be useful tools for understanding geophysical phe-
nomena in a controlled environment. Hence the realizability of episodic solitary structures in a fully nonlinear
three-dimensional flow is first established in such an idealized framework before attempting to explain their
occurrences in nature, and before attempting to comment on the difficulty of their simulation in GCMs. The
β -plane model introduced in WS08b serves here as an analogoustool. Despite its simplification with respect to
natural atmospheric processes the model incorporates convective motions, externally driven large-scale dynam-
ics and surface boundary layer fluxes due to imposed heating and friction. It thus implements and sufficiently
enriches the reduced MJO models of the previous section, to substantiate the hypothesis that, under certain con-
ditions, eastward propagating solitary structures emergeand match the characteristic dynamics of the equatorial
MJO.
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3.1 Numerical model

The Boussinesq equations of motion for a rotating, density-stratified fluid shown in WS08b are cast here
in a time-dependent curvilinear framework (Prusa and Smolarkiewicz, 2003; Smolarkiewicz and Prusa, 2005;
Wedi and Smolarkiewicz, 2004):

∂ (ρ∗vsk
)

∂xk = 0 , (9)

dvj

dt
= − G̃k

j
∂π ′

∂xk −g
ρ ′

ρ0
δ3

j +C j +F j ,

dρ ′

dt
= −vsk ∂ρe

∂xk +Fρ .

Here,ρ∗ := ρ0G, with G denoting the Jacobian of the transformation between physical (t, x, y, z) and compu-
tational(t, x, y, z) space. Indicesj,k = 1,2,3 correspond to thex,y,zcomponents, respectively; summation is
implied by repeated indices, unless stated otherwise. The total derivative isd/dt = ∂

/
∂ t +v∗ j

(∂
/

∂x j), where

v∗ j := ẋ j denotes the contravariant velocity in the transformed framework. The solenoidal velocity, satisfying
the mass continuity equation in (9), is vs j := v∗ j −∂x j/∂ t. The components of physical velocityv j are related
via vsk

= G̃k
jv

j , whereG̃k
j = (∂xk/∂x j) are the transformation coefficients in the computational space. The

particular mapping employed assumes identity transformations t = t, x = x andz= z, but

y = y0
y−yS(x,y, t)

yN(x,y, t)−yS(x,y, t)
, (10)

whereyS andyN are the southern and northern domain boundaries, respectively; andy0 denotes the domain
size in meridional direction. Numerically, the elements ofthe Jacobi matrix are evaluated in(t,x) leading
to the required subset of (non-trivial) coefficients̃G1

1 = G −1∂y/∂y, G̃2
1 = G −1∂y/∂x, G̃1

2 = G −1∂x/∂y, and
G̃2

2 = G −1∂x/∂x with G −1 = (∂y/∂y∂x/∂x− ∂y/∂x∂x/∂y)−1; cf. Wedi and Smolarkiewicz(2004) for de-
tails. Theρ ′ and π ′ denote, respectively, density and normalized-pressure perturbations with respect to the
ambient state characterized by the geostrophic wind components v j

e and the linearly stratified profileρe =
ρ0(1− (N2/g)z); g symbolizes the gravitational acceleration,ρ0 is a constant reference density, andN denotes
the Brunt-Väisällä frequency;δ3

j is the Kronecker delta. Note that the ambient zonal flowue (cf. table1) is
used together with the boundary meander to mimic an extra-tropical anomalous flow between 600hPa-200hPa.
The Coriolis-force terms on the equatorialβ -plane5 are given asC 1 = +βy(v2 − v2

e), C 2 = −βy(v1 − v1
e),

andC 3 = 0. Diabatic and frictional terms emulating boundary layersadjacent tor = y,z boundaries are of
the formFρ(r) := τ−1

ρ e−r/h(ρ −ρb) andF j(r) := τ−1
vj e−r/h(v j − v j

b), with subscriptb denoting a prescribed

boundary value; the attenuation time scales areτρ = ∆z2/κ andτvj = 0.125τρ (assuming diffusivity of heat in
water,κ = 1.39×10−7 m2s−1) and height scaleh = 2∆z, where∆z is the vertical gridsize. Given the model’s
formulation in density, heating is included indirectly viathe gradient of density at the lower boundary, which
induces convective vertical motions. Weak, moderate and strong heating is defined by the boundary value of
the density ratio(ρ0− ρb)/ρb=0.0016,0.0048 and 0.0096, respectively. The velocity values at the lower and
lateral boundaries are set to zero (v j

b = 0) unless specified otherwise. The upper boundary is freeslip, with
F j(z= H0) = 0 andFρ(z= H0) = 0.

