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1. Introduction 
This research was originally motivated more than 10 years ago by preparations for the then upcoming 
FASTEX (Joly et al., 1999) experiment. The adaptive observation targeting methods for FASTEX included 
the singular vector approach (Palmer et al.  1998; Gelaro et al. 1999; Bergot et al. 1999; Buizza and Montani 
1999) and the gradient sensitivity technique (Langland and Rohaly 1996; Bergot et al. 1999). These methods 
sought to identify the sensitive regions where small errors could amplify and dominate the short- to medium-
range forecast error (Rabier et al, 1996).  However, neither one of these targeting methods was able to take 
into account how the observations would be used by the data assimilation system, nor the presence of other 
observations in the region. Partly as a result of this, assimilation of the special targeted observations from 
FASTEX led to both degraded and improved forecasts (Doerenbecher and Bergot, 2001).  

In 1996, Roger Daley 1  derived the equations for this missing piece – that of the adjoint of the data 
assimilation system.  Baker (2000) and Baker and Daley (2000) explored observation adjoint sensitivity in an 
idealized context. By 2000, Roger Daley had constructed the adjoint of the NRL2 Atmospheric Variational 
Data Assimilation System (NAVDAS). As it turned out, the observation-space formulation of NAVDAS was 
ideal for developing the adjoint, as it simply required applying the analysis operators in a reverse sense.  
Since that time, this area of research has expanded rapidly, and several operational NWP centers routinely 
use the adjoint of their data assimilation systems to monitor the quality of the observing network, diagnose 
assimilation system deficiencies, and make decisions on which observations to assimilate. 

An overview of the data assimilation adjoint theory will be presented in Section 2, with idealized examples 
presented in section 3.   A discussion of the choice of an appropriate forecast metric is in Section 4, along 
with the definition of the observation impact, while section 5 presents several applications of the observation 
adjoint technique for data monitoring, channel selection for satellite radiometers, and identifying systematic 
errors in the observations or the way the observations are used by the data assimilation system. Section 6 
presents conclusions and discussion of ideas for future use of observation impact. 

2. Derivation of observation and background sensitivity 
Following Baker and Daley (2000), the derivation of the observation and background sensitivity begins with 
the three-dimensional analysis problem and the analysis equation (Daley 1991), 

 ( { })H= + −a b bx x K y x  (1) 

                                                      
1 Roger Daley (1943 – 2001) was a senior visiting scientist at the Naval Research Laboratory from 1995 to 2001. 
2 Naval Research Laboratory 
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Following the notation given by Ide et al. (1997), the vector of observations is given by y, the background 
vector is given by bx , and the analysis vector is given by ax .  In general, the application of the observation 

or forward operator H  represents any necessary spatial and temporal interpolations from the forecast model 
background to the observation location and time.  If the observed quantity is not directly related to the model 
state variables, then H  also represents the transformation from the forecast values to the observed quantity.  
For satellite radiances (or brightness temperatures), { }bH x represents the forward radiative transfer model 

applied to bx  and computes forecast or background radiances.  The differences between the observation and 

the background ( { })H− by x  are the components of the innovation vector, while ( { })H− = −a b bx x K y x  

is the correction vector.  If one considers linear analysis problems only, then 

 ( )= + −a b bx x K y Hx . (2) 

The matrix H is the Jacobian matrix corresponding to the forward operator { }bH x  linearized about the 

background state vector. This approximation is valid for the radiative transfer relationship between 
temperatures and radiances, but is not valid for moisture retrievals.  The Kalman gain (or weight) matrix, K, 
is given by  

 1( ) ,T T −= +K BH HBH R  (3) 

where B is the background error covariance matrix and R is the observation error covariance matrix.  

