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Stochastic Parametrization and Model Uncertainty

Abstract

Stochastic parametrization provides a methodology for representing model uncertainty in ensemble fore-
casts, and also has the capability of reducing systematic error through the concept of nonlinear noise-induced
rectification. The stochastically perturbed parametrization tendencies scheme and the stochastic backscatter
scheme are described and their impact on medium-range forecast skill is discussed. The impact of these
schemes on ensemble data assimilation and in seasonal forecasting is also considered. In all cases, the re-
sults are positive. Validation of the form of these stochastic parametrizations can be found by coarse-grain
budgets of high resolution (e.g. cloud-resolving) models; some results are shown. Stochastic parametriza-
tion has been pioneered at ECMWF over the last decade, and now most operational centres use stochastic
parametrization in their operational ensemble prediction systems - these are briefly discussed. The seam-
less prediction paradigm implies that serious consideration should now be given to the use of stochastic
parametrization in next generation Earth System Models.

1 Introduction

Nowadays, most operational weather prediction centres run ensemble forecast systems. In doing so, they
recognise that predicting the uncertainty in prognostic variables such as temperature, precipitation, wind speed
and so on, is central for robust decision making across a range of weather forecast applications. Sources of
forecast uncertainty include limitations on the accuracy and representativity of observations, on the methods by
which these observations are assimilated into forecast models, and on the forecast models themselves.

This paper focuses on model uncertainty, i.e. the inherent uncertainties associated with computational represen-
tations of the underlying partial differential equations that govern atmospheric motion. The basis for stochastic
parametrization (Palmer, 1997, 2001) is that whilst these partial differential equations may themselves be de-
terministic, at the computational level, the equations of motion for weather are not deterministic. For example,
the bulk-formula parametrizations, largely based on the notion of ensembles of sub-grid processes in quasi-
equilibrium with the grid scale flow, necessarily approximate sub-grid tendencies in a turbulent system like the
atmosphere with its power-law energy spectrum. Hence we look for stochastic representations of the compu-
tational equations of motion. In an ensemble forecast, different realisations of these stochastic representations
are used to generate the “model error” component of ensemble dispersion.

Sections 2 describe two complementary approaches to stochastic parametrization. The Stochastically Perturbed
Parametrization Tendencies Scheme (SPPT) is based on the approach of Buizza et al. (1999). The Stochas-
tic Backscatter Scheme is based on implementations in large-eddy simulation models (Mason and Thomson,
1992) and subsequent adaption for numerical weather prediction (NWP) by Shutts (2005). The two approaches
address different aspects of the parametrization problem. SPPT is concerned with aspects of uncertainty in
existing parametrization schemes. The origin of these uncertainties is partly associated with the fact that the
sub-grid processes, whose effects are to be parametrized, may only have small ensemble size within a grid
box. Moreover, SPPT can address additional errors that arise from the choice of the parametrization algorithms
representing the physical processes and their interactions. This latter aspect includes for instance the choice of
parameter settings in the parametrization algorithms. Hence SPPT generalises the output of existing sub-grid
parametrizations as probability distributions. Backscatter, on the other hand, describes a physical process miss-
ing in conventional parametrization schemes. Because this process is inherently linked to underlying turbulent
energy cascades in the atmosphere, the parametrized formulation of backscatter is necessarily stochastic. In this
sense, backscatter can be thought of as describing aspects of structural uncertainty in conventional parametriza-
tion. The impact on medium-range forecast skill of the two schemes is documented and discussed.

Since observations are assimilated in a forecast model as part of the process of creating a set of initial conditions,
model uncertainty is a component of initial condition uncertainty. At ECMWF, an ensemble data assimilation
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system is being developed in order to estimate as explicitly as possible, a probability distribution of initial state.
In Section 3, the impact of the stochastic parametrization schemes of Section 2 are studied in the context of this
ensemble data-assimilation system.

Although devised principally for numerical weather prediction, the stochastic parametrization schemes de-
scribed in Section 2 are relevant for longer timescale climate forecasts such as the seasonal to interannual
timescales. There are two aspects relevant here. Firstly, as with numerical weather prediction, stochastic
parametrization schemes can provide representations of model uncertainty on climate timescales. On seasonal
and longer timescales, the conventional approach to the representation of model uncertainty is through the
multi-model ensemble (e.g. Palmer et al. 2004). However, the multi-model ensemble concept is ad hoc: indi-
vidual component models have not been developed to represent aspects of model uncertainty. As such it is to be
hoped that ensembles which incorporate more rigorously defined stochastic parametrizations are capable of out-
performing the multi-model ensemble. This issue is currently being studied in the ENSEMBLES project, and
preliminary results are shown in Section 4. However, there is a second reason why stochastic parametrization
might be especially relevant on longer climate timescales: the systematic bias of a climate model can be af-
fected by nonlinear noise-induced rectification. Results from earlier cycles of the ECMWF model have already
shown a positive impact of stochastic parametrization on model bias (Jung et al., 2005; Palmer et al., 2005;
Berner et al., 2008, 2009a). In Section 4 we discuss the impact of stochastic parametrization on systematic
error from seasonal integrations.

How can one develop stochastic parametrizations rigorously? In Section 5 we describe an approach developed
in Shutts and Palmer (2007) based on coarse-graining of a high resolution (potentially cloud-resolving) model.
The basic approach is to define output from the high resolution model as “truth”, and to study the statistics of
consequent error associated with a conventional parametrization based on coarse-grain grid-box averaged fields,
where the size of these coarse-grain grid boxes are representative of typical numerical weather prediction or
climate models. As discussed, a number of features of the stochastic schemes described in Section 2 can be
validated using this approach.

Since the implementation of the Buizza et al. (1999) scheme, a number of other operational centres have begun
implementing stochastic parametrization schemes in their forecast models. A brief description of these other
stochastic parametrization schemes is given in Section 6.

Some concluding remarks are made in Section 7.

2 Stochastic Parametrizations

2.1 Stochastically Perturbed Parametrization Tendencies (SPPT)

In 1998, a representation of model uncertainty was introduced in the EPS by Buizza et al. (1999). The scheme
perturbs the total parametrized tendency of physical processes with multiplicative noise. As the perturbations
are applied to tendencies due to physical processes (as opposed to the dynamics), the term “stochastic physics”
was coined. As this term is somewhat unspecific, it was decided to break with tradition and this class of model
uncertainty representation is now referred to as Stochastically Perturbed Parametrization Tendencies (SPPT)
in the following. The original version of SPPT by Buizza, Miller and Palmer, will be referred to as the BMP
scheme. Since its introduction, the BMP scheme has not been changed. The BMP scheme uses random patterns
that are piecewise constant in space and time. This was a convenient choice for the initial implementation.
However, the discontinuities in the perturbations at the places and times where the random numbers change
are somewhat unphysical. The revised pattern described here varies smoothly in space and time. In addition,
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the distribution of perturbations is changed from a multivariate uniform distribution to a univariate Gaussian
distribution. This latter change is designed to address the overprediction of heavy precipitation events.

2.1.1 The original SPPT scheme (BMP)

In the BMP scheme, multiplicative noise perturbs the net parametrized physics tendency (Buizza et al., 1999).
The tendencies of the wind components u,v, temperature T and humidity q are perturbed. Let X denote the net
parametrized physics tendency of any variable. For an unperturbed tendency Xc, the perturbed tendency Xp is
computed as

Xp = (1+ rX)Xc, (1)

where rX is a random number drawn from a uniform distribution in the range [−0.5,0.5]. The perturbations
are multivariate, i.e. different random numbers ru,rv,rT ,rq are used for the four variables. In order to impose
spatial correlations, the same random numbers are used in the whole column over boxes 10 ◦ by 10 ◦ in latitude
and longitude. Temporal correlation is achieved by using the same random numbers over 6 consecutive model
time steps, i.e. r is constant for 3 h and 4.5 h for TL399 and TL255 forecasts, respectively. If a critical humidity
linked to saturation is exceeded due to the perturbations, the perturbations of temperature and humidity are
not applied. The critical humidity is set to the saturation value for temperatures greater 250 K. For lower
temperatures the critical value allows for some supersaturation in order to account for homogeneous nucleation
(Tompkins et al., 2007).

2.1.2 The revised SPPT scheme

The revised SPPT scheme uses perturbations collinear to the unperturbed tendencies. For all variables X ∈
{u,v,T,q}, the perturbed tendency is obtained with the same random number r

Xp = (1+ rµ)Xc. (2)

The distribution from which r is drawn is close to a Gaussian distribution. The factor µ ∈ [0,1] is used for
reducing the perturbation amplitude close to the surface and in the stratosphere. The replacement of the mul-
tivariate distribution (ru,rv,rT ,rq) of the BMP scheme by a univariate distribution is an attempt to introduce
perturbations that are more consistent with the model physics. If the model state prefers to stay on a manifold,
an attractor, the multivariate distribution of the BMP scheme is likely to frequently push the model state off
its attractor. In contrast, the univariate perturbations of the revised scheme, will keep the perturbed state much
closer to the model attractor as long as the perturbation amplitude and the curvature of the attractor are not
too large. Initial testing of the revised scheme at TL255 resolution confirmed that the introduction of univariate
perturbations has a significant impact on the tail of the precipitation distribution.

The random numbers are described through a spectral pattern generator of the same type used in the kinetic
energy backscatter scheme described by Berner et al. (2009b). This type of pattern generator has also been
used by Li et al. (2008) to perturb parameters in order to represent model uncertainty. The spectral coefficients
of r are described with auto-regressive processes of first order (AR(1)). The variance depends on the total
wavenumber. A variance spectrum has been chosen that yields a spatial autocorrelation corresponding to the
equivalent of a Gaussian on the sphere (Weaver and Courtier, 2001). Details are described in Appendix 8.1.
Gaussian random numbers are used to force the AR(1) processes. Therefore, the pattern r in grid point space
has also a Gaussian distribution as it is a linear combination of Gaussian random variables through the spectral
transform. In order to limit perturbations to physically reasonable limits, the pattern is bounded to the range of
±3 standard deviations.
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Identifier Description
NoTenPert no tendency perturbations

SPBMP Stochastically Perturbed Parametrization Tendencies SPPT; original version cf. Buizza, Miller
and Palmer (1999)

SP1M revised SPPT scheme with moderate amplitude, σ = 0.50, clipped at±3σ , τ = 6 h, L = 500 km
SP1L revised SPPT scheme with large amplitude, σ = 0.75, clipped at ±2σ , τ = 6 h, L = 500 km
SP2 two-scale version of the revised SPPT scheme: scale 1: σ1 = 0.50, τ1 = 6 h, L1 = 500 km;

scale 2: σ2 = 0.20, τ2 = 30 d, L2 = 2500 km; sum clipped at ±3σ , where σ = (σ2
1 +σ2

2 )1/2

Table 1: List of model uncertainty representations.