The governing equations (9) are discretized in the transformed space using a second-order-accurate, flux-form
Eulerian, nonoscillatory forward-in-time approach, seeSmolarkiewicz and Szmelter(2009) for a recent dis-
cussion. All prognostic equations in (9) are integrated consistent with the trapezoidal rule, treating the in-
viscid adiabatic dynamics on the rhs implicitly. Frictional and heating terms are computed explicitly, to the

5The shallow atmosphere (or “traditional” approximation) has been applied here for consistency with simulations usingthe Inte-
grated Forecasting System (IFS), the operational global forecast model at ECMWF; see alsoWedi and Smolarkiewicz(2009).
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first order. Together with the curvilinearity of the coordinates, (9) leads to a complicated elliptic problem for
pressure (see Appendix A inPrusa and Smolarkiewicz, 2003, for the complete description) solved iteratively
using the preconditioned generalized conjugate-residualapproach — a nonsymmetric Krylov-subspace solver
(Smolarkiewicz et al., 2004).

The simulations described here broadly fit into the class of implicit large-eddy simulations (ILES). ILES dis-
penses with explicit subgrid-scale models and exploits truncation properties of high resolution (non-oscillatory)
finite-volume methods to mimic the spectral viscosity of standard LES (Domaradzki et al., 2003; Margolin et al.,
2006; Piotrowski et al., 2009).

The experiment is set in a zonally-periodic, equatorialβ -plane. The simulations are represented by 128×
128×64 gridpoints and the experimental parameters and their corresponding atmospheric values (discussed in
the text) are summarized in table1. The characteristic scalesL,U,β ′,H0 are used in the non-dimensionalization
(3) to equivalence laboratory-scale and atmospheric-scale motions in terms of the Rossby (Ro) and Richardson
(Ri = N2H2

0/U2 = O(10)) numbers and flow Froude number (Fr2 = U2/gH0 ≪ 1). All times, as well as zonal
and meridional lengths are normalized in the following byTD andLD, respectively.

Table 1: Experimental parameters.

Symbol Laboratory Scale Atmospheric Scale Description

L 2 m 4000 km length-scale
U 0.05 ms−1 50.0 ms−1 velocity-scale
β ′ 0.093 m−1s−1 2.3×10−11m−1s−1 Coriolis β
N 1.566 s−1 0.01 s−1 Brunt-Väisällä frequency
ue,(ve = 0,we = 0) 0.05 ms−1 50.0ms−1 ambient flow
x0 4.3 m 8600 km zonal domain length
y0 4.0 m 8000 km meridional domain width
H0 0.11 m 17000 m vertical domain height
T1,T2 120 s,100 s 2.7 days, 2.3 days forcing periods
a 0.2 m 400 km forcing amplitude
λ = x0/s(s= 6) 0.717 m 1430 km forcing wavelength
LD = NH0/βL 0.926 m 1850 km equatorial deformation radius
TD = LD/U 18.5 s 10 hours equatorial deformation time

The model uses a timestep∆t = 0.1 sand is run for up to eight hours ort∗ = t/TD ≈ 1555. Given an equatorial
deformation timeTD ≈ 10 hours in the Earth tropics, the simulations represent a laboratory-scale ‘climate’
realization.

