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Abstract  

Research in land surface data assimilation has grown rapidly over the last decade. We provide a brief overview 

of key research contributions by United States National Aeronautics and Space Administration (NASA), 

including the continued development and application of the Ensemble Kalman filter (EnKF) for land data 

assimilation and the NASA Land Information System (LIS) software infrastructure. These systems were used 

successfully to assimilate satellite observations of surface soil moisture, land surface temperature, snow cover, 

and terrestrial water storage. Additionally, synthetic experiments were conducted in preparation for the NASA 

Soil-Moisture-Active-Passive (SMAP) mission. 

 

1. Motivation 

Land surface conditions are intimately connected with the global climate system and have been, 

through different pathways, associated with predictability of atmospheric variability. Land surface 

models driven with observation-based meteorological forcing data (precipitation, radiation, air 

temperature and humidity, etc.) offer estimates of global land surface conditions (Rodell et al. 2004). 

Satellite remote sensing provides complementary information about land surface conditions, including 

surface soil moisture, snow water equivalent, snow cover, land surface temperature (LST), and 

terrestrial water storage (TWS).  

Land data assimilation systems combine the modeled land surface fields with observational estimates 

and produce dynamically consistent, spatially complete and temporally continuous estimates of global 

land surface conditions based on both sources of information. The land assimilation estimates can be 

used, for example, within atmospheric assimilation systems and for the initialization of global short-

term climate forecasts. Through such use land data assimilation systems offer a unique validation and 

monitoring perspective because the satellite-based land surface data are continually confronted with 

independent observations and model estimates. Land data assimilation systems can also be used to 

establish measurement requirements for future land surface satellite missions such as the SMAP 

mission.  

2. Ensemble-based land data assimilation  

Ensemble-based algorithms have emerged as a common and promising method for land assimilation 

(Reichle et al. 2002a,b). Research at NASA contributed significantly to this progress through the 

development of an ensemble-based land data assimilation system (Reichle et al. 2009) and the LIS 

software framework (Kumar et al. 2008a,b). At NASA, the EnKF has been used primarily with the 
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NASA Catchment land surface model (Koster et al. 2000). Through LIS, other land surface models 

can also be used.  

Large differences have been identified between the temporal moments of satellite and model 

estimates, for example, of soil moisture (Reichle et al. 2004, 2007). Because the standard EnKF is 

only designed to address short-term “random” errors, the climatological differences need to be 

addressed separately within the assimilation system. This can be accomplished by scaling the satellite 

observations to the model’s climatology so that the cumulative distribution functions (cdf) of the 

satellite soil moisture and the model soil moisture match (Reichle and Koster 2004). For weather and 

climate forecast initialization, knowledge of soil moisture anomalies is, in any case, more important 

than knowledge of absolute soil moisture. 

Generally, data assimilation products are sensitive to input observation and model error variances. 

Figure 1 shows an example from a suite of experiments in which synthetic surface soil moisture 

observations are assimilated (Reichle et al. 2008b). Each assimilation experiment has a unique set of 

input error parameters that leads to a unique pair of scalars: the (space and time) average forecast error 

variance (P0) and the input observation error variance (R0) for surface soil moisture. We can thus plot 

two-dimensional surfaces of filter performance as a function of sqrt(P0) and sqrt(R0). Figure 1a, for 

example, shows one such surface with the performance measure being the RMSE of surface soil 

moisture estimates from the (non-adaptive) EnKF.  

 

 

Figure 1. RMSE in m
3
m

-3 
of surface soil moisture for (a) standard and (b) adaptive EnKF as 

function of input error parameters: (ordinate) forecast and (abscissa) observation error std-dev. 

Each plus sign indicates the result of a 19-year assimilation integration over the Red-Arkansas 

domain. Circled plus signs indicate experiments that use true input error parameters for 

assimilation. Thick gray lines indicate RMSE of open loop integration.  

Figure 1a illustrates that the estimation error in surface soil moisture is smallest near the experiment 

that uses the true model and observation error inputs. The minimum estimation error is around 0.02 

m
3
m

-3
, down from the open loop (no assimilation) value of 0.035 m

3
m

-3
. The estimation error 

increases as the input error parameters deviate from their true values. Figure 1a also indicates where 

the estimation error surface intersects the open loop error. For grossly overestimated model and 
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observation error variances, the assimilation estimates of surface soil moisture are in fact worse than 

the open loop estimates. Ultimately, the success of the assimilation (measured through independent 

validation) suggests whether the selected input error parameters are acceptable. 