For reasons of numerical stability and physical realism, the perturbations have been tapered to zero in the
lowermost atmosphere and in the stratosphere. In initial tests, tendencies were perturbed in the entire atmo-
sphere. For standard deviations of 0.5, numerical instabilities were encountered. Further testing showed that
the cause of the numerical instability are the perturbations in the lowermost part of the atmosphere. The reason
is the delicate balance between model dynamics and vertical momentum transport which is established in the
lowest model levels on timescales of the order of minutes. As a compromise between numerical stability and
high probabilistic skill, the tendency perturbations were reduced towards zero close to the surface (factor µ in
Eq. (2)). There are no tendency perturbations in the lowest≈ 300 metres of the atmosphere. In a transition layer
up to ≈1300 metres, the perturbations are smoothly ramped up to full amplitude. The reduction of the pertur-
bations close to the surface removed the numerical instabilities and allowed to use perturbation amplitudes of
0.5 and larger.

In general, the net physics tendency in the stratosphere is dominated by radiative forcing. Radiative tendencies
are expected to be relatively accurate in the stratosphere and with errors that are predominantly large scale, i.e.
with correlation lengths far larger than 500 km. Therefore, it was decided not to apply the tendency perturba-
tions in the stratosphere in the revised scheme. The transition zone for the tapering has been placed in the layer
from 50 to 100 hPa. Note, however, that this procedure will neglect perturbations to the gravity wave drag that
may be locally significant in the stratosphere.

As in the BMP scheme, the perturbations of temperature and humidity are not applied if they lead to humidity
values exceeding the critical (super)saturation value. In contrast to the BMP scheme, the perturbations to
humidity and temperature are also not applied, if they lead to negative humidity.

2.1.3 Experimentation

Initial tests at TL255 resolution gave a first insight into the behaviour of the revised SPPT scheme and were
used to identify suitable configurations for testing at higher resolution. The experiments described here have a
resolution of TL399 up to day 10 and TL255 from day 10 to 15 with 62 vertical levels. All experiments use the
same set of singular vector-based initial perturbations (cf. Leutbecher and Palmer 2008) and have 50 perturbed
forecasts. The experimentation is with model cycle 35R1. The different tendency perturbations are evaluated
over a boreal winter period (November/December 2007, 20 cases) and a boreal summer period (July/August
2008, 20 cases).

Table 1 lists the configurations for model uncertainty representations that are considered here. There are two
reference experiments: In Exp. NoTenPert, model tendencies are not perturbed. Experiment SPBMP uses the
BMP version of the stochastically perturbed parametrization tendencies.

Three different configurations of the revised SPPT scheme are considered. In Exps. SP1M and SP1L, the noise
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t = 0 h t = 3 h t = 6 h

Figure 1: Example of the pattern r used in the revised scheme; contour interval 0.25; red (blue) contours correspond to
positive(negative) values.

r has a horizontal correlation length scale of 500 km and a correlation time of 6 h. Thus the spatio-temporal
coherence of the noise is roughly similar to the original BMP version. Figure 1 shows a particular realisation
of the pattern for SP1M in three-hourly intervals. The standard deviation of the random pattern r has been set
to 0.50 and 0.75 in SP1M and SP1L, respectively. Coarse-graining diagnostic of Cloud Resolving Model output
by Shutts and Palmer (2007) suggests that an uncertainty of this magnitude is not unrealistic (cf. Section 5).

In Exp. SP2, the pattern r is the sum of two independent patterns r1 and r2 that represent errors on different
spatial and temporal scales. Both patterns r1 and r2 are defined by the same algorithm used for SP1M and
SP1L. Pattern r1 represents fast evolving synoptic scale errors and has the same correlation characteristics
and amplitude as the pattern in SP1M. Pattern r2 represents slower evolving, planetary scale errors; it has
a correlation length scale of 2500 km and a correlation time of 30 d. The standard deviation of r2 is set to
0.20. Therefore, the sum of r1 and r2 has a standard deviation of 0.54. Now, the different experiments will be
compared in terms of upper air verification and precipitation.

2.1.4 Results: Upper air verification

Figure 2 shows the ensemble standard deviation and ensemble mean RMS error for 850 hPa temperature. All
three experiments with the revised SPPT scheme have a larger ensemble spread than SPBMP. In terms of
increasing spread, the experiments are ordered SPBMP, SP1M, SP2, SP1L. The increase in spread is small in the
extra-tropics and quite substantial in the tropics. In all regions the agreement between ensemble RMS error and
ensemble standard deviation is improved. The tropics also show a reduction of the ensemble mean RMS error
with the revised SPPT.

The experiments with the revised SPPT scheme are slightly more skilful than SPBMP in the extra-tropics and
they are significantly more skilful in the tropics in terms of the Continuous Ranked Probability Skill Score
(Figure 3). The order of experiments SPBMP, SP1M, SP2, SP1L in terms of probabilistic skill is consistent
with the increased spread seen in Figure 2. The area under the Relative Operating Characteristic shows a more
noticeable impact of the revised SPPT scheme in the extra-tropics than the Continuous Ranked Probability
Score (Fig. 4).

Other variables (Z500, v850, v200, u850, u200, not shown) show a similar signal in terms of spread and
probabilistic skill. Finally, we observe that the BMP scheme is also clearly beneficial, in particular in the
tropics compared to Exp. NoTenPert.
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Figure 2: Ensemble standard deviation (plain curves) and ensemble mean RMS error (curves with symbols on) for 850 hPa
temperature.
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Figure 3: Continuous Ranked Probability Skill Score for 850 hPa temperature.
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Figure 4: Area under the Relative Operating Characteristic for 850 hPa temperature and events where the anomaly is
below minus one climatological standard deviation. Area: Northern Extra-tropics.

2.1.5 Results: Precipitation

The impact of the revised SPPT on precipitation has been evaluated in two ways. Firstly, the model climatology
of forecasts with tendency perturbations is compared with the model climatology of forecasts from NoTenPert.
Secondly, the ensemble forecasts are verified against 24-hour SYNOP precipitation data.

Proxy climatological distributions of the model precipitation have been determined on the grid-scale for 6-hour
accumulations. The diagnostic is performed on the reduced Gaussian grid of the TL399 model (N200) and
for all forecast steps from 6 to 240 h. The frequency of events ranging from 0.1 mm / 6 h to 1000 mm / 6 h
has been determined on the reduced Gaussian grid and then integrated over different regions. The averaging
involves all 40 start dates and all 50 members of the ensemble. Experiment NoTenPert serves as a reference.
Instantaneous rain rates from unperturbed TL799 and TL1279 model runs have been compared with 1D-Var rain
rates derived from SSMI radiances up to rain rates equivalent to 40mm/6h (Bechtold, personal communication).
This comparison shows a good agreement between model and data up to the highest rain rates.

Figure 5 shows the ratio of the frequencies of precipitation events between forecasts with tendency perturbations
and forecasts without tendency perturbations. For the moderate thresholds up to 10 mm/6 h, the forecasts
with tendency perturbations have nearly the same climatology as the forecasts without tendency perturbations.
However, for the heavier precipitation events, there is a significant discrepancy. Experiment SPBMP has about
50% more events of 40 mm/6 h in the extra-tropics than NoTenPert. In the tropics, the impact of BMP is
more drastic. There are 3 times as many events of 40 mm/6 h in SPBMP than in NoTenPert. The tail of the
precipitation distribution is less affected by the revised SPPT scheme in particular SP1M and SP2. For events
exceeding 10 mm/6 h, the ratio between perturbed and unperturbed forecasts is significantly closer to one in all
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Figure 5: Precipitation frequency ratios between forecasts using tendency perturbations and forecasts without tendency
perturbations. Northern Extra-tropics (left), Tropics (right).

regions. The revision of SPPT has also a small impact on the frequency of the moderate precipitation events in
the extra-tropics. The ratio is slightly smaller than one with the revised scheme whereas it is closer to one with
the BMP scheme. The reduction of the precipitation frequency for the moderate thresholds is somewhat larger
for SP1L.1

The impact of the revision of SPPT has been evaluated with 24-hour accumulations of precipitation from
SYNOP reports. Verification of this kind quantifies exactly the skill of ECMWF products such as the Me-
teogram. However, it is unclear whether such verification should be used to optimise the EPS. This is because
precipitation exhibits variability on scales not resolved by the model (although the use of a long accumulation
period of 24 hours will ameliorate this representativeness issue to some extent).

The bias of the predicted precipitation normalised with a climatological mean has been determined from station
data. Experiment SP1M has a lower bias than SPBMP in the Northern Extra-tropics and the Tropics at all lead
times (not shown). The reduction is statistically significant at all lead times. The reduced bias is consistent with
the overall reduction of the precipitable water noted in the climate runs that will be discussed in Section 4.1.
Compared to NoTenPert, SPBMP reduces (increases) the bias in the extra-tropics (tropics).

The probabilistic score has been evaluated with the Brier score. Experiment SP1M is more skilful than SPBMP
for precipitation events with thresholds between 1 and 10 mm per day in the extra-tropics and for events of 1
and 5 mm per day in the tropics (5 mm/d shown in Fig. 6, other thresholds not shown). The impact on the
prediction of events of 20mm per day is neutral in the extra-tropics and negative in the tropics. Although the
negative impact for 20 mm/d is statistically significant in the tropics this is not of serious concern as the more
extreme events are also likely to be those affected most by the representativeness issue mentioned before. The
SP2 is more skilful than SP1M and SP1L is even more skilful than SP2 for both tropics and extra-tropics and all
thresholds. Last but not least, NoTenPert is statistically significantly worse than SPBMP for all thresholds and
both tropics and extra-tropics.

2.1.6 Discussion

Currently, configuration SP1M is being tested for operational implementation in cycle 35r3 in E-suite mode. The
results indicate that further improvements in skill are feasible by either increasing the perturbation amplitude

1see also discussion on drying in Section 4.1.
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Figure 6: Brier score for 24-hour precipitation accumulations for events of 5 mm/d−1. Left: Northern Extra-tropics
(30 ◦N–90 ◦N), right: Tropics (30 ◦S–30 ◦N). The lead times at which the score differences (between an experiment and
SPBMP) are statistically significantly different from zero at the 10% level are marked with a dot. Verification against
SYNOP data, joint sample of 40 cases.