The meridional boundaries are specified by the superposition of two waves with frequenciesω1 = 2π/T1 and
ω2 = 2π/T2,

yS(x,y, t) = −y0

2
(11)

+acos

(
ω2−ω1

2
t

)
sin

(
kxx−

ω1 + ω2

2
t

)
,

andyN(x,y, t) =−yS(x,y, t), wherey0 denotes the domain size in meridional direction (and analogouslyx0 spec-
ifies the domain size in zonal direction) andkx = 2π/λ with zonal wavelengthλ . Such a forcing prescribes a
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Figure 4: Vertical cross section of vertical velocity (meridionally averaged over the near equatorial region±0.844LD from
the mid-channel (y= 0)) at t∗ = 797 for the simulation of a stably stratified flow with uniform bottom heating (Fρ 6= 0)
and boundary layer friction (F j 6= 0) included. Contours are (× 10−5 ms−1).

boundary meander (a similar forcing is provided in case d of table 1 inMalanotte-Rizzoli et al., 1988) propagat-
ing eastward with the mean phase velocity(ω1+ω2)/2kx and pulsating with the frequency(ω2−ω1)/2. Unless
specified otherwise the boundary forcing is active in the period 108< t∗ < 1555 and the forcing amplitudea is
one tenth of the meridional extent of the domain. Equations (11) together with (9) allow for a time-dependent
meridional boundary forcing free of small-amplitude approximations.

3.2 Results

The principal result is that the meridional undulations (11) generate a long-lived, anomalous structure that
corresponds to a robust low-wavenumber and low-frequency signature in the wave-spectra obtained.

In the 3D simulations that include stratification and thermal forcing, the flow field is more complex than in the
2D results alluded to earlier. Figure3 shows the instantaneous eastward propagating anomalous wind (vectors)
at ≈ 0.4Ho (0.04 m height) aftert∗ = 797. The velocity vectors areO(ue) as in the 2D numerical results in
Fig. 1. Similar to the 2D simulations both a single pair of vorticesas well as a quadrupole structure persists at
different times. The near-equatorial easterly anomaly seen in Fig.3 prevails upto≈ 0.6Ho. At levels below, the
equatorial wind is flanked by two counter-rotating vorticeslocated nearer to the equator. Higher up a broader
quadrupole structure spanning the whole meridional extentof the domain is more evident (not shown). Overall
the 3D organization is reminiscent of Fig. 6a inMoncrieff (2004). The corresponding anomalous vertical
structure is displayed in Fig.4. Broad areas of dark and light shading denote upward and downward vertical
motions, respectively. The upper panel in Fig.5 shows the corresponding Hovmöller diagram of the eastward
moving temporal anomaly of velocity potential6 at 0.4Ho height. The dark contours indicate negative velocity
potential and light contours denote positive velocity potential. The latter corresponds to the center-left of the
Rossby solitary wave structure, Fig.3, and is associated with upward vertical motions, Fig.4.

Deep convection — here defined as the dry, buoyancy-driven vertical motions resulting from the prescribed
near-surface density gradient — develops randomly untilt∗ = 108 in the simulation, before starting the oscilla-

6Velocity potential anomalies are a common tracer of the MJO.However, it has been shown inChen and Chen(1997) that velocity
potential and streamfunction may be used equivalently, as both propagate eastward coherently for the equatorial MJO.
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Figure 5: Hovm̈oller diagrams of the temporal anomaly of velocity potential (× 10−5 m2s−1) at 0.4Ho for the simulation
of a stably stratified flow with uniform bottom heating (Fρ 6= 0) and boundary layer friction (F j 6= 0) at the bottom
and the lateral walls included. The upper panel shows the simulation with a continuous lateral boundary oscillation
(after t∗ = 108). The Hovm̈oller data has been averaged over the near equatorial region±0.844LD from the mid-channel
(y= 0) and lowpass filtered, to attenuate all frequencies larger and equal to the beat frequency of the boundary oscillation
(ω2−ω1)/2. The lower panel shows the wavenumber-frequency analysis.The frequency displayed is the inverse period
ω/2π . The spectral analysis as well as the computation of the temporal mean involved the full simulation period0< t∗ <
1555. Both time and the zonal length are nondimensionalized using the internal Rossby radius of deformation LD.
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Figure 6: Hovm̈oller diagram of the temporal anomaly of velocity potential(× 10−5 m2s−1) at 0.4Ho same as in Fig.5
but for the simulation where the lateral boundary oscillation is stopped at t∗ = 762.