3. Adaptive filtering 

Adaptive filtering methods can assist with the estimation of the filter’s input error parameters. The 

central idea behind adaptive filtering methods is that internal diagnostics of the assimilation system 

(such as the statistics of the "observation-minus-forecast" residuals and the assimilation increments) 

should be consistent with the values that are expected from input parameters provided to the data 

assimilation system. Following Desroziers et al. (2005), Reichle et al. (2008b) developed an adaptive 

algorithm for land assimilation that permits the separate estimation of model and observation error 

parameters. An example of the benefits of the adaptive module is given in Figure 1b (Reichle et al. 

2008b). The adaptive estimation of input error parameters leads to improved estimates of surface soil 

moisture regardless of initial error estimates, except for the case of severe underestimation of the input 

observation error variance. The poor performance in this special case is due to technicalities in the 

implementation of the adaptive module and can easily be avoided in applications. 

4. Observing system design  

For the design of new satellite missions it is critical to understand just how uncertain satellite retrievals 

can be and still be useful. Consider, for example, that a mission assimilation product will have some 

target accuracy requirement. For a given level of model skill, a specific level of retrieval skill would 

be needed to bring the merged product to the target accuracy. The required skill level for the retrievals 

would undoubtedly increase with a decrease in the skill of the raw model product. Quantitative 

knowledge of such retrieval skill requirements, for example, is directly relevant to the planning of the 

L-band (1.4 GHz) SMAP mission. 

Reichle et al. (2008a) designed an Observing System Simulation Experiment (OSSE) that determines 

the contribution of surface soil moisture retrievals to the skill of land assimilation products (soil 

moisture and evapotranspiration) as a function of retrieval and land model skill. The OSSE consists of 

a suite of synthetic data assimilation experiments based on integrations of two distinct land models, 

one representing “truth”, and the other representing our flawed ability to model the true processes. 

Skill is measured in terms of the correlation coefficient R between the time series of the various 

estimates (expressed as anomalies relative to their seasonal climatologies) and the assumed (synthetic) 

truth.  

Each assimilation experiment is a unique combination of a retrieval dataset (with a certain level of 

skill, measured in terms of R) and a model scenario (with its own level of skill). We can thus plot two-

dimensional surfaces of skill in the data assimilation products as a function of retrieval and model 

skill. Figure 2a, for example, shows the two dimensional surface corresponding to the surface soil 

moisture product. As expected, the skill of the assimilation product generally increases with the skill 

of the model and the skill of the retrievals, for both surface (Figure 2a) and root zone (Figure 2b) soil 

moisture estimates. Except for very low model skill, the contour lines are more closely aligned with 

lines of constant model skill; that is, the skill of the assimilation product is more sensitive to model 

skill than to retrieval skill. 
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Figure 2. Skill (R) of assimilation product for (a) surface and (b) root zone soil moisture as a 

function of the (ordinate) model and (abscissa) retrieval skill. Each plus sign indicates the result 

of one 19-year assimilation integration over the entire Red-Arkansas domain. Also shown are 

results from Reichle et al. (2007) for (triangle) AMSR-E and (square) SMMR.  

Figure 2 can easily be redrawn in terms of skill improvement through data assimilation (not shown). 

The skill of the surface and root zone soil moisture assimilation products always exceeds that of the 

model. As expected, the improvements in R through assimilation increase with increasing retrieval 

skill and decrease with increasing model skill. Perhaps most importantly, though, is that even 

retrievals of low quality contribute some information to the assimilation product, particularly if model 

skill is modest. 

We can also compare the contoured skill levels of Figure 2 with those obtained by Reichle and Koster 

(2005) and Reichle et al. (2007) through the assimilation satellite retrievals from the Scanning 

Multichannel Microwave Radiometer (SMMR) and the Advanced Microwave Scanning Radiometer 

for the Earth Observing System (AMSR-E). From the contours of Figure 2a we expect that for 

retrievals with R=0.38 and model estimates with R=0.43, the surface soil moisture assimilation 

product would have skill of about R=0.50, which is indeed consistent with the AMSR-E result. For 

root zone soil moisture, the assimilation of AMSR-E surface soil moisture retrievals also yields 

improvements, though these improvements fall somewhat short of those suggested by Figure 2b. 

Possible explanations include (i) the imperfect translation of information from the surface layer to the 

root zone in the data assimilation system and (ii) the fact that the in situ data used for validation of the 

AMSR-E result are themselves far from perfect (unlike the perfectly known truth of the synthetic 

experiment).  