Equation (2) may be rewritten as  

 ( ) ,= − + = − +a b b bx x KHx Ky I KH x Ky  (4) 

where I is the identity matrix.  The sensitivity of the analysis to the observations ∂ ∂ax y  and the sensitivity 

of the analysis to the background ∂ ∂a bx x  is derived first.  Following Gelb (1974), the vector gradient of a 

vector is a matrix and is given by ,T∂ ∂ =x y A or ∂xi/∂yk = aki.  Using this relationship, the following 
equations may be derived: 

,T∂ ∂ =ax y K  (5a) 

 ( ) ,T T T∂ ∂ = − = −a bx x I KH I H K  (5b) 

where 

 1( ) .T T −= +K HBH R HB  (6) 

The cost function J  is a scalar measure of some quantity of interest over the forecast verification domain.  
The gradient or sensitivity of J  with respect to the analysis or initial conditions for the forecast is given by 

aJ∂ ∂x , and is determined by the adjoint of the tangent forward propagator based on the nonlinear 

trajectory.  In this paper, this quantity will be referred to as the analysis sensitivity vector. 

The sensitivity of the forecast aspect to the observations ( J∂ ∂y ), is referred to as the observation sensitivity 

vector, while the sensitivity of the forecast aspect to the background field ( bJ∂ ∂x ), is referred to as the 

background sensitivity vector.  Using the chain rule and (5), the observation and background sensitivity 
vectors may be written as 

 ,T
a

JJ J∂ ∂
∂ ∂ = = ∂ ∂

∂ ∂
a

a

xy K x
y x

 (7a) 



BAKER AND LANGLAND: DIAGNOSTICS FOR EVALUATING THE IMPACT OF SATELLITE OBSERVATIONS 

 
ECMWF Seminar on Recent development in the use of satellite observations in NWP, 3-7 September 2007 311 

 ( )T T
a

JJ J∂ ∂
∂ ∂ = = − ∂ ∂

∂ ∂
a

b
b a

xx I H K x
x x

 (7b) 

Expanding the terms in the transposed Kalman gain matrix ( TK ) in (6) using (3) gives the following 
expressions for the observation and background sensitivity vectors, 

 1( ) ,T
aJ J−∂ ∂ = + ∂ ∂y HΒH R HΒ x  (8a) 

 1( ) .T T
b aJ J−⎡ ⎤∂ ∂ = − + ∂ ∂⎣ ⎦x I H HΒH R HΒ x  (8b) 

In the analysis problem (1), K  is the matrix of weights given to the innovation or difference between the 
observation and the background value (in observation space).  In an analogous sense, the matrix TK  is the 
matrix of weights given to the sensitivity of J with respect to the analysis for the observation sensitivity 
problem (7a).   

It is also convenient for display purposes to define the analysis space projection of the observation sensitivity 
vector, 

 .T
a bJ J J∂ ∂ = ∂ ∂ − ∂ ∂H y x x  (9) 

Thus, (8a) and (8b) give a method of calculating the gradient (or sensitivity) of the forecast aspect with 
respect to the observations J∂ ∂y  and the gradient of the forecast aspect with respect to the background 

field bJ∂ ∂x .    

3. Idealized Examples of Observation Sensitivity 
In this section, two idealized examples from Baker (2000) are presented to illustrate some of the basic 
principles of observation and background sensitivity. For the first example, consider a two-dimensional 
horizontal univariate (e.g., geopotential height) case.  The gradient of J  with respect to the initial conditions 

aJ∂ ∂x is specified on the two-dimensional domain using simple trigonometric and exponential functions 

and is shown in Fig. 1, where Fig. 1a has small spatial scale features and Fig. 1e has large spatial scale 
features. A hypothetical situation in which aJ∂ ∂x  straddles a coastline is simulated in Fig. 1, with a data-

dense continent on the left-hand side of the figure and a data-void ocean is on the right-hand side of the 
figure. 