(SP1L) or using the two-scale version (SP2) or even, conceivably, a two-scale version with increased amplitude
for the fast synoptic-scale pattern. Work is in progress to improve the treatment of supersaturation to avoid a
dry humidity bias.

2.2 Spectral Stochastic Backscatter (SPBS)

2.2.1 Background

At the time of development of BMP, Paul Mason at the Met Office suggested the possibility of perturbing the
dynamical tendencies of the forecast model in manner analogous to the stochastic backscatter technique used in
Large Eddy Simulation (LES) (Mason and Thomson, 1992). A simple spectral implementation of kinetic energy
backscatter was tested in the Met Office Unified model and shown to be suitable for use in ensemble prediction
systems (Evans et al., 1998). The scheme computed a streamfunction forcing pattern that was expressed as a
truncated sum of spherical harmonics with each amplitude coefficient evolving according to a first-order auto-
regressive process (AR1) in time. The Met Office study demonstrated the feasibility of generating an impact on
forecasts by day 8 using forcing perturbations that corresponded to flow accelerations of a few ms−1 per day.
Cloud-resolving model simulations of deep convection carried out at the Met Office had suggested an upscale
energy scale leading to mesoscale flow accelerations of this order (Vallis et al., 1997).

In 2003 work began on a stochastic kinetic energy backscatter scheme that it was hoped would supplement
BMP. The dissipation rate calculation, which is fundamental to LES, was reinterpreted for the purposes of its
use in NWP and deemed to be composed of contributions relating to numerical energy loss due to explicit and
implicit diffusion; energy loss from the gravity wave drag parametrization (including flow blocking), and con-
vective kinetic energy input (Shutts, 2005). Notably however, the contribution to the total dissipation rate from
vertical mixing was omitted on the basis that the notional eddy size (e.g. of boundary layer eddies) is much too
small, and the number of turbulent eddies per gridbox too large, for statistical fluctuation in the near-gridscale
Reynolds’ stresses. In contrast, mesoscale convective systems, which are neither explicitly parametrized nor
sufficiently well resolved, can locally inject large flow perturbations into regions with large convective avail-
able potential energy. Likewise, mesoscale mountain ranges that are poorly resolved in forecast models may
be associated with large, unpredictable wave drag or eddy stresses that impact on the large-scale, balanced
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dynamics.

By perturbing streamfunction (or equivalently vorticity), the forecast model responds with less noise than if the
wind components were independently perturbed (in fact options exist in the present code to compute temper-
ature perturbations consistent with the linear or non-linear balance equations). Unlike stochastic backscatter’s
use in LES, the streamfunction forcing perturbations in the IFS are horizontally non-divergent and provide sub-
stantial energy input across the whole spectrum of wavenumbers. As will be seen later, generating sufficient
impact on ensemble spread requires considerable input of energy in the sub-synoptic scales of motion. In this
respect our approach to backscatter differs from Frederiksen and Davies (1997) who consider upscale energy
transfer in two-dimensional flow on the sphere. Their work emphasises the injection of energy near the trunca-
tion scale of a forecast model whereas stochastic backscatter includes upscale energy transfer from unbalanced
motions associated with convection and gravity waves.

The first stochastic backscatter scheme tested at ECMWF was called CASBS (Cellular Automaton Stochastic
Backscatter) and used a Cellular Automaton (CA) pattern generator to define the form of the streamfunction
forcing field. As in LES backscatter, the amplitude of the forcing function was modulated by the square-root
of a dissipation rate field. The choice of a CA was originally motivated by the idea of generating patterns that
would resemble the organization of convective cloud clusters in which the scale and evolution of the patterns
could be linked to the local large-scale flow through their corresponding rulesets (Palmer, 2001). Whilst this
approach is still under investigation using probabilistic CAs, a more pragmatic approach was to revert to the
original spectrally-based scheme that had been tested at the Met Office.

Using a triangularly-truncated spherical harmonic expansion it is possible to ensure that the streamfunction
forcing field is spatially-isotropic on the sphere and has a power spectrum of a chosen form. The auto-
correlation time scale of the AR1 process for the spectral coefficients can also be made a function of wavenum-
ber and calibrated using the procedure outlined in Section 5. The resulting scheme, called Spectral Stochastic
Backscatter Scheme (SPBS) is described fully in Berner et al. (2009b) and has been the subject of consider-
able development in the last year. A major new extension not present in the Berner et al formulation is the
introduction of vertical phase correlations for which autocorrelation scale is a function of horizontal spectral
wavenumber.

2.2.2 The pattern generator and net streamfunction forcing

SPBS is conveniently formulated in terms of a streamfunction forcing function (Fψ ) prescribed on each model
level and given by:

Fψ =
(

bRDtot

Btot

)1/2

Fψ∗ (3)

where Fψ∗ is a three-dimensional random pattern field constructed to have specific statistical properties and
which, if used by itself as a streamfunction forcing, would imply an ensemble-mean energy input rate of Btot .
Dtot(x,y,z, t) is the total dissipation rate and bR is a backscatter ratio so that the factor (bRDtot/Btot)

1/2 locally
rescales the energy input rate to be bRDtot . Since Fψ only affects the rotational wind, it is less likely to destroy
the dynamical balance between pressure and wind fields than an arbitrary wind forcing. The spectral power
distribution pattern field is assumed to be of the form of a power law in spherical harmonic degree n with the
exponent inferred from a coarse-graining procedure (see Section 5). In all of the forecasts presented here that
use SPBS, the auto-correlation time scale is set 25000 s (i.e. ≈ 7 hours). Further mathematical details of SPBS
can be found in Appendix 8.2.
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2.2.3 The dissipation rate calculation

The total dissipation rate Dtot is computed on all model levels and is made up of three components:

• numerical dissipation rate (Dnum) as an estimate of the combined contributions from explicit biharmonic
diffusion and interpolation error in the semi-Lagrangian advection scheme

• the combined effect of kinetic energy dissipation due to orographic Gravity Wave Drag (GWD) and flow
blocking (DGWD)

• the rate of kinetic energy export from sub-gridscale deep convection into the resolved flow (Dcon).

The numerical kinetic energy dissipation rate is given by the expression

Dnum = αnumK |∇ζ |2 (4)

where ζ is the relative vorticity, K is the bi-harmonic diffusion coefficient and αnum is a factor to augment the
dissipation rate to include the effects of semi-Lagrangian interpolation error (currently set to 3).

The gravity wave/mountain drag contribution to the energy dissipation rate (DGWD) is obtained simply as the
vector product of the parametrized wind vector tendency with the wind itself.

The convective contribution is not a dissipation rate as such but a term that represents the rate of transformation
of convectively-generated kinetic energy to quasi-balanced, resolved flow. Specifically, Dcon is given by:

Dcon = αcon

(
sin(φ)+

ζ

2Ω

)2

Mdρw2 (5)

where αcon is an area fraction factor, φ is latitude, Ω is the Earth’s rotation rate, Md is the convective mass
detrainment rate and w is a vertically-averaged convective updraught velocity. Excluding the bracketed factor,
this term is a parametrization for the rate of detrainment of convective cloud kinetic energy to the resolved
scales. The bracketed factor is a normalized absolute vorticity equivalent to (ζ + f )/2Ω. It approximately
expresses the fraction of the kinetic energy released that is captured in balanced motion and will be referred
to as the ‘inertial stability factor’ (Shutts and Gray, 1994). Deep convective mass transfer creates distinctive
potential vorticity (PV) features in an environment with background PV. Near the equator, the background PV is
very weak and so most of the convective energy release goes into unbalanced modes whereas in middle latitudes
mesoscale convective systems generate intense PV anomalies that influence the development of baroclinic wave
systems.

The streamfunction forcing Fψ given by eq. (3) is evolved in time for each EPS member using the AR1 process
defined in eq. (21) (see appendix) and the different random number sets r j

m,n ensure different model error forcing
patterns.

2.2.4 Impacts in the IFS

Our results focus on ensemble forecasts with start dates in July and August so that the effect on tropical cyclone
frequency could be monitored. Early experience had shown that SPBS in conjunction with SPBMP led to an
excessively high frequency of tropical cyclones and tropical depressions. In this section, attention will be
focused on the temperature at 850 hPa (T850) and for reference the corresponding results for SP1M are shown.
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Figure 7 shows the error of the ensemble-mean and spread (left column) together with the associated Con-
tinuous Rank Probability Skill Score (CRPSS; right column) for TL255 ensemble forecasts made with (i) no
stochastic tendency perturbations; (ii) revised SPPT (SP1M) and (iii) SPBS alone with bR = 0.085. It can be
seen that the impact of SPBS is comparable with SP1M except in the first 3 days where SPBS produces less addi-
tional spread compared to SP1M. This is probably due to the fact that SPBS does not directly force temperature
whereas SPPT does. Both SPBS and SP1M substantially increase ensemble spread (particularly in the tropics)
and this is reflected in the CRPSS which are increased over the forecasts without stochastic perturbations. The
error in the ensemble-mean is reduced with the biggest reduction being in the tropics with SPBS.

Figure 8 shows the corresponding results in TL399 EPS forecasts using a somewhat higher backscatter ratio of
0.1. Even with this higher value of bR the amount of spread using backscatter is less than that due to SP1M and
points to a model resolution dependence of SPBS. The improvement in CRPSS is greatest in the tropics where
the spread deficiency is worst and least in the southern hemisphere extra-tropics.

2.3 SPPT and SPBS combined

In this section the impact of backscatter is examined when it is added to the revised SPPT scheme SP1M since
it is envisaged that the revised SPPT scheme is likely to become operational first given its clear improvement
over the current scheme SPBMP. As in Section 2.2, Figure 9 shows T850 spread/error and CRPSS for TL255
EPS forecasts (for the same 20 start-dates) using SP1M and SP1M+SPBS with bR = 0.07. It is evident that
both spread and skill are improved with the addition of backscatter although without more experimentation one
cannot be sure this blend of the two schemes is optimal. For the most part there is still insufficient spread to
match the error of the ensemble-mean and it is not clear that increasing both tendency variance and backscatter
ratio would increase skill.