tion of the lateral boundaries. This initial stage can be clearly distinguished by the regime change in Fig.5 with
the onset of zero or negative velocity potential. Judging from Fig.5 it takes approximately 140 dimensionless
time units after the start of the boundary oscillations, before the first solitary structure emerges. Initially higher
wavenumber modes are present. The wavenumber-frequency diagram of velocity potential in the lower panel
of Fig. 5 confirms a dominant eastward propagating wavenumber one mode in the 3D simulation with periods7

of approximatelyT∗ = 194. This period is significantly longer than the periods associated with the beat fre-
quency and the individual forcing frequencies of the boundary, and longer than the period obtained from the
linear dispersion relationship for a wavenumber one Rossbywave. After the solitary wave has fully developed
in the 3D simulation the eastward propagating Rossby solitary structure persists untilt∗ = 1555 dimensionless
time units, at which the simulation was stopped (Fig.5). When the meridional boundary meander was stopped
at t∗ = 762, the solitary wave equally continued to propagate eastward until approximatelyt∗ = 1300, showing
an extraordinary persistence (Fig.6).

A series of simulations — summarized in table2 — has been run to explore parametric sensitivities. Both
the specified boundary forcing and the meridional variationof the Coriolis force are found to be necessary
for attaining long-lived, large-scale solitary structures. There are, however, other sensitivities that prevent the
development of an anomalous solitary structure despite otherwise favorable conditions. First, if the fluid is
neutrally stratified no dominant low-frequency eastward orwestward propagation (Fig.7) is observed. Instead
a broad range of frequencies is found, unless the meridionalextent of the domain is decreased toy0 ≈ 1.6LD or
below, in which case the boundary forcing frequency8 becomes dominant.

In simulations with stable stratification but in the absenceof all frictional and heating terms (F j ≡ Fρ ≡ 0) a
propagating wavenumber one signal is not observed. While heating or friction imposed at the lateral boundaries
has little effect on the formation of solitary structures, further experiments show that the occurrence of solitary
wave solutions is quite sensitive to imposed variations in the boundary conditions atz= 0,H0. For example,
noslip upper boundary conditions weaken the eastward propagating signal. More importantly, if eitherF j 6= 0
or Fρ 6= 0 or both are different from zero at the lower boundary, eastward propagating solitary waves are ob-

7Given the periodicity of the domain, period refers to the time required for an anomalous solitary structure to propagateeastward
and return to the same longitudinal position.

8The spectral signal of the boundary forcing (with periods 100, and 120 seconds) cannot be seen in the figures even if the data is
unfiltered, since the postprocessing interval for the 3D data — underlying the spectral analysis — is 60s.
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Table 2: Summary of parametric sensitivity studies discussed in the text; the symbols and their units are defined in table1
and section33.1.

Sensitivity N2/g (ρ0−ρb)/ρb F j a λ ω1, ω2 β Figure

Control 0.25 0.0016 6= 0 0.2 0.717 100,120 0.093 3,4,5,6,11

No Coriolis 0.25 0.0016 6= 0 0.2 0.717 100,120 0 −

No stratification 0 0.0016 6= 0 0.2 0.717 100,120 0.093 7,11
No stratification 0 0 0 0.2 0.717 100,120 0.093 −
Stratification 1.×10−4 0 0 0.2 0.717 100,120 0.093 −
Stratification 1.×10−2 0 0 0.2 0.717 100,120 0.093 −

No bottom friction 0.25 0 0 0.2 0.717 100,120 0.093 11
No bottom friction 0.25 0.0016 0 0.2 0.717 100,120 0.093 −
No bottom friction 0.25 0.0048 0 0.2 0.717 100,120 0.093 8,9,11

No bottom heating 0.25 0 6= 0 0.2 0.717 100,120 0.093 10a,10b
Bottom heating 0.25 0.0048 6= 0 0.2 0.717 100,120 0.093 10c,10d
Bottom heating 0.25 0.0096 6= 0 0.2 0.717 100,120 0.093 10e,10f ,11

Forcing amplitude 0.25 0.0016 6= 0 0 0.717 100,120 0.093 −
Forcing amplitude 0.25 0.0016 6= 0 0.4 0.717 100,120 0.093 −
Forcing amplitude 0.25 0.0016 6= 0 0.05 0.717 100,120 0.093 −
Forcing amplitude 0.25 0.0016 6= 0 0.005 0.717 100,120 0.093 −