The observation locations are shown by the “+” signs in Figs. 1b-c and 1f-g.  An observation is assumed to 
be available at every gridpoint, and the observation errors are assumed to be uncorrelated.   Over the 

continent, the observation error variance 2 1.0rε =  , while over the ocean, the observation error variance is 
set to 1.0 x 106.  As the background error variance equals 1.0, this allows the observation sensitivity (which is 
in observation space) to be readily contoured. The background error covariance B is specified using the 
special Second Order Autoregressive Function (SOAR) where ρb is the background error correlation between 
two analysis grid points given by 

 ( , , , ) 1 exp ,b i j i j
b b

r rx x y y L L
⎛ ⎞ ⎛ ⎞−ρ = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (10) 

Lb is the background error correlation length scale, and r is the distance between grid points.  The 
background error correlation length is specified as 2.42bL x= Δ . 
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Figure 1:  Simulated sensitivity vectors for small- (a-c) and large-scale (e-g) analysis sensitivity vectors.  
The imposed analysis sensitivity vectors are shown in (a) and (e), the observation sensitivity vectors in (b) 
and (f), and the background sensitivity vectors in (c) and (g).  The observation locations are given by the 
“+”.  The color scale is indicated along the bottom. (Panels d and h are not shown). From Baker and 
Daley (2000). 

The observation and background sensitivity vectors corresponding to the small-scale analysis sensitivity 
vector are shown in Figs. 1b and 1c, respectively, while the observation and background sensitivity vectors 
corresponding to the large-scale analysis sensitivity vector are shown in Figs. 1f and 1g.   

We first consider the well-observed continental interior portion far from the coastline.   For the small-scale 
case (Figs. 1a-c), even though the analysis sensitivity gradient is well sampled in the continental interior, 
there is no sensitivity to the observations, only to the background.  For the large-scale case of Fig. 1e-f, the 
observation sensitivity is the same as the analysis sensitivity in the continental interior and there is no 
sensitivity to the background. This apparent discrepancy occurs because the background error correlation 
length scale is relatively large, implying that the background errors are primarily large-scale, and the analysis 
will use the observations primarily to reduce the large-scale errors (Daley, 1991). Because the small-scale 
background errors are implicitly assumed to be relatively small, the observations have very little effect on 
these small spatial scales.  Thus, for this example, the small-scale features of the analysis are derived 
primarily from the background and the large-scale features are derived primarily from the observations.   In 
an adjoint context, this means that the background sensitivity will be derived primarily from the small scales 
of the analysis sensitivity and the observation sensitivity will be derived primarily from the large scales.   

The region along the boundary between the well sampled and the unsampled areas is considered next.  For 
the small-scale analysis sensitivity gradient, the sensitivity to coastal observations is only slightly larger than 
in the well-sampled continental interior (Fig. 1b).  For the large-scale case (Fig. 1e-g), the situation is 
completely different.  In a narrow region along the coastal boundary, both the sensitivity to the observations 
(Fig. 1f) and the sensitivity to the background (Fig. 1g) are greater in magnitude than the analysis sensitivity 
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(Fig. 1e) at the same gridpoint.  The background sensitivity is of opposite sign to the observation and 
analysis sensitivities in this coastal region, which is consistent with (9). This phenomenon was defined by 
Baker and Daley (2000) as observation and background super-sensitivity, respectively, and can be explained 
with the following example. 

For this experiment, the analysis sensitivity gradient (Fig. 2a) is composed of a combination of the large- and 
small-scale sensitivity patterns from Fig. 1.  The background error correlation is modeled using the SOAR 
function for heights from (1) with Lb = 3.6Δx; this value was chosen as it maximizes the observation 
sensitivity for multiple observations. The background error standard deviation is set to 1.0 and the 
observation error standard deviation is set to 0.1.  Twenty observations are placed at gridpoints in a “Z” 
shape across the centers of the analysis sensitivity gradient pattern (Fig. 2a).   