5. Terrestrial water storage (TWS) assimilation 

The Gravity Recovery and Climate Experiment (GRACE) satellite mission provides unprecedented 

observations of variations in TWS, albeit at low spatial (>105 km2) and temporal (monthly) 

resolutions. Depending on topographic and climatologic conditions, TWS variability may be 

dominated by ground water, soil moisture, surface water, and/or snow. Zaitchik et al. (2008) 

assimilated GRACE TWS data for the Mississippi River basin. Because of the temporally integrated 
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nature of the GRACE observations, the assimilation was set up as an ensemble smoother and GRACE 

TWS anomalies were converted to absolute TWS values by adding the corresponding time-mean TWS 

from a Catchment model simulation. Ensemble perturbations were generated with a horizontal 

correlation scale of 2 degrees, which roughly represents error scales in global-scale precipitation fields 

(Reichle and Koster 2003).  

The assimilation system separates the contributions of GRACE observations into individual TWS 

components and down-scales the GRACE observations to scales (~103 km2) typical of global land 

surface integrations. Assimilation products include catchment-scale groundwater, root zone soil 

moisture, surface heat fluxes, and runoff. The spatial resolution of the assimilation products is much 

higher than that of GRACE observations alone, making the results more useful for water resources and 

forecasting applications. Figure 3 shows that the groundwater time series from the GRACE 

assimilation integration resembles in situ estimates more closely than model estimates alone, with 

RMSE reduced by 21% (from 23.5 mm to 18.5 mm). For the four sub-basins of the Mississippi, 

RMSE reductions ranged from 7% to 36%.  

 

 
Figure 3: Groundwater, soil moisture, and snow water equivalent for the Mississippi river basin 

for estimates from (A) the model without assimilation and (B) the GRACE assimilation integration. 

Also shown are (solid line) area averaged daily in situ groundwater observations and (diamonds) 

monthly GRACE-derived TWS anomalies. Note that GRACE assimilation improves agreement of 

the groundwater estimates with in situ data. GRACE and modeled TWS are adjusted to a common 

mean, as are observed and modeled groundwater.  
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Assimilation of GRACE observations also produced improved estimates of hydrologic variability at 

the sub-observation scale and a small increase in correlation between runoff estimates and gauged 

river flow in the majority of test watersheds (not shown). The results demonstrate that – through data 

assimilation – coarse resolution, vertically integrated TWS anomalies from GRACE can be spatially 

and temporally disaggregated and attributed to different components of the snow-soil-aquifer column 

in a physically meaningful way. 

6. Multi-model soil moisture assimilation 

Root zone soil moisture controls the land-atmosphere exchange of water and energy and exhibits 

memory that may be useful for climate prediction at monthly scales. Assimilation of satellite-based 

surface soil moisture observations into a land surface model is an effective way to estimate large-scale 

root zone soil moisture. The propagation of surface information into deeper soil layers depends on the 

model-specific representation of subsurface physics that is used in the assimilation system. In a suite 

of EnKF experiments Kumar et al. (2009) used LIS to assimilate synthetic surface soil moisture 

observations into four different models (Catchment, Mosaic, Noah and CLM). They demonstrated that 

identical twin experiments significantly overestimate the information that can be obtained from the 

assimilation of surface soil moisture observations. The second key result indicates that the potential of 

surface soil moisture assimilation to improve root zone information is higher when the surface to root 

zone coupling is stronger. The experiments also suggest that (faced with unknown true subsurface 

physics) overestimating surface to root zone coupling in the assimilation system provides more robust 

skill improvements in the root zone compared with underestimating the coupling.  

7. Land surface temperature (LST) assimilation  

Satellite retrievals of LST (also referred to as “skin temperature”) are available from a variety of polar 

orbiting and geostationary platforms. Assimilating such LST retrievals into a land surface model (that 

is either driven by observed meteorological forcing data or coupled to an atmospheric model) should 

improve estimates of land surface conditions. Similar to surface soil moisture, however, LST data 

from retrievals and models typically exhibit very different climatologies for a variety of reasons. 

Bosilovich et al. (2007) developed an algorithm for LST assimilation into a global, coupled land-

atmosphere data assimilation system by introducing an incremental bias correction term into the 

model’s surface energy budget and assuming that the LST bias is solely due to the model.  

As an alternative strategy, Reichle et al. (2009) tested several combinations of dynamic bias 

estimation and a priori rescaling. The latter approach does not assume that the model is the only source 

of bias. They assimilated LST retrievals from the International Satellite Cloud Climatology Project 

(ISCCP) with the ensemble-based, off-line land data assimilation system into the Noah and Catchment 

(CLSM) land surface models. LST is described very differently in the two models. When compared to 

in situ measurements, LST estimates from Noah and CLSM without data assimilation ("open loop") 

are comparable and superior to that of ISCCP retrievals. Assimilation of ISCCP retrievals provides 

modest yet statistically significant improvements (over open loop) of 0.5-0.7 K in terms of raw RMSE 

and of 0.3 K in terms of anomaly RMSE. Surface turbulent flux estimates from CLSM and Noah 

assimilation integrations are essentially identical to open loop estimates. Noah assimilation estimates 

of ground heat flux, however, are significantly worse. Provided the assimilation system is properly 

adapted to each land model, the benefits from the assimilation of LST retrievals are comparable for 

both land models.  
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8. Snow data assimilation 

Snow cover over land has a significant impact on the surface radiation budget, turbulent energy fluxes 

to the atmosphere, and local hydrological fluxes. For this reason, inaccuracies in the representation of 

snow-covered area (SCA) within a land model can lead to substantial errors in both offline and 

coupled simulations. Data assimilation algorithms have the potential to address this problem. 