For the corresponding EPS forecasts (TL399→ TL255 at day 10) using bR = 0.1 the additional spread generated
by SPBS is noticeably smaller (Figure 10) and so the impact on the CRPSS is reduced relative to the TL255
EPS forecasts. The reason for this is currently under investigation and it maybe that a larger bR would suffice
to increase the spread without introducing undesirable effects (e.g. excessive tropical cyclone frequency). One
problem that has yet to be addressed for EPS forecasts is that the reduction in horizontal resolution at day 10
means that the chosen bR becomes inappropriate for the TL255 phase of forecast. Whilst not that noticeable
in these T850 results, this leads to unreasonable spread growth after day 10 and a deterioration in many skill
scores.
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Figure 7: TL255 850 hPa temperature ensemble spread/error and skill scores for NoTendPert, SP1M and SPBS
(BSR=0.085) using 20 start dates running every other day from July 24 2008 to August 31 2008. Left column shows
rms error of the ensemble-mean (lines with cross) and rms spread about the ensemble-mean. The right column show the
Continuous Rank Probability Skill Scores. The top row is for the northern hemisphere extra-tropics; the middle row is for
the tropics and the bottom row is for the southern hemisphere extra-tropics.
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Figure 8: EPS (TL399 → TL255) 850 hPa temperature ensemble spread/error and skill scores for NoTendPert, SP1M
and SPBS(BSR=0.1) 20 start dates running every other day from July 24 2008 to August 31 2008. Left column shows
rms error of the ensemble-mean (lines with cross) and rms spread about the ensemble-mean. The right column show the
Continuous Rank Probability Skill Scores. The top row is for the northern hemisphere extra-tropics; the middle row is for
the tropics and the bottom row is for the southern hemisphere extra-tropics.
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Figure 9: TL255 850 hPa temperature ensemble spread/error and skill scores for SP1M , SP1M+SPBS(BSR=0.07) using
20 start dates running every other day from July 24 2008 to August 31 2008. Left column shows rms error of the ensemble-
mean (lines with cross) and rms spread about the ensemble-mean. The right column show the Continuous Rank Probability
Skill Scores. The top row is for the northern hemisphere extra-tropics; the middle row is for the tropics and the bottom
row is for the southern hemisphere extra-tropics.
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Figure 10: EPS (TL399 → TL255) 850 hPa temperature ensemble spread/error and skill scores for SP1M ,
SP1M+SPBS(BR=0.1) using 20 start dates running every other day from July 24 2008 to August 31 2008. Left column
shows rms error of the ensemble-mean (lines with cross) and rms spread about the ensemble-mean. The right column
show the Continuous Rank Probability Skill Scores. The top row is for the northern hemisphere extra-tropics; the middle
row is for the tropics and the bottom row is for the southern hemisphere extra-tropics.
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3 Use of stochastic parametrization schemes in ensemble data assimilation

One of the key aspects that ensemble prediction systems need to simulate to provide accurate probabilistic
predictions is the effect on forecast error of initial uncertainties. At ECMWF these uncertainties have been
simulated with singular vectors (SVs), perturbations characterized by the fastest growth, measured using a total
energy norm (Buizza and Palmer, 1995; Palmer et al., 1998), over a finite time interval. In the current system
different sets of singular vectors are used to better sample the initial uncertainties. Initial-time SVs growing
into the first 48 hours of the forecast range, which represent uncertainties growing during the forecast time, are
mixed with evolved SVs computed to grow during the 48 hours leading to the analysis time, which represent
uncertainties that have been growing during the current and past data-assimilation cycles. The initial-time and
evolved SVs are combined and scaled to have an amplitude comparable to the analysis error estimate provided
by the ECMWF data assimilation system (Barkmeijer et al., 1999).

Buizza et al. (2008) showed that perturbations defined by an ensemble data assimilation (EDA) system pro-
vide a better representation of the uncertainties growing during the data assimilation cycle than the set of the
evolved singular vectors currently used in the operational EPS. In their work, ensembles of 10 perturbed and
1 unperturbed analyses were generated by randomly perturbing the observations in each single assimilation
cycle at TL399L91 resolution, with a 12-hour 4D-Var with TL159L91 inner loops, and by including a version
of the stochastic backscatter scheme (Shutts, 2005; Berner et al., 2009b). For each observation (apart from
cloud-track winds) perturbations were defined by randomly sampling a Gaussian distribution with zero mean
and standard deviation defined by the observation error standard deviation. For cloud-track wind observations,
perturbations were horizontally correlated (Bormann et al., 2003). Sea-surface temperature fields were also
perturbed with correlated patterns as in the current operational ECMWF seasonal ensemble forecasting system
(Vialard et al., 2005). Buizza et al. (2008)’s results indicated that if used alone to define EPS initial uncer-
tainties, EDA-based perturbations lead to an under-dispersive and less skilful ensemble then the one based on
initial-time SVs only. By contrast, combining the EDA and the initial-time SVs improves the ensemble spread,
reduces the ensemble-mean error, and provides more skilful probabilistic forecasts than the current operational
system based on initial-time and evolved SVs.

Work is in progress to assess whether the initial-time spread of the EDA-perturbations can be increased by
using the more recent versions of the stochastic parametrization schemes discussed above (see Isaksen et al.
2007 for earlier results). Ensembles of analyses have been generated without stochastic schemes EDA(NOST),
with a version of the SPBS scheme with vertically-correlated perturbations EDA(SPBSVC), with a version of
the revised SPPT scheme EDA(SP1M45) (generated with the revised scheme with a 0.45 standard deviation
instead of 0.5), and with a combination of the two schemes EDA(SP1M45+SPBSVC).

Figure 11 shows the impact of the stochastic schemes on the 10-day average standard deviation of the EDA
analyses over an area covering the tropical and northern Pacific Ocean for kinetic energy at 700 hPa (KEN700)–
one of the variables for which the stochastic schemes have the largest impact. Figure 12 gives a more complete
view of the increase in spread that the two stochastic scheme induce when used alone or in conjunction, mea-
sured in terms of geopotential height at 500 (Z500), temperature and kinetic energy at 850 and 700 hPa over
both the Northern Hemisphere and the tropics.

Results indicate that over Northern Hemisphere the revised SPPT scheme (SP1M45) increases the average en-
semble spread by 20-to-40% and the backscatter scheme SPBSVC by 5-to-20%, with both schemes having the
largest impact on the ensemble spread in terms of kinetic energy. Over the tropics (between 30 degrees South
and 30 degrees North), the revised SPPT scheme (SP1M45) has a larger impact than over the Norther Hemi-
sphere, with the ensemble spread increasing by 30-to-70%. Over the tropics, the backscatter scheme SPBSVC

increases the spread only by 2-to-7%. Over both areas, the apparent lack of impact of SPBS on T850 ensemble
spread is partly due to the absence of direct temperature forcing in the scheme and partly due to the choice
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Figure 11: Top-left panel: 10-day average (from 2008-10-10 to 20) std of the EDA measured in terms of kinetic energy per
unit mass at 700 hPa generated without stochastic schemes. Top-right: difference between the std of the EDA generated
with the revised SPPT scheme SP1M45 and without stochastic schemes. Bottom-left: difference between the std of the
EDA generated with the stochastic backscatter scheme SPBSVC and without stochastic schemes. Bottom-right: difference
between the std of the EDA generated with SP1M45+SPBSVC and without stochastic schemes. Contour interval: 0.5 m2/s2

for full field, and 0.25 m2/s2 for differences.

of backscatter ratio. For TL399 forecasts, a backscatter ratio of twice the value used here would have been a
more appropriate choice. The experiments will be rerun using the latest implementations of the schemes, which
include a standard deviation of 0.5 for SPPT and a backscatter ratio of 0.1 for SPBS. Overall, the revised SPPT
scheme (SP1M45) has a larger impact, and the combined use of the two schemes leads to a stronger impact on
the ensemble spread.

In data-assimilation, an ensemble of analyses can be used to compute flow-dependent background error statis-
tics to improve the assimilation of observations (more specifically, the plan is to run the latest high-resolution
data-assimilation cycle with background error statistics computed using a lower-resolution ensemble of analy-
ses run during the previous data assimilation cycle). Work is in progress to assess the impact of the stochastic
schemes on the spread of the EDA analyses, and thus on the background statistics.

In ensemble prediction, a very recent set of experiments has indicated that the use of the revised SPPT scheme in
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Figure 12: Top panel: increase in the 10-day average (from 2008-10-10 to 20) ensemble spread induced by the stochastic
backscatter scheme SPBSVC (yellow bars), the revised SPPT scheme SP1M45 (blue bars) and the two schemes used to-
gether (red bars), with ensemble spread measured in terms of 500 hPa geopotential height, and temperature and kinetic
energy per unit mass at 850 and 700 hPa over the Northern Hemisphere. Bottom panel: as top panel but for the tropics.

the EDA generation and in the ensemble forecasts leads to higher skill. The ensembles of analyses EDA(NOST),
EDA(SP1M45), EDA(SPBSVC) and EDA(SP1M45+SPBSVC) have been used either alone, or with initial-time
SVs, to generate the EPS initial perturbations. Results based on 18 cases have indicated that replacing the
evolved SVs with EDA(SP1M45) has a positive impact on the ensemble scores, especially over the tropics, thus
confirming the conclusions of Buizza et al. (2008). Figure 13 shows the impact of using the EDA(SP1M45)-
based initial perturbations and SP1M45 (in ensemble forecasts) on the quality of probabilistic 850 hPa temper-
ature forecasts over the Northern Hemisphere and the tropics. Both changes improve the EPS performance,
especially over the tropics where they have a large, positive impact on the ensemble spread (not shown).