 

 

 
Figure 2: Two-dimensional univariate height observation sensitivity example for multiple observations.  
The largest sensitivity occurs for the height observation identified by the circle; the other height 
observations are given by the “+”.  In this plot, Lb = 3.6Δx, and εr/ε b = 0.1.  (a) The imposed analysis 
sensitivity gradient, (b) the analysis space projection of the observation sensitivity vector, (c) the 
background sensitivity, (d) the corresponding analysis, assuming an innovation of 1.0 m at each 
observation location, (e) the background error correlation function corresponding to the circled 
observation, and (f) the row of KT for the circled observation. The color scale is at the bottom. From 
Baker (2000). 

The resulting analysis space projection of the observation sensitivity vector (KT J∂ ∂y ) and the background 
sensitivity vector are displayed in Figs. 2b,c respectively.  The largest observation sensitivity occurs for the 
circled observation at the lower right end of the “Z” in Fig. 2b. The effect of the observation density gradient 
is more pronounced when the density change occurs in a region of significant analysis sensitivity gradient 
amplitude (e.g., for the circled observation).  When the observations extend all of the way across the analysis 
sensitivity gradient, the amplitude of the observation sensitivity is less (for example, for the observation 
indicated by the arrow). Thus, the largest observation sensitivity does not necessarily occur where the 
analysis sensitivity gradient is a maximum, but where there is a large change in observation density and the 
analysis sensitivity gradient is both large scale and sufficiently large in magnitude.  This result is analogous 
to the coastal example in Fig. 1. 

Assuming that the background field is zero and the observations equal one, the resulting two-dimensional 
analysis from (2) is given in Figure 2d.  The homogenous, isotropic nature of the correlation function, shown 
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for the circled location in Fig. 2e, is evident and only a hint of the “Z” configuration of the observations can 
be seen. 

The dependence of the univariate observation sensitivity on the observation density can be understood by 
graphically examining the various terms in the observation sensitivity equation, e.g.,  

 1( ) .T T
a aJ J J−∂ ∂ = ∂ ∂ = + ∂ ∂y K x HBH R HB x   

The term HB  is the background error correlation between the observation locations and every gridpoint. The 
row of this matrix corresponding to the circled observation is shown in Fig. 2e. It is symmetric in appearance 
and is essentially the same for every observation location (given the constraints of a finite domain).  The 

inverse error covariance matrix 1( )T −+HBH R  is in observation space and is not plotted.  The term THBH  
is the background error correlation between observation locations.  Since the observation errors are assumed 

to be spatially uncorrelated, the matrix R is simply the diagonal matrix of the observation error variances 2
rε .  

The row of the transpose of the Kalman gain matrix (KT) corresponding to the circled observation is plotted 
in Fig. 2f.  The resulting pattern is not symmetric, but has large values adjacent to the circled observation.   

Plots of the appropriate row of KT for all of the 20 observations are shown in Fig. 3.   The most striking 
features are the very large lobes (in both size and magnitude) that occur for observations that are relatively 
isolated from their neighbors.  Observations that are located near the center of the pattern have much smaller 
maxima and minima of the Kalman gain (in both size and magnitude).  These variations in KT are due to the 

matrix 1( )T −+HBH R .  Observations that are farther from the other observations are less correlated with 
them and this leads to the large asymmetry in the Kalman gain.  For the forward analysis problem, this 
implies that isolated observations contain more independent information than observations with close 
neighbors and are thus given greater weight in the analysis.  In the adjoint sense, this indicates that isolated 
observations have larger “adjoint weights” (KT) and potentially greater observation sensitivity. 

 
Figure 3: Plots of the row of KT for the 20 observations shown in Fig. 2.  The row of KT corresponds to 
the circled observation in each panel.  The grid domain and color scale corresponds to Fig. 2. From 
Baker (2000). 