Forcing wavelength 0.25 0.0016 6= 0 0.2 0.926 100,120 0.093 −
Forcing wavelength 0.25 0.0016 6= 0 0.2 0.0926 100,120 0.093 −

Forcing frequency 0.25 0.0016 6= 0 0.2 0.717 100,− 0.093 −
Forcing frequency 0.25 0.0016 6= 0 0.2 0.717 random 0.093 −
Forcing frequency 0.25 0.0016 6= 0 0.2 0.717 yS 6= −yN 0.093 −
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Figure 7: Hovm̈oller diagram of the temporal anomaly of velocity potential(× 10−4 m2s−1) at 0.4Ho as in Fig.5 but for
the neutrally stratified case. Velocity potential is rescaled×10 for plotting.

served in the 3D simulations, cf. Figs.8 and 10a-b. If the reference simulation (cf. Figs.4 and5) is simplified
by eliminating just the frictional bottom boundary layer, the simulation still develops a dominant eastward
wavenumber one mode (Fig.8). Notably, if the oscillating boundary meander is stopped after t∗ = 762 in this
simulation, the solitary structure continues to persist until t∗ = 1555 (not shown), when the simulation was
stopped. Figure9 shows a typical cross section of vertical velocity att∗ = 849, averaged between±0.844LD.
One can identify deep upward and downward vertical motions within the eastward propagating envelope be-
tween 0.4−1.68LD, but suppressed otherwise. This particular region is characterized by an anomalous positive
velocity potential that is part of a solitary wave structuresimilar to the one depicted in Fig.3.

In the absence of bottom heating (Fig.10 a-b) the eastward propagation speed of the flow anomaly is thesame
compared to the simulation with bottom heating depicted in Fig.5, but the amplitude is weaker. In Fig.10,
panels c-f the same frictionF j 6= 0 as in the simulation of Fig.5 is applied. With moderate bottom heat-
ing the solitary structure is retained (Fig.10 panels c-d) but it propagates faster. When the magnitude of
the imposed bottom boundary layer heating is increased further, the signature of the anomalous flow pattern
weakens (Fig.10, panels e-f) and becomes more episodic, while convective vertical motions and higher hor-
izontal wavenumbers dominate. With strong heating the corresponding vertical mixing is enhanced leading
to zero static stability, as in the neutrally stratified case, and the disappearance of the dominant propagating
low-frequency signal.

Figure11 illustrates the zonal mean zonal wind shear in meridional (upper panel) and in vertical (lower panel)
direction for selected simulations. Both the strongly stratified simulation with no bottom friction or heating
(F j ≡ Fρ ≡ 0) and the neutrally stratified simulation are characterized by the absence of a vertical shear of
the zonal mean wind and do not show a significant wavenumber one signal. In addition, there is no significant
meridional shear of the zonal mean wind in the neutrally stratified case but there is a meridional shear in the
case with no bottom friction or heating. The simulation withstrong bottom heating has a vertical as well as a
meridional shear of zonal mean zonal wind but no significant wavenumber one signal (cf. Fig.10 f). Further,
the simulation with bottom heating (Fρ 6= 0) but no frictional bottom boundary layer imposed (F j = 0) does
not show a significant vertical shear, yet develops a strong wavenumber one signal. In summary, neither a
meridional nor a vertical shear of the zonal mean wind are sufficient for the occurrence of a low-frequency
wavenumber one signal. However, a meridional shear of the zonal mean zonal wind appears to be a necessary
condition for the occurrence of a low frequency signal in oursimulations.
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Figure 8: Hovm̈oller diagram of the temporal anomaly of velocity potential(× 10−5 m2s−1) at 0.4Ho as in Fig.5 but for
the simulation of a stably stratified flow with bottom heating(Fρ 6= 0) and no frictional bottom boundary layer imposed
(F j = 0)
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Figure 9: Vertical cross section of vertical velocity (meridionally averaged as in Fig.4) at t∗ = 849for the simulation of a
stably stratified flow with bottom heating (Fρ 6= 0) and no frictional bottom boundary layer imposed (F j = 0). Contours
shown are (× 10−4 ms−1).
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a b