20 Technical Memorandum No. 598



Stochastic Parametrization and Model Uncertainty

Forecast step (days)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Co

nt
. R

an
ke

d 
Pr

ob
. S

ki
ll 

Sc
or

e
N. Hemisphere

EDA[SPM]–SVINI+SPM
EVO–SVINI+SPM
EVO–SVINI

EDA[SPM]–SVINI+SPM
EVO–SVINI+SPM
EVO–SVINI

0

0.06

0.12

0.18

0.24

0.3

0.36

0.42

0.48

0.54

Co
nt

. R
an

ke
d 

Pr
ob

. S
ki

ll 
Sc

or
e

Tropics

0 2 4 6 8 10 12 14

Forecast step (days)
0 2 4 6 8 10 12 14

Figure 13: Top panel: 18-case average Continuous Rank Probability Skill Score (CRPSS) of the probabilistic prediction
of 850 hPa temperature over NH for the operational ensemble with the original SPPT scheme (solid red), the operational
ensemble with the revised SPPT scheme SP1M45 (dashed blue) and of an ensemble with EDA-based initial perturbations
generated with SP1M45 and initial-time singular vectors (solid black). Bottom panel: as top panel but for the tropics.
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4 Impact on seasonal integrations

As part of the routine assessment of changes in the physics of the IFS, long uncoupled (atmosphere-only)
climate integrations are usually carried out at a relatively low horizontal resolution. Diagnosis of these long
integrations provides a good idea as to whether the proposed changes have neutral, positive or detrimental im-
pacts on certain aspects of the model’s climate (Rodwell and Jung, 2008). Given that the implementation of
stochastic parametrization schemes constitutes a substantial modification of the physics of the IFS, it has been
decided to carry out a detailed investigation to understand the impact that the various stochastic parametrization
schemes have on the model’s climate. In fact, in previous studies it has been found that stochastic parametriza-
tion generally improve the climate of the model, especially in terms of the extratropical atmospheric circulation
(Jung et al., 2005; Palmer et al., 2005; Berner et al., 2009a). Results from these latest experiments are discussed
in Section 4.1.

Since the operational introduction of System 3 in 2007, seasonal forecast and hindcast ensembles with the
coupled IFS-HOPE system have been using the original version of SPPT (SPBMP) for representing model un-
certainty. However, the ensembles of seasonal integrations are, in general, underdispersive, i.e., the ensemble
standard deviation around the ensemble mean is substantially smaller than the RMSE of the ensemble mean.
The lack of spread becomes apparent from the first month of the integrations and remains relatively constant
over all lead times.

An earlier version of the stochastic backscatter scheme based on a cellular automaton pattern generator (CASBS)
had been applied to a test set of seasonal hindcasts using the IFS atmospheric cycle CY29R2. The results
showed a reduction in some of the systematic errors, for example for tropical rainfall and SSTs in the ENSO
region, and significant improvements in probabilistic skill scores for a number of variables (Berner et al., 2008).

In the ENSEMBLES project, the CASBS simulations were compared with two alternative ways to address
model uncertainty on the seasonal time range, namely with a multi-model ensemble and a perturbed physical
parameter ensemble. It was found in Doblas-Reyes et al. (2009) that the multi-model ensemble performed best
on lead times shorter than five months.

In Section 4.2 we discuss recent progress that has been made in coupled IFS-HOPE seasonal integrations with
the atmospheric cycle CY35R2 using the revised SPPT and SPBS schemes. A total of 3 different experiments
were performed: SP2 using the two-scale version of the revised SPPT scheme with the parameter settings
according to Table 1; SPBS with a backscatter ratio bR = 0.05; and the combination of SP2 + SPBS. The
control experiment Ctrl was done using the original version of SPPT, SPBMP.

4.1 Systematic error in uncoupled integrations

In order to study the impact of the different stochastic parametrization schemes on the climate of the ECMWF
model, a large set of 13-months long integrations, started on 15 November of each of the years 1990–2005,
was carried out for the different model formulations summarized in Tab. 1. All integrations are based on cycle
35R1 with a horizontal resolution of TL159 and 91 levels in the vertical. Observed SST and sea ice fields were
prescribed as lower boundary conditions. Here we analyse the impact of stochastic parametrization schemes on
the first season of the integrations only (i.e. DJF).

The impact on the wintertime atmospheric circulation over the Northern Hemisphere can be inferred from
Fig. 14. Albeit much reduced compared to IFS cycles used before 2008 (Jung et al., 2009), there are still
notable systematic Z500 error for NoTenPert (cycle 35R1) over the Northern Hemisphere, especially in the
northeastern North Atlantic and the North Pacific (Fig. 14a). Generally, mean Z500 differences between the
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Figure 14: (a) Systematic Z500 error (dam) for NoTenPert. Also shown are mean Z500 differences from NoTenPert for
(b) SPBMP, (c) SP1M , (d) SP1L, (e) SP2 and (f) SP1M+SPBS. Results are shown for winters (December–February) of the
period 1990-2005. Statistically significant differences (at the 95% confidence level) are hatched.
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sensitivity experiments with stochastic parametrizations and NoTenPert show that the impact of the various
stochastic parametrization schemes is only slightly smaller than the magnitude of systematic Z500 error for
NoTenPert (Fig. 14b–f). The first thing to notice is that none of the schemes leads to a significant deterioration
of the mean horizontal circulation. The strongest, and largely beneficial impact on the mean Z500 field is found
for the revised SPPT scheme with large perturbations (SP1L, Fig. 14d). The smallest impact is found for the
revised two-scale SPPT scheme, SP2 (Fig. 14e). A comparison between SP1M and SP1M+SPBS suggests that
the revised SPPT scheme has a larger impact onto the model climate than the stochastic backscatter component
(similar results are found for other parameters, regions and seasons). During boreal summer the impact of
the stochastic parametrization schemes on the mean horizontal circulation over the Northern Hemisphere is
generally smaller (not shown).

The impact of the stochastic parametrization schemes on synoptic activity in the Northern Hemisphere winter
can be summarized as follows: synoptic activity in the subtropical and polar regions (mid-latitude storm tracks)
is increased (reduced) compared to NoTenPert. These changes are generally positive for they tend to oppose
systematic errors apparent in the integrations with NoTenPert.

In the tropics, the largest impact of the stochastic parametrization schemes can be found during boreal summer.
In particular the different versions of the revised SPPT scheme (SP1M, SP1L and SP2) lead to a drying of
the tropical atmosphere. A comparison with total precipitable water (TPW) climatologies over the oceans
from SSM/I data suggests that this drying is largely beneficial. At least some of the drying, however, might
actually be artificial due to the treatment of supersaturation; in fact, preliminary tests with a more realistic
supersaturation treatment suggest that the drying is significantly reduced, especially for very strong forcing
(SP1L).

The Indian Summer Monsoon, the African Summer Monsoon and precipitation over the Maritime Continent
tend to weaken with the introduction of the revised SPPT schemes (the stronger the forcing the larger the
weakening). At least for the Indian Summer Monsoon and precipitation over the Maritime Continent, this
weakening is beneficial. The sole influence of the SPBS scheme is generally smaller than that from the revised
SPPT schemes.

In terms of tropical variability (OLR and rainfall) it is found that the use of the revised SPPT schemes leads
to increased (reduced) levels of synoptic (low-frequency intraseasonal) variability, especially during boreal
winter; the impact of the SPBS scheme is relatively small. None of the schemes cures the problems seen in
the NoTenPert integration (and all previous model cycles) in simulating a realistic Madden-Julian Oscillation
(MJO). There is some evidence, however, that the revised SPPT schemes increase quasi-periodic variability
with a period of about 30 days (the observed ‘peak’ is found in the 40–60 day range), especially during boreal
summer.

In summary, it can be concluded that the impact of the various stochastic parametrization schemes on the
climate of the (uncoupled) atmospheric model in the extra-tropics is comparable to the errors present in the
experiment without tendency perturbations. In the tropics, however, the impact is significantly smaller than the
systematic errors present in the control integration.

4.2 Coupled integrations

The experimental set-up of the seasonal hindcasts consists of 7-month long integrations with the coupled IFS-
CY35R2-HOPE system in TL159L62 resolution. The hindcasts were started twice a year on the 1st of May
and November and thus cover, with different lead times, all 4 seasons. The hindcasts were run over the 18-year
period 1991-2008, although some of the results shown will be for the slightly shorter period 1991-2005 because
the ENSEMBLES multi-model ensemble is not available after 2005. The seasonal hindcast ensemble are based
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Figure 17: Tropical SST drift in coupled seasonal hindcasts estimated for May and Nov start dates over the period
1991-2005. Red: Ctrl and blue: SP2+SPBS

on 9 ensemble members that were created by initialising the hindcasts from 5 different ocean analyses with
added SST perturbations and atmospheric singular vectors.

4.2.1 Systematic errors

For the two start dates of seasonal hindcasts in May and November, an assessment of the systematic errors in
the atmosphere for the DJF and JJA seasons with lead times 2-4 months has been performed. The error was
estimated using all available hindcasts and ensemble members.

In general, relatively little impact of the tested stochastic parametrization schemes on systematic errors was
found. The most impressive result is a significant reduction of excessive rainfall in the tropical belt. Fig. 15
shows the systematic error of precipitation in DJF of the Ctrl simulation compared to GPCP indicating too
much rainfall over parts of South America, South Africa, the tropical Indian ocean and the warm pool area. In
the SP2+SPBS seasonal hindcasts, some of these errors were significantly reduced, especially over the Indian
Ocean and the Maritime continent (Fig. 16). A similar improvement was found in JJA over the ITCZ in the
Eastern Pacific and the warm pool areas (not shown). In agreement with the uncoupled runs, the excessive
Indian monsoon precipitation has also been reduced.

The stochastic parametrization schemes have little impact on the model SST drift. As an example Fig. 17
displays the evolution of the SST drift over the tropics for the May and November start dates. Compared with
the Ctrl run, the stochastic parametrization scheme SP2+SPBS tends to warm the tropical ocean by approx. 0.2
degrees after 7 months. For the May start dates this corresponds to an improvement, whereas for the November
starts, the warming leads to a small positive bias.
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Figure 19: As in Fig. 18 but for the ENSEMBLES multi-
model

4.2.2 Impact on spread and skill

Results of the ensemble-mean forecast RMSE and ensemble spread (standard deviation around the ensemble
mean) are shown in Fig. 18. For tropical SSTs in Fig. 18a, the Ctrl version of the coupled model is underdis-
persive from the first month of the integration with a clear underestimation of ensemble spread throughout the
forecast range. The new stochastic parametrization schemes have a major impact on the ensemble spread with a
strong increase of the spread after the first month. Even though the forecast RMSE of SP2+SPBS is somewhat
larger than in the control after month 3, the reliability of the forecasts in terms of spread-skill relationship is
significantly improved. This improvement is mainly due to the impact of the SP2 scheme on increasing the
spread. The combination of SP2 and SPBS leads to a further increase in spread, but also to a larger RMSE in
the second half of the simulation range if compared with the two individual schemes (not shown).
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In the tropical Pacific (Fig. 18b), the increase of ensemble spread due to the new stochastic schemes is even
more pronounced. Here the forecasts become slightly overdispersive on longer lead times. The increased spread
has a positive impact on probabilistic forecasts scores that show a higher reliability component of the Brier skill
scores than the Ctrl, especially on lead times beyond 3 months (not shown).