BAKER AND LANGLAND: DIAGNOSTICS FOR EVALUATING THE IMPACT OF SATELLITE OBSERVATIONS 

 
ECMWF Seminar on Recent development in the use of satellite observations in NWP, 3-7 September 2007 315 

The resulting observation sensitivity vector (8a) is the result of the matrix-vector multiplication between KT 

and aJ∂ ∂x .  This can be visualized for any given observation by mentally summing, gridpoint by gridpoint 

over the domain, the product of aJ∂ ∂x  (Fig. 2a) and the row of the KT corresponding to that observation 

(Fig. 2e or Fig. 3).  This exercise can be used to explain the larger observation sensitivity value for the 
observation at the lower-right end of the “Z” (indicated by the circle) when compared to the observation at 
the upper-left end of the “Z” (indicated by an arrow).  The magnitude and shape of the row of KT is the same 
for both observations.  However, the circled observation is located in a region with larger values of the 
analysis sensitivity gradient, so that the non-zero portions of KT overlap larger values of the analysis 
sensitivity gradient. Hence, the circled observation has the larger observation sensitivity. 

It is evident that the sensitivity for a given observation depends upon the overlap between the amplitude and 
spatial extent (length scale) of the appropriate row of KT, and the amplitude and spatial extent (length scale) 
of the analysis sensitivity gradient aJ∂ ∂x . The observation sensitivity is maximized when the maxima or 

minima of the analysis sensitivity gradient coincide with the maxima or minima of the row of KT such that 
the overall observation sensitivity contributions from the projection of KT onto aJ∂ ∂x  are of the same sign.   

The Kalman gain or weight matrix is arguably the most important term for both the linear analysis and 
observation adjoint sensitivity problems.  The properties (amplitude, sign, and length scale) of this matrix are 
a function of several factors, with the background error correlation length scale being the dominant factor. 
The scale of KT decreases as Lb decreases, and the influence of the analysis sensitivity gradient in the 
immediate vicinity of the observation becomes more marked (with correspondingly less influence from the 
adjacent sub-structures of the analysis sensitivity gradient). In addition, neighboring observations will not 
contribute to the observation sensitivity at a particular location if the correlation length scale is too small. If 
Lb is too long, then the maximum amplitude of KT may not coincide with either the observations or analysis 
sensitivity gradient extrema (particularly for the more isolated observations). 

4. Application to Real Problems 
Observation sensitivity, while an interesting quantity in its own right in that it lends insight into how 
observations are used by the assimilation system, is not capable of quantifying whether a given 
observation/observing system improves or degrades the forecast. An observation may have large observation 
sensitivity, but if the innovation is zero, its impact on the resulting analysis and forecast will be minimal, 
other than through its effects on KT.  Similarly, an observation may have small observation sensitivity, but 
that does not imply that the resulting changes to the analysis will be small, only that they will not be in the 
direction needed to effectively change for forecast aspect J. To estimate the impact of the observations on the 
forecast, some other measure of observation impact is required. 

4.1. Forecast Metrics and the Cost Function J 

The first step is to define the cost function J or aspect of the forecast of interest.  In principle, it could be 
defined as any first-order differentiable function of the model forecast. The tangent linear approximation 
generally limits the forecast length to three days or less.  One frequently-used forecast aspect is the quadratic 
measure of forecast error given by 

 ( ), ( )f f t f te = − −x x C x x   (11) 

where fx  is the forecast and tx is the verification state, given by the analysis valid at the forecast time. The 

matrix C is symmetric matrix of weights, typically for either a dry or moist static total energy, for all levels 
between the surface and around 250 hPa.   
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4.2. Observation Impact Calculations 

Doerenbecher and Bergot (2001) used a linear combination of the innovation and the observation sensitivity 
observation impact to assess the impact of the FASTEX special observations. Subsequently, Langland and 
Baker (2004) developed the following definition for observation impact. 