c d

e f

Figure 10: Hovm̈oller diagram of the temporal anomaly of velocity potential(× 10−5 m2s−1) at 0.4Ho and the corre-
sponding wavenumber-frequency diagram of velocity potential at the same height as in Fig.5 but for the simulation of
a stably stratifed flow with (a-b) no bottom boundary layer heating (Fρ = 0), (c-d) moderate (3×) bottom boundary
layer heating, and (e-f) strong (6×) bottom boundary layer heating, respectively. The simulation with weak (1×) bottom
boundary layer heating is shown in Fig.5.
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Figure 11: Characteristic zonally averaged zonal flow (upper panel) for selected simulations. The lower panel shows a
meridionally averaged vertical profile (±0.844LD from the mid-channel y= 0) of the zonally averaged zonal flow.

18 Technical Memorandum No. 602



A nonlinear perspective on the dynamics of the MJO

Altering the forcing described in (11) by applying a frequency shift in the translation of only oneboundary —
such that the boundary meander is no longer phase-locked — produces a propagating eastward anomaly that is
more episodic, thus indicating the strengthening effect ofthe signal when a coherent pulsation and translation at
both boundaries exists. Increasing the amplitude of the boundary meander (a/L = 0.2) leads to a more episodic
appearance of solitary structures with a weaker amplitude and a faster propagation speed. Ultimately it leads
to the disappearance of the wavenumber one signal with larger forcing amplitudea. Decreasing the amplitude
(a/L = 0.025) produces a marked solitary structure with a slower propagation speed (T∗ ≈ 300), whereas at
smaller amplitude (a/L = 0.005) several Rossby waves but no coherent wavenumber one solitary structure is
observed. The solution dependence on the forcing amplitudesubstantiates the nonlinear perspective on the
dynamics of the MJO, advocated in this paper. Interestingly, these sensitivities are consistent with eastward
propagating convective anomalies found in aquaplanet simulations with the IFS — used in the operational
global NWP applications at ECMWF — conducted by the first author using sea surface temperature (SST)
gradients further away and closer to the equator (Neale and Hoskins, 2000), respectively. Furthermore, it is
found that a boundary forcing wavelength closer to the internal Rossby radius of deformationLD is the most
effective way to obtain long-lived coherent structures. Inthe above simulations,x0/s≈ 0.77LD; simulations
with x0/s= LD similarly produce persistent solitary waves. In contrast,a boundary forcing wavelengthx0/s=
0.1LD did not lead to solitary structures even after long time. This result suggests a resonance effect of the
system with respect to length-scalesO(LD), which is consistent with weakly nonlinear theory of Rossbysolitary
waves; cf.Boyd (1980).

4 Discussion

Section3 presents evidence how episodic solitary structures emergeand propagate in an idealized setting on the
equatorialβ -plane. The sensitivity experiments indicate the essential role of the propagating meridional bound-
ary meander to precondition the background flow in such a way that it supports the occurrence and persistence
of a solitary wave. Given the extraordinary persistence of the solitary wave structure in the laboratory-scale
simulations, even when the meander was stopped and despite the presence of the frictional bottom boundary
layer, suggests the alternative possibility that in the tropical atmosphere, perhaps only initially extratropical
influences play a decisive role in the formation of an MJO event.

The effect of stratification is measured by the ratioS 2 = (LD/L)2 = SH0Ro2/Fr2 with S= N2/g. For a given
Rossby and flow Froude number strong stratification is found to be an essential pre-requisite for the nonlinear
evolution of slow moving solitary Rossby waves in three dimensions. However, for either neutral (S= 0 m−1),
weak (S= 1.×10−4 m−1) or even moderate (S= 1.×10−2 m−1) stratification andF j ≡ Fρ ≡ 0 a fairly fast
eastward propagating anomaly is observed, similar (also inhorizontal structure) to the 2D case. In contrast,
with heating or boundary layer friction included, only the simulations with strong stratification result in a
slow moving Rossby solitary wave, whereas all other simulations are dominated by short-scale, convective
patterns without any coherent propagation. Interestingly, for strong stratification, which impliesN ≫ f (Gill ,
1982, p.449), the mechanism of vortex stretching is essentiallyeliminated and the motions are governed by
a conservation equation for absolute vorticity∇2ψ + f (Pedlosky, 1987, p.360). The dependence on strong
vertical stratification thus provides a reason why Rossby solitary waves have so far not been clearly identified
in the well-mixed upper layer of tropical oceans, either observationally or in general circulation models (Boyd,
2002).