The impact of a much increased ensemble spread in SP2+SPBS can also be seen in global mean 2m temperature
forecasts, see Fig. 18c. The spread increases by roughly one quarter over the Ctrl, but is still too small if
compared with the forecast error. The RMSE in SP2+SPBS remains unchanged vs Ctrl up to forecast month
4 and increases slightly beyond that range. The underestimation of ensemble spread is mainly associated with
the oceanic areas (not shown), whereas over land the match between spread and error is, in general, good.

4.2.3 Comparison with the ENSEMBLES multi-model ensemble

We here compare the latest stochastic parametrization results for seasonal forecasting with the multi-model
ensemble predictions of the ENSEMBLES project. In ENSEMBLES, 5 coupled climate models from different
institutions across Europe have completed a set of 7-month long seasonal hindcasts over the period 1960–2005
with 4 start dates per year (Weisheimer et al., 2009).

Fig. 19a shows, similar to Fig. 18a, the evolution of the tropical SST RMSE and ensemble spread for the
ENSEMBLES multi-model using the same start dates and hindcast period as for the stochastic parametrization
experiment. While the multi-model ensemble is slightly overdispersive from the first month onwards, the
forecast error is smaller than for both Ctrl and SP2+SPBS in Fig. 18a.

Similar conclusions hold for the tropical Pacific SSTs (Fig. 19b). While in the IFS/HOPE coupled system the
RMSE continues to grow over lead time, the multi-model ensemble forecast error saturates between months 2
and 5 at a level that is below the IFS/HOPE level. Again, the multi-model ensemble is slightly over dispersive.
In terms of probabilistic skill scores (not shown), the multi-model ensemble performs, on average, better than
the Ctrl and the SP2 + SPBS versions of IFS/HOPE. However, for certain events and seasons (upper tercile
SST predictions starting in May) the improved reliability components in SP2 + SPBS perform equally well as
for the multi-model ensemble.

Looking at the global scales, the comparison of global mean 2m temperature forecasts between the EN-
SEMBLES multi-model ensemble in Fig. 19c and the corresponding figure for IFS/HOPE with stochastic
parametrization in Fig. 18c reveals that the multi-model ensemble performs better by generating smaller RM-
SEs and a very good match between the ensemble spread and error on all lead times.
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5 Coarse-graining studies

5.1 Cloud-resolving Model

5.1.1 Methodology

Ideally, observational datasets from intensive field experiments would provide sufficient information about the
statistical nature of physical processes in the atmosphere for improving their representation in NWP and cli-
mate modelling. For instance, probability distribution functions (pdfs) for convective cloud population density
(conditioned on CAPE, vertical wind shear, underlying land/sea, topography etc) could be determined and used
to devise stochastic convection parametrization schemes. Such datasets that do exist are generally insufficient
for this purpose and it is necessary (and more convenient) to use numerical model simulation data. For in-
stance Shutts and Palmer (2007) used a cloud-resolving model (see Section 5.1.2), configured to simulate deep
convection in a square domain of side length 7680 km, to compute pdfs of coarse-grained convective warming
rate. These pdfs were examined as a function of the strength of parametrized convective warming based on
the coarse-grained field values and used to validate the statistical assumption upon which the SPPT scheme is
based e.g. that the standard deviation is proportional to mean parametrized tendency.

The coarse-graining procedure used for the cloud-resolving model involves averaging model fields and their as-
sociated tendencies to a grid resolution typical of current NWP or climate models. By the Reynolds-averaging
approach outlined below it is possible to compute the non-advective part of the total tendency that the corre-
sponding coarse-grid model would see. Consider the thermodynamic equation written in its potential tempera-
ture form:

Dθ

Dt
=

∂θ

∂ t
+V ·∇θ = Q (6)

where Q represents the diabatic source term and re-write as:

∂θ

∂ t
=−V ·∇θ +Q. (7)

Average eq.(7) to a coarse grid and let an overbar denote this operation giving:

∂θ

∂ t
=−V ·∇θ +Q (8)

and then add the term V ·∇θ to each side so that:

∂θ

∂ t
+V ·∇θ =

[
V ·∇θ −V ·∇θ

]
+Q = Q̃ (9)

where the term in square brackets represents an eddy heat flux divergence and Q̃ is the apparent source of
θ on the coarse grid. Shutts and Palmer (2007) sampled the coarse grid-columns by feeding temperature,
humidity and wind profiles into a convective parametrization scheme (Bechtold et al., 2001) and using the
predicted convective temperature tendency to group the columns into distinct ranges e.g. -0.1 to 0.1, 0.1 to 9,
9 to 18, 18 to 27, 27 to 36 and 36 to 45 K/day. The mean of Q̃ is then plotted against standard deviation for
each sample and repeated for different coarse-grain box sizes. Figure 20 shows these points together with the
mean versus standard deviation lines implied by SP1M, SP1L and SPBMP. For any particular value of mean(Q̃)
the standard deviation of Q̃ increases with decreasing coarse-graining box size and for a chosen box-size the

28 Technical Memorandum No. 598



Stochastic Parametrization and Model Uncertainty

25

20

15

10

5

0
0 5 10 15 20

80 km

120 km

320 km

SP1L

SP1M

SPBMP

Figure 20: Standard deviation of Q̃ versus mean(Q̃)) inferred from an idealized cloud-resolving model run. Lines linking
crosses correspond to different coarse-grain box sizes used to coarse-grain the model. Lines labelled SP1M , SP1L and
SPBMP indicate the implied relationships for the corresponding variants of SPPT. This figure is adapted from Fig. 12 of
Shutts and Palmer (2007).

standard deviation of Q̃ is a linear function of the mean but non-zero when the mean is zero. Apart from this
offset, the results support the ansatz underpinning SPPT. Non-zero variance in Q̃ when the mean is close to
zero reflects the counterbalancing of latent heat release in updraughts with the cooling due to the evaporation
of condensate in or beneath mesoscale convective anvils.

The decorrelation scale of SP1M and SP1L is currently set to 500 km which implies a somewhat larger coarse-
graining scale. Since the standard deviation of Q̃ varies roughly as the inverse of the coarse-grain box size,
one might anticipate that the standard deviation appropriate to SPPT is about one half of the values shown in
Figure 20 for a 320 km box size. This suggests that the current choices of standard deviation for SP1M and
SP1L are plausible. It is planned to repeat this coarse-graining analysis with data from the new simulation
described below, but this time the fields will be coarse-grained with a spatial filter consistent with the Gaussian
auto-correlation function of the revised SPPT scheme.

For the purposes of calibrating SPBS a similar technique has been applied to compute an effective vorticity or
streamfunction forcing. The above coarse-graining procedure is applied to wind components u and v and the
resulting effective momentum forcing can be expressed as a vorticity forcing function by taking the vector Curl.
The vorticity forcing function is converted to a streamfunction forcing by expanding the vorticity forcing in a
double-Fourier series and dividing each Fourier coefficient by −K2 where K is the modulus of the associated
wavevector.

Specifically the coarse-grained u momentum equation becomes:

∂u
∂ t

+V ·∇u−βyv+
∂

∂x

(
p′

ρ0

)
=
[
V ·∇u−V ·∇u

]
+Fu = F̃u (10)

where β is the meridional gradient of the Coriolis parameter at the equator; p′ is the perturbation pressure and
ρ0(z) is a height-dependent reference density in this quasi-Boussinesq approximation of the full momentum
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equation. Fu represents the combined effects of a Smagorinsky-Lilly turbulent diffusion scheme and a supple-
mentary horizontal Laplacian diffusion. The first two terms on the right-hand side represent the divergence of
a Reynolds stress appropriate to the coarse-graining scale. In this nomenclature the streamfunction forcing can
be defined as:

Fψ = ∇
−2
(

∂ F̃v

∂x
− ∂ F̃u

∂y

)
(11)

5.1.2 Model configuration

The simulations to be described have been carried out with version 2.3 of the Met Office LEM (Large Eddy
Model). The model uses an Arakawa C-grid staggering in horizontal planes and Lorenz grid in the vertical
with periodicity assumed in both horizontal directions . In all experiments, 50 vertical levels are deployed non-
uniformly with height with resolution ranging from 150 m in the boundary layer to 500 m in the free troposphere
to 800 m in the stratosphere. The Coriolis parameter is made a linear function of y with the equator at y = 0
thereby achieving an equatorial beta-plane. The domain is 10,000 km in the x direction and 5000 km in the y
direction with horizontal gridlength ∆x = ∆y = 2.44 km. The lower surface is treated as sea with a temperature
SST (y) that varies parabolically in y according to:

SST (y) = 301.0−a(y/y0)2 (12)

where y0 is the meridional domain half-width (equal to 2500 km) and a = 3.8125. Convection is forced by
imposing a horizontally-uniform cooling function of−1.5 K/day up to a height of about 11 km and then tailing
off to zero by 15 km. This cooling function is used in place of the model’s radiation scheme in order to reduce
the considerable computational cost. The initial state is horizontally-stratified with a uniform geostrophic
easterly wind of -5 ms−1. The imposed meridional pressure gradient that ensures initial balance is held fixed
during the integration and so acts as a kind of Trade wind forcing function. Convection is initiated with some
small lower tropospheric temperature perturbations. The model configuration used here, together with some
others that use anisotropic horizontal grids, is more fully described in Shutts (2006).

5.1.3 Results

Convection develops in an equatorial band but after a few days splits into the familiar ‘double-ITCZ’ pattern
with precipitation maxima at about 15 degrees from the equator (ITCZ is the Inter-Tropical Convergence Zone).
Figure 21 shows a Hovmöller plot of rain-rate averaged between 10 degrees north and south. Rainfall rates in-
crease up to day 3 but fall afterwards as its double-ITCZ structure develops and moves outside of the Hovmöller
averaging zone. Westward propagating rain cells dominate up to day 3 but thereafter, eastward propagating cells
are evident with a speed equal to 15 ms−1. As in the study of Shutts (2006), these are most likely to be driven
by Kelvin waves.

The initial easterly flow evolves into a pair of upper tropospheric westerly jets near the meridional limits of the
domain and easterly jets near 8 degrees north and south (Figure 22). These easterly jets appear to result from
the Coriolis torque acting on equatorward flowing air driven by the outflow from the two ITCZs.