We begin by considering two 24-hr forecast trajectories, one starting from the analysis background 
(nominally a 6-hr forecast from the previous update cycle), and one starting from the current analysis (t = 0 
hrs) as shown in Fig. 4.  The forecast error for the background trajectory is given by ge , while the forecast 

error in the analysis trajectory is given by fe .  The cost function J is defined to be the difference between the 

forecast errors ( g
f f ge e eΔ = − ), and is due solely to the assimilation of the observations at the analysis time 

(t = 0 hrs). Following Langland and Baker (2004), g
feΔ  can be estimated using the observation sensitivity 

gradients as  

 ( ) ( ), , ,
g
f f gg T

f b b
a b

J e e
eδ

∂ ∂ ∂⎧ ⎫
= − = − +⎨ ⎬∂ ∂ ∂⎩ ⎭

y Hx y Hx K
y x x

 (12) 

where g
fJ∂ ∂y  is the observation sensitivity obtained using the two trajectories.   

 

 
Figure 4: Illustrations of the two trajectories used for the calculation of the observation impact.  The 
trajectory ending at xg, with error eg, begins from the background xb, while the trajectory ending at xf, 
with error ef, begins from the analysis xa.  Both trajectories are verified against the analysis xt at t=24 
hrs.  The assimilation of the observations at t=0 hrs moves the forecast trajectory from the dark green 
line to the blue line.  From Langland and Baker (2004). 

Equation (12) provides a single measure of the global observation impact for all observations.  Negative 
values indicate a reduction in forecast error, while positive values indicate an increase in forecast error. The 
global observation impact can be easily partitioned into observation subsets, for example, for a given 
observing platform (e.g. radiosondes), or by satellite channel. It is important to remember that the 
computation of the observation impact in (12) always involves the entire set of observations, and changing 
the properties of even one observation changes the scalar measure for all other observations. 

The accuracy of the observation impact results depends upon the accuracy of the adjoint-based calculations 
in (12). One way to assess this accuracy is to compare the nonlinear forecast error differences f ge e−  to 
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those computed using adjoint techniques. In Fig. 5, the red line indicates the full nonlinear NOGAPS3model 
moist static energy error in J kg-1 (ordinate) for the forecasts starting from xb for the period from 14 Nov. 
2006 to 3 Jan. 2007 (abscissa). The yellow line indicates the same error metric, but for the forecast trajectory 
starting from xa.  The difference in these two errors ( f ge e− ) is given by the blue line, while the green line is 

the adjoint estimate of the error difference, as computed by (12) using the adjoint of NAVDAS4. The adjoint-
based estimate recovers, on average, approximately 85% of the nonlinear forecast error differences. This 
percentage is very similar to values obtained using the same observation impact measure with the NASA 
GEOS-55 system (Gelaro, personal communication) and Meteorological Research Division of Environment 
Canada (EC) systems6 (Pellerin, personal communication).  The systematic underestimation of the actual 
nonlinear forecast error differences g

feΔ  by observation adjoint impact g
feδ  is likely due to neglected moist 

physics in the TLM (i.e. convection), and nonlinearities in the dry dynamics.  It is interesting to note how 
closely the adjoint-based estimates track the day-to-day variations in the nonlinear forecast error differences. 

 
Figure 5: Comparison of the nonlinear forecast error for the 30-hr forecast starting from xb (red line) 
and the 24-hr forecast starting from xa (yellow line). The difference in these errors is given by the blue 
line, while the green line denotes the adjoint-based impact computed from (12).  

4.3. Nonlinearity Considerations 

Errico (2007) and Gelaro et al. (2007) have examined the effects on nonlinearity on the interpretation of the 
partial sums used to bin the observation impact by type (platform, station, channel, etc.)  Their results 
indicate that the observation impact measure proposed in Langland and Baker (2004) is essentially 
equivalent to the 3rd order approximation of the change in a quadratic measure of forecast error (see above) 
due to the observations.  Gelaro et al. (2007) demonstrated that a higher than first order approximations is 
required to accurately assess the observation impact.  The dominant nonlinearity in (12) is apparently due to 