In the absence of both heating and boundary layer friction (F j ≡ Fρ ≡ 0), and despite stable stratification
S= 0.25 m−1 (discussed earlier) the solitary wave appears unstable andan initially formed lower frequency
signal (just after the boundary meander started) dies out quickly. Despite a strong meridional shear, the simu-
lation shows no vertical zonal mean wind shear, a prerequisite for the energy transfer between barotropic and
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baroclinic equatorial wave-packets described inMajda and Biello(2003). The inclusion of bottom friction is
found to significantly effect the vertical shear of zonal mean wind potentially aiding the formation of solitary
structures. However, the boundary conditions imposed atz= 0,H0 appear to pre-condition the vertical mode
selection such that it may also weaken the amplitude or eliminate the occurrence of solitary waves.

The reduced equations ofMajda and Biello(2003) and Biello and Majda(2004a) have been extended in
Biello and Majda(2004b) to include the effect of boundary layer friction by considering the dynamics of the
Ekman layer (cf. Pedlosky(1987) p.185) and thermal dissipation. They conclude that the energy transfer
between (extratropical) barotropic and (equatorially trapped) baroclinic wave packets is not significantly al-
tered by dissipation. In particular, “strong coherent structures which form are less effected by dissipation of
mean flows since their energy transfer tends to be through direct wave-wave interaction” (Biello and Majda,
2004b). This finding is broadly in agreement with the laboratory-scale β -plane simulations that exhibit ex-
traordinary persistence and no diminishing of the initial amplitude in the presence of bottom boundary layer
friction. Notably, in the simulations the time-scale of theviscous boundary layer friction is shorter than the
Ekman time-scale.

The enhanced upward and downward motions within the solitary envelope are particularly strong in the absence
of the bottom boundary layer friction, cf. Fig.9. The idealized numerical experiments in section3 thus address
both the dry and the convectively active phase of an MJO event. The vertical motions are clearly organized
within the solitary envelope and also outside of it, cf. Figs. 4 and 9, whereas in the absence of a solitary
wave random convective patterns prevail. The 3D equation (1) in section2 entails a strongly two-dimensional
character and thus does not explain this enforcement of the vertical motions in the way seen in the simulations.
However, the behavior is consistent with the observations of the structure of individual equatorial MJO events,
and it is a robust result of our 3D nonlinear numerical simulations. Theoretical investigations (Moncrieff,
2004; Majda and Biello, 2004; Biello et al., 2007) suggest the importance of a vertically tilted structure and an
associated upscale momentum flux towards larger scales for the MJO maintenance. Observations of the MJO
appear to support a westward vertical tilt of zonal wind for the Pacific region but not for the Indian Ocean
region (Kiladis et al., 2005). In the ILES experiments described in this paper we note a distinct westward tilt of
the zonal wind anomalies associated with the fully developed solitary structure in the simulations with heating
and no bottom boundary layer friction. However, in the simulations with boundary layer friction included, the
zonal wind anomalies show no significant vertical tilt.

The laboratory-scale results may be extrapolated to the equatorial atmosphere (cf. Table1). The effect of strat-
ification is measured by the ratio(LD/L)2 which isO(1) for both the solitary structures in the laboratory-scale
simulations and for the typical length-scaleL of the equatorial MJO. BothCharney (1963) and
Yano and Bonazzola(2009) stress the strongly stratified character of the large-scale tropical environment,
which favors the evolution of nonlinear equatorial Rossby waves in the way discussed earlier. Quasi-non-
divergent flow, driven primarily by coupling with e.g. extratropical motions (Charney, 1963), can co-exist
with the commonly accepted view of planetary-scale tropical motions, with linear equatorial waves modulated
by diabatic heating (Matsuno, 1966; Wheeler and Kiladis, 1999; Yano and Bonazzola, 2009; Biello and Majda,
2005). In this sense, the MJO may be understood as a quasi-horizontal and quasi-non-divergent, synoptic-scale
tropical motion that persists at planetary scale due to nonlinearity, and that is governed by a particular solution
of the conservation equation for absolute vorticity∇2ψ + f .