The streamfunction forcing, computed on a 40 km grid at a height of 10.5 km, is shown in Figure 23. The
strongest variance in streamfunction forcing occurs in the jetstream regions and typical gradients of about 20
m2s−2 per 1000 km imply flow accelerations of the order of a few ms−1 per day. Details of the spectral power
distribution of the streamfunction forcing will be given in the next section together with a similar estimate
obtained from the IFS. These in turn will be related to the streamfunction forcing used in SPBS.
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Figure 21: Hovmöller plot of the surface rain-rate averaged within a 20 degree band centred on the equator
(Units:mm/hr). The diagonal line has a slope matching the rate of movement of convective systems moving eastwards
and corresponds to a speed of 15 ms−1
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Figure 23: The streamfunction forcing Fψ computed from the effective momentum forcing function at a height of 10.5 km
on day 7 found when the momentum equation is coarse-grained to a 40 km grid. Units: m2s−2
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Figure 24: Power spectrum of the streamfunction forcing at level 53 (about 256 hPa) deduced from IFS (black line) and
cloud-resolving model (blue line) coarse-graining analysis. The red line shows the power spectrum for the streamfunction
forcing used in SPBS (with backscatter ratio of 0.1) from a TL159 forecast. For reference the green line shows the power
spectrum of the six-hour mean streamfunction tendency in the IFS for level 53.

5.2 Coarse-graining NWP model tendencies

5.2.1 Methodology

The approach taken here is to compute differences between forecasts made with the IFS at two radically dif-
ferent horizontal resolutions. The high resolution run (here taken to be TL1279) is regarded as ‘truth’ and its
total (dynamical + physical) tendencies are spectrally-smoothed to the resolution of the low resolution model
(here TL159). The difference between the coarse-grained tendency and the low-resolution model tendency can
be considered to be a tendency error (see Hermanson et al., 2009 who carried out a related analysis using the
IFS). As with the cloud-resolving model, the aim will be to compute the streamfunction forcing that is implied
by the model coarse-grained tendency errors in u and v.

At a detailed level the procedure is as follows. Global gridpoint tendencies fields of u and v are transformed
in a single spectral transform routine call to spectral (Spherical Harmonic (SH)) coefficients of vorticity and
divergence tendency. The vorticity tendency coefficients are divided by −n(n+1)/a2 (where n is the spherical
harmonic degree and a is the Earth’s mean radius) to give streamfunction forcing SH coefficients. Subtracting
the streamfunction forcing coefficients for TL1279 and TL159 (and neglecting those with n > 159 ) defines the
streamfunction forcing ‘error’ of the TL159 forecast. Since the timestep of the TL1279 run is 8 times smaller
than the 1 hour timestep of the TL159 run, the TL1279 streamfunction forcing is averaged over the single step
of the TL159 run.

5.2.2 Results

Streamfunction forcing power spectra have been computed from T+2 hour fields of forecasts starting at 12Z
August 17 2006. Figure 24 shows these spectra together with:

• the power spectrum computed on day 7 of the cloud-resolving model simulation
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Figure 25: Vertical correlations of the stream function forcing calculated in gridpoint space. The correlation for the IFS
coarse-graining are shown in a), b) shows the correlation for SPBS using a vertically constant pattern and c) shows the
results for SPBS using the random phase shift scheme (for details see Appendix 8.2).

• the power spectrum computed from SPBS at the same model level as the IFS coarse-graining calculation
(backscatter ratio=0.1).

The cloud-resolving model curve has somewhat less power than that implied by the IFS coarse-graining but
similar spectral slope. Considering the differences in the LEM and IFS simulations (global forecast versus
idealized tropical simulation), it is hardly surprising to find some spectral power differences in the computed
streamfunction forcing. The streamfunction forcing in SPBS (for a TL159 forecast using backscatter ratio
of 0.1) has a spectral power distribution lying between the IFS and LEM coarse-graining estimates in the
wavelength range 1000 to 6000 km. The current formulation appears to underestimate the power required at
low wavenumbers although one should note that SPPT also makes a contribution to the streamfunction forcing
(through convective momentum transport and gravity wave drag) and this, together with the SPBS contribution,
would make a more appropriate comparison with the IFS coarse-grain streamfunction forcing.

The green curve in figure 24 gives some indication of the strength of the streamfunction forcing relative to the
power in the total model streamfunction tendency. It confirms that the power in backscatter forcing is orders
of magnitude smaller than the power in the streamfunction tendency except for scales less than about 500 km.
TL159 ensemble forecasts made with this backscatter ratio have been shown to have a positive impact on skill
scores.

In addition to tuning the streamfunction forcing spectrum, the coarse-grained data was also used for tuning
the vertical correlation scale in SPBS. In the original implementation of SPBS the same spectral pattern was
used at all model levels, so the resulting vertical correlation of the stream function forcing was determined
by the dissipation rate alone. Those correlations (Fig. 25b) turned out to be problematic in ensemble data
assimilation where high long-range correlations have a damaging effect. The course-graining results (Fig.
25a) do not show these long-range correlations. The random vertical phase scheme (RVP) used in SPBS (for
details see Appendix 8.2) applies a phase shift to the random numbers used in the spectral pattern generator
between any two layers. The coarse-graining results suggest that the variance of these phase-shifts, hence the
correlation scale, depends on wavenumber and pressure. These functional dependencies are used in RVP to
improve the vertical structure. Figure 25c shows correlations of the SPBS streamfunction forcing using RVP.
They are overall in good agreement with the coarse-graining results, showing comparable correlation scales at
all pressure levels.
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5.2.3 Conclusions

The coarse-graining technique provides a way of designing and calibrating stochastic parametrization schemes.
These preliminary results suggest that the current formulation of stochastic backscatter is reasonably well sup-
ported by the coarse-graining analyses. Future work will be directed at estimating the spectral power of Fψ in
the wavenumber-frequency domain so that the decorrelation time can be made a function of wavenumber. It
will also be necessary to be more careful in distinguishing between systematic and random contributions to the
streamfunction forcing. The methodology can also be applied to temperature and humidity tendencies and it is
planned to calibrate the revised SPPT scheme in this way.

6 What are other centres doing?

In the operational UK Met Office Global and Regional Prediction System (MOGREPS, Bowler et al., 2008)
three schemes have been used to simulate the effect of model errors. The first one, a random parameter scheme,
has been designed to simulate the fact that many key parameters in model physical parametrization schemes
are uncertain. The second one, the stochastic convective vorticity scheme, provides a kinetic energy source
that compensates for unresolved mesoscale convective systems (MCSs) in areas of high convective available
potential energy. It does this by injecting anticyclonic vorticity in the upper troposphere and cyclonic vorticity
in the mid-lower troposphere - consistent with the observed structure of MCSs (Gray, 2001). The third scheme,
Stochastic Kinetic Energy Backscatter (SKEB), is similar to SPBS except that only numerical dissipation is
accounted for and this is assumed to be proportional to the local kinetic energy (Bowler et al., 2009).

In the ensemble prediction system developed at the Meteorological Service of Canada (MSC), a multi-model
approach was followed initially to simulate the effect of model uncertainty (MSC, see Houtekamer et al., 1996).
In the 1996 MSC ensemble, two different dynamical cores with different orography were used, and each en-
semble member was integrated by calling different parametrization schemes of horizontal diffusion, convection,
radiation and gravity wave drag. In 2007, a perturbed tendency perturbation scheme and a stochastic backscat-
ter scheme were also introduced (Gagnon et al., 2007; Houtekamer et al., 2007). Since then, the MSC-EPS
has been using four different methods to simulate model error: a parametrized system error scheme, the use of
different parametrization schemes in each ensemble member, a stochastic tendency perturbation scheme and a
stochastic backscatter scheme. The parametrized system error scheme (Houtekamer and Mitchell, 2005) sim-
ulates the effect of model error sources that degrade the quality of the initial conditions and that are not taken
into account by the MSC procedure used to generate the ensemble initial conditions, by adding a random per-
turbation field to the initial conditions. The stochastic tendency perturbation scheme was developed following
the ideas of Buizza et al. (1999) with patterns defined as in Li et al. (2008), with time-space correlations sim-
ulated using first-order Markov processes. The stochastic backscatter scheme was developed following Shutts
(2005), with numerical dissipation estimated from the activity of the gravity wave drag parametrization and of
the explicit diffusion. Charron et al. (2009), who discussed the most recent changes of the Canadian ensemble
system, concluded that the use of the MSC stochastic tendency perturbation and stochastic backscatter schemes
‘improve the ensemble forecast reliability, by acting on the bias and the ensemble dispersion’.

At NCEP, there is ongoing research to develop a practical and effective stochastic parametrization scheme
with total model tendencies perturbed with stochastic forcing sampled from the differences in the conventional
tendencies between the ensemble perturbed members and the control (Hou et al., 2006, 2008). Compared to the
scheme used at ECMWF (Buizza et al., 1999), the NCEP stochastic forcing is proportional to the whole model
tendency instead of only the tendency due to physical parametrizations. Hou et al. (2006) discussed results
based on an earlier, simplified version of this scheme applied every 6 hours to the NCEP ensemble system,
and showed that it led to a substantially larger and better tuned spread, lower ensemble-mean error and higher
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probabilistic scores. More recent results (Hou et al., 2008) indicated that a refined version of the scheme can
significantly improve the performance of the NCEP ensemble system.

In the US Navy Operational Global Atmospheric Prediction System (NOGAPS) ensemble system, a ‘stochastic
convection’ approach (Teixeira and Reynolds, 2008) is used to simulate model error uncertainties mainly due to
convection parametrization. Within this approach, parametrization schemes are used with control parameters
sampled from a distribution of probable values instead of with a unique, most likely value. They showed that
this approach led to a substantial increase of the NOGAPS ensemble spread in the tropics, and a small increase
in the extra-tropics, with positive impacts on some measurements of ensemble forecast skill. Reynolds et al.
(2008) showed that the use of this scheme helps to mitigate a fundamental problem, namely, that ensemble
systems with initial conditions defined using Ensemble Transformed methods have too little initial variance in
the tropics and too much variance in the extra-tropics.

7 Conclusions and Discussion

Two complementary stochastic parametrization schemes have been developed and their impacts have been
studied on medium-range and seasonal forecast timescales.

Research will continue to develop and extend these stochastic parametrizations. For example, results for the
seasonal predictions indicate that, despite SPPT and SPBS, the EPS remains underdispersive for 2m temper-
ature. This may indicate that a stochastic element should be included in the land surface component of the
forecast model. However, more likely, such underdispersion suggests that variables associated with cloud
amount should be treated stochastically. Work to extend the stochastic parametrizations in this direction will
begin shortly.