However, the assimilation of SCA observations is complicated because SCA indicates only the 

presence or absence of snow and because assimilated SCA observations can introduce inconsistencies 

with atmospheric forcing data, leading to nonphysical artifacts in the local water balance. Zaitchik and 

Rodell (2009) present a novel assimilation algorithm that introduces Moderate Resolution Imaging 

Spectroradiometer (MODIS) SCA observations to the Noah land model in global, uncoupled 

simulations. The algorithm uses observations from up to 72 h ahead of the model simulation to correct 

against emerging errors in the simulation of snow cover while preserving the local hydrologic balance. 

This is accomplished by using future snow observations to adjust air temperature and, when necessary, 

precipitation within the land model. In global, offline integrations, this new assimilation algorithm 

provided improved simulation of SCA and snow water equivalent relative to open loop integrations 

and integrations that used an earlier SCA assimilation algorithm. These improvements, in turn, 

influenced the simulation of surface water and energy fluxes during the snow season and, in some 

regions, on into the following spring. 

In another study, De Lannoy et al. (2009) tested four EnKF-based methods to assimilate coarse-scale 

(25 km) snow water equivalent (SWE) observations (typical of passive microwave satellite retrievals) 

into fine-scale (1 km) land model simulations. Synthetic coarse-scale observations were assimilated 

directly using an observation operator for mapping between the coarse and fine scales or, alternatively, 

after disaggregation (re-gridding) to the fine-scale model resolution prior to data assimilation. In either 

case observations were assimilated either simultaneously or independently for each location. Results 

indicate that assimilating disaggregated fine-scale observations independently is less efficient than 

assimilating a collection of neighboring disaggregated observations. Direct assimilation of coarse-

scale observations is superior to a priori disaggregation. Independent assimilation of individual coarse-

scale observations can bring the overall mean analyzed field close to the truth, but does not necessarily 

improve estimates of the fine-scale structure. There is a clear benefit to simultaneously assimilating 

multiple coarse-scale observations even as the entire domain is observed, indicating that underlying 

spatial error correlations can be exploited to improve SWE estimates. The latter method avoids 

artificial transitions at the coarse observation pixel boundaries and can reduce the RMSE by 60% 

when compared to the open loop in this study. 

9. Land Information System (LIS) 

Another important development is the gradual implementation of the ensemble-based data assimilation 

modules into LIS (Kumar et al. 2008a,b), a land surface modeling framework that integrates various 

community land surface models, ground and satellite-based observations, and data management tools 

within an architecture that allows interoperability of land surface models and parameters, surface 

meteorological forcing inputs, and observational data. The high performance infrastructure in LIS 

provides adequate support to conduct assimilation experiments of high computational granularity. 

Integration of the assimilation modules into LIS therefore permits their use with a variety of land 

surface models and makes the NASA contributions to land data assimilation development accessible 

to the research community. 
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In fact, LIS has been used in some of the land assimilation research mentioned above (for example, 

(Kumar et al. 2009) and (De Lannoy et al. 2009)). LIS has also been coupled to the Weather Research 

and Forecasting Model (WRF). This system was used by Santanello et al. (2009) to develop a 

framework for diagnosing land-atmosphere interactions by determining the diurnal evolution of 

temperature and moisture in the soil and the planetary boundary layer. The LIS-WRF system and the 

land-atmosphere coupling diagnostics framework will enable future land assimilation experiments in 

the coupled land-atmosphere system. 

10. Conclusions and future directions 

Much has been accomplished with the development and application of ensemble-based land 

assimilation over the past few years at NASA and elsewhere. The general ensemble-based framework 

of the system has been established and demonstrated with the assimilation of satellite-based land 

surface observations. The results presented here, however, all reflect the impact of uni-variate 

assimilation of land surface observations. Errors in the coupled land-atmosphere system are difficult to 

pin down because they may be related to any number of causes, including errors in precipitation, cloud 

biases, or errors in land surface parameters. The multi-variate assimilation of land surface observations 

should lead to more consistent and improved estimates of the land surface water and energy budget. 

Future developments will thus include the implementation of the land assimilation as an integral 

component within the next-generation NASA global atmospheric data assimilation system.  
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