The period in our simulations is a function of the domain sizeas well as the propagation speed and the relative
size of the solitary structure and its amplitude. Incidentally, if the nondimensionalized periodT∗ = 194 — as
typically obtained from the laboratory-scale simulations— is rescaled for the tropical atmosphere one obtains
a propagation speed of the solitary structure of 5.7 ms−1, which agrees well with the observational record
of the MJO (Zhang, 2005). An analysis of the power spectra of re-analysis data from ERA40 (Uppala et al.,
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2005) zonal mean zonal wind9 at 200hPa or at 500hPa shows a statistically robust deviation from an artificially
created red noise spectrum in the range 20-60 days (Wedi, 2004). Altogether this suggests that the MJO period
is variable and not uniquely defined by its propagation speed.

5 Conclusions

The hypothesis has been tested that eastward propagating MJO-like structures originate fundamentally as a
result of nonlinear (dry) Rossby wave dynamics. The series of numerical experiments vindicate the nonlinear
perspective on the dynamics of the MJO. In particular, theβ -plane model in section3.1 reproduces eastward
propagating solitary structures in 2D and 3D simulations, given propagating meanders are applied at the merid-
ional boundaries. The reductionisticβ -plane model stresses the importance of theβ -effect for the eastward
propagation and the importance of strong stratification in the presence of boundary layer heating or friction
for the occurrences of solitary structures that subsequently determine the organization of convection. Neutral
stratification is found to be a sufficient condition for the extinction of a solitary structure. Vertical and merid-
ional shear of the zonal mean zonal wind are not sufficient conditions for the occurrence of a low frequency
signal. However, a meridional shear of the zonal mean zonal wind appears to be a necessary condition for a
solitary structure to occur. The boundary conditions imposed atz= 0,H0 are found to substantially influence
the vertical mode selection and can contribute to the suppression of the solitary wave itself. Furthermore, ex-
cessive heating or boundary layer friction may eliminate a coherent low-frequency signal. Interestingly, the
permanence of solitary structures has been shown to persistbeyond the validity of the quasi-geostrophic theory
based on an expansion for small Rossby number, upto Ro→ 1, which thus includes the synoptic-scale regime
developed in the scale analysis ofCharney(1963).

The main goal of this paper was to demonstrate the fundamental role of resonant nonlinear wave dynamics for
the origin and evolution of periodically reoccuring anomalous flow patterns in the equatorial troposphere. As a
result, the MJO may be understood as a quasi-horizontal and quasi-non-divergent synoptic-scale motion that is
driven, or rather preconditioned, by coupling with extratropical weather, and that persists at planetary scale due
to nonlinearity. This motion is governed by a particular solution of the conservation law for absolute vorticity
∇2ψ + f (Charney, 1963). Consequently, the process of convection is found to be important but chronologically
secondary to the MJO evolution. A case study of an individualMJO event (Hsu et al., 1990) supports this view.
However, given the study inMatthews(2008) there may exist more than one MJO mechanism in the tropical
atmosphere.

The authors found further numerical evidence for a robust low-wavenumber and low-frequency signature in
the equatorial wave spectra at 600 hPa and 200 hPa of idealized Held-Suarez global climate (Held and Suarez,
1994) experiments on the sphere. Notably, these results were obtained from the dynamical core simulations of
two entirely different GCMs, IFS and EULAG. The results compare also well with analyzed ERA40 data of
individual MJO events, where velocity potential anomaliesare found to exist long before substantial convection
develops. Case studies of individual MJO events reported inHsu et al.(1990) and more recently inRay et al.
(2009) support the view that the MJO initiation and maintenance — at least for some MJO events — is a global
problem. These findings corroborate the results of this paper.
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