Currently, the stochastic parametrizations discussed in this paper are applied only to the atmospheric model.
However, there is no reason in principle why they should be so restricted, and further developments should see
stochastic parametrization schemes being applied to the land and oceanic components of the ECMWF forecast
system.

Both stochastic schemes discussed in Section 2 use spectral stochastic pattern generators. There are other
schemes which allow one to focus on spatially confined features of the flow. For example, Palmer (1997,
2001) suggested the use of stochastic cellular automata as providing pattern generators to represent individual
mesoscale convective complexes. Early results using a cellular automaton pattern generator in seasonal forecast
mode have been promising (Berner et al., 2008). There are some advantages to such cellular automata schemes.
For example, it is straightforward to represent the advection of a convective complex by some steering level
flow. In this way, information about convective instability can propagate from one grid box to a neighbouring
one, in a way which a conventional convective parametrization cannot do. It is possible that the representation
of advection of convective systems by the trade winds may be an important process missing in conventional
schemes, for the correct development of the Madden-Julian Oscillation and research is underway to test this.

Ultimately, stochastic representations should be incorporated ab initio into the development of parametrization
schemes; the schemes described in Section 2 are essentially “bolt on” extras, to be added to standard determin-
istic parametrization schemes. An example of an approach where a parametrization is considered stochastic ab
initio is the scheme developed by Plant and Craig (2008), where one assumes a statistical ensemble of convec-
tive plumes with inherently small sample size, leading to significant dispersion of some underlying probability
distribution.

As discussed in the text, very high resolution cloud-resolving models provide a rigorous approach to the devel-
opment of stochastic parametrization and will become an increasingly important tool for the future.
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This paper has focused on the application of stochastic parametrization on prediction timescales from the
medium range to the seasonal. However, on the basis that insights and constraints on these timescales can
inform prediction on longer timescales where verification data does not yet exist - the seamless prediction
paradigm - it would seem reasonable to conjecture that stochastic parametrization should play a key role in
the development of Earth System Models for multi-decadal and centennial climate prediction. Indeed since an
Earth System Model purports to be a comprehensive representation of processes and aspects needed to pre-
dict climate, it should by definition be capable of predicting uncertainty. Currently, individual Earth System
Models are not so capable, and standard ways of predicting uncertainty (e.g. in IPCC assessment reports) make
use of the multi-model ensemble. Additionally, as discussed in the context of seasonal prediction timescales,
stochastic parametrizations can reduce systematic biases, and therefore in some sense could be considered a
“poor man’s” alternative to higher resolution. This consideration may be particularly important when limited
computer resources are needed to represent biogeochemistry, the dynamic cryosphere, and other aspects of
Earth-System complexity. It seems reasonable therefore to propose that next-generation Earth System Models
should be explicitly stochastic (Palmer et al., 2009).

8 Appendix

8.1 Stochastically Perturbed Parametrization Tendencies

Now, the details of the pattern generator for the multiplicative noise used in the revised stochastically perturbed
parametrization tendencies scheme are described. Let r denote, as before, the pattern in grid point space and r̂
its spectral transform, i.e.

r = ∑
mn

r̂mnYmn, (13)

where Ymn, m and n denote a spherical harmonic, the zonal wavenumber and the total wavenumber, respectively.
The spectral coefficients r̂mn ∈ C evolve according to an AR(1) process

r̂mn(t +∆t) = φ r̂mn(t)+σnηmn(t), (14)

where the ηmn ∈ C denote random numbers. Real part and imaginary part of ηmn are independent Gaussian
random numbers with unit variance and zero mean. Furthermore, ηmn are also independent for different spher-
ical harmonics and white in time. The temporal correlation of r̂mn is controlled by φ , which is the correlation
over one timestep ∆t. Given a decorrelation timescale τ , the one-timestep correlation is set to

φ = exp(−∆t/τ). (15)

The variance of r̂mn depends on the one-timestep correlation according to

var(Re r̂mn) = var(Im r̂mn) =
σ2

n

1−φ 2 . (16)

The standard deviation in (14) is set to

σn = F0 exp(−κT n(n+1)/2) with (17)

F0 =

(
var(r)

(
1−φ 2

)
2∑

N
n=1(2n+1)exp(−κT n(n+1))

)1/2

(18)
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The choice of the normalisation factor F0 ensures that the variance at any point on the sphere is given by var(r)
as the variance in grid point space is uniform and equals the total variance in spectral space.

The variance spectrum of r̂mn depends on total wavenumber as exp(−κT n(n+1)), where parameter κT deter-
mines the horizontal correlation length. Therefore, the pattern has a spatial autocorrelation corresponding to
the equivalent of a Gaussian on the sphere according to Weaver and Courtier (2001). The correlation length
scale is approximately given by (2κT )1/2RE , where RE denotes the earth’s radius.

At initial time, the spectral random numbers are initialised by

r̂mn(0) = (1−φ
2)−1/2

σnηmn(0). (19)

Thus, a statistically steady state is achieved immediately without having to spin up the AR(1) processes.

In order to avoid arithmetic overflow, the random numbers ηmn and the spectral coefficients r̂mn are bounded to
the range of ±10 standard deviations. This has no practical impact on the distribution but makes the code nu-
merically safe. Furthermore, the pattern is bounded in grid point space in order to avoid numerical instabilities.
The range is limited to ±3 standard deviations for SP1M and to ±2 standard deviations for SP1L.

8.2 Stochastic backscatter

The streamfunction forcing (Fψ ) is defined to be the product of a pattern field and the square root of a total
dissipation rate function (Dtot). The pattern field evolves in time and contains information about the power
spectrum of the forcing with the dissipation rate factor acting as an amplitude modulator. The horizontal
structure of the pattern field (Fψ∗) is represented by:

F j
ψ∗,k =

N

∑
m=−N

N

∑
n=|m|

f j
m,n,kP|m|n (µ) exp(imλ ) (20)

where m is the zonal wavenumber, n is the degree of the associated Legendre function Pm
n (µ), f j

m,n,k is the
spectral coefficient satisfying the reality condition

f j
m,n,k = f j∗

−m,n,k

where the superscript ∗ denotes the complex conjugate , µ is the sine of the latitude, λ is the longitude, k is the
model level number and j is the number of timesteps of length ∆t. This series expansion represents a triangular
spectral truncation at spherical harmonic degree N. The time evolution of the spectral coefficients f j

m,n,k is
assumed to be governed by a first-order auto-regressive process defined by:

f j+1
m,n,k = [1−α(n)] f j

m,n,k +
√

α(n)g(n)r j
m,n,k (21)

where α(n) is a wavenumber-dependent parameter lying between 0 (no stochastic forcing) and 1 (white noise
forcing); g(n) is a real function controlling the spectral power in each mode and r j

m,n,k = a j
m,n,k + ib j

m,n,k where

a j
m,n,k and b j

m,n,k are random numbers with zero mean and variance Σ2. Therefore, each spherical harmonic
mode, characterized by (m,n), is associated with a discrete time series of complex random numbers indexed by
j. Inspection of the ‘memory term’ in equation (21) suggests the definition α(n) = 1− exp(−∆t/τ(n)) where
τ(n) is a exponential time scale. In general the decorrelation time should be dependent on spatial scale and so
allowance is made for that in the definition of τ .
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Vertical structure is introduced to the pattern generator through a random phase shift scheme known as RVP
(Random Vertical Phase). For any particular wave mode, the phase of the complex random number r j

m,n,k is
evolved by an autoregressive process in the vertical:

ϕ
j

m,n,k = ϕ
j

m,n,k−1 +βm,n,kε
j

m,n,k (22)

where βm,n,k is a scaling parameter, whose properties depend on n and pressure, and ε
j

m,n,k is a random number

drawn from a Laplace distribution with zero mean. The modulus of r j
m,n,k and the phase on the first level ϕ

j
m,n,1

are given by random numbers a j
m,n,1, b j

m,n,1. The phase-shift between any two levels is given by βm,n,kε
j

m,n,k
and governs the vertical correlation of Fψ∗. The form of the structure function βm,n,k is determined from the
coarse-graining method applied to both cloud-resolving model and IFS forecast fields (see Section 5). The
phase shifts applied do not affect the variance of r j

m,n,k, so the following analysis of the energy input rate is not
affected by the vertical structure and the model level index k is omitted.

The ensemble-mean variance of the spectral coefficients f (m,n) can be shown to be given by:

〈
| fm,n|2

〉
= 2

g(n)2Σ2

(2−α)
. (23)

where angle brackets denote the ensemble average and this implies an energy input rate Bm,n into wavenumber
(m,n) given by:

Bm,n = ∆t
n(n+1)

4πa2
g(n)2Σ2

α(n)
. (24)

Summing Bm,n over all wavenumbers gives a total energy input rate (Btot) of:

Btot =
Σ2∆t
4πa2

N

∑
m=−N

N

∑
n=|m|

n(n+1)g(n)2

α(n)

which can be rewritten as:

Btot =
Σ2∆t
8πa2

N

∑
n=0

n(n+1)(2n+1)g(n)2

α(n)
(25)

since for each value of n in the summation there are 2n+1 equal contributions from the sum over m.

Now let
g(n) = F0 χ(n) (26)

where χ(n) is a non-dimensional function and also define the sum Γ(N) according to

Γ(N) =
N

∑
n=0

n(n+1)(2n+1)χ(n)2

α(n)
.

Substituting into the above definitions into equation (25) gives

Btot =
F2

0 ∆tΣ2

8πa2 Γ(N)
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which on rearranging for F0 gives:

F0 =
(

8πa2Btot

∆t Γ(N)Σ2

)1/2

. (27)

The coarse-graining studies to be discussed in Section 5 suggest that χ(n) may behave like a power law for
large n and our current implementation assumes:

χ(n) = (1+n)−1.27. (28)

Therefore the energy input rate can be controlled through F0 and equated to a diagnosed total dissipation rate
multiplied by a backscatter ratio bR. The full streamfunction forcing is therefore given by:

Fψ =
(

bRDtot

Btot

)1/2

Fψ∗ (29)

which expresses the fact that if Fψ∗ gives an energy input rate of Btot per unit mass then Fψ gives an energy
input rate of bRDtot i.e. a fraction bR of the total dissipation rate Dtot .
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Doblas-Reyes, H. Feddersen, R. Graham, S. Gualdi, J. F. Guérémy, R. Hagedorn, M. Hoshen, N. Keenlyside,
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