                                                      
3 Navy Operational Global Atmospheric Prediction System. NOGAPS is the operational spectral forecast model and is 
described in Hogan et al. (1999). The adjoint is described in Rosmond (1997). 
4 NAVDAS is an observation-space 3D-Var system, and is described in Daley and Barker (2001). The NAVDAS 
adjoint development is discussed in Langland and Baker (2004b).  
5 The GEOS-5 system consists of the Goddard Modeling and Assimilation Office atmospheric forecast model and 
Gridpoint Statistical Interpolation (GSI) data assimilation system and respective adjoints (see Zhu and Gelaro, 2007) 
6 The EC group used observation-space formulations of their 3D-Var and 4D-Var systems (Morneau et al., 2006). 
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the quadratic nature of the cost function (11), although other nonlinearities arise because the second and third 
order terms have a dependence upon the innovations and the forecast starting from the analysis ax .  Despite 

these nonlinearities, the authors concluded that observation impact measure proposed by Langland and Baker 
(2004) yields reasonable estimates. However, they noted that their assessment was made using large numbers 
of observations, and cautioned that these conclusions may not hold for small subsets of observations, or even 
large subsets with comparable impact magnitudes.  

4.4. Practical Considerations for DA Adjoint Design 

Since NAVDAS is in observation space, and solves (1) directly, it is a relatively straightforward task to 
construct the adjoint using the same subroutines (analysis operators), but with different input and output, and 
applied in a different order (see Langland and Baker, 2004b for details).  The adjoint of NASA GEOS-5 was 
constructed as a line-by-line adjoint, in part because the GSI is in model space, and to specifically account 
for and quantify the contributions of GSI nonlinearities on the observation impact.  The Meteorological 
Research Division of EC opted to build the dual (PSAS) formulations of their 4D-Var and 3D-Var systems, 
and to construct the adjoint from those systems using the analysis operators (Morneau et al., 2006). ECMWF 
solves for the observation sensitivity by rewriting (7a) as  

 1 ,T
aJ J J−∂ ∂ = ∂ ∂ = ∂ ∂ ay K x R HA x (13) (13) 

where A is the analysis error covariance, and the observation sensitivity is computed using the Krylov 
subspace method (Cardinali, personal communication).  The observation impact is computed by 

 ( )b
JJδ ∂

= −
∂

y Hx
y

. (14) 

5. Application of Observation Adjoint Techniques 
The observation impact has been successfully used by scientists at the NRL and Fleet Numerical 
Meteorology and Oceanography Center (FNMOC) to diagnose a number of data quality issues in operational 
observation suite used by NAVDAS.  The observation impact is routinely computed at 00 UTC for the 
operational real-time NAVDAS/NOGAPS forecast run.  The archived observation impact statistics have 
been used to identify errors in the observation meta data, such as incorrect station elevations in the Master 
Station List. These statistics also enabled us to correctly identify a temporary wind direction bias of around 
30o with the Lihue (91165) radiosonde observations during December 2004. We have also used it to justify 
the continuation of certain U.S. military radiosonde stations.   

One obvious question is whether removing observations flagged as non-beneficial translates to an increase in 
forecast skill.  The following example illustrates that this is indeed the case.  During January and February 
2006, we noticed that the MTSAT atmospheric motion vectors (AMVs) produced by the Cooperative 
Institute for Meteorological Satellite Studies at University of Wisconsin were systematically providing non-
beneficial impact (as indicated by the red shading) in the southern hemisphere (see Fig. 6a).  The 
corresponding mean zonal wind innovations were also unusually large and negative (the blue shading in Fig. 
6b).  After reviewing the observation impact statistics, we opted to remove all MTSAT AMVs more that 39o 
from the satellite sub-point. An Observation System Experiment (OSE) was run, removing this data from the 
assimilation system for the period of 16 February to 27 March 2006.  The 500 hPa height anomaly 
correlations indicated around 3-hrs forecast improvement in both hemispheres at 5 days.  We simultaneously 
contacted Chris Velden and colleagues at CIMSS concerning the problem.  The problem was quickly traced 
to a processing issue related to a lack of a unique time stamp for each scan-line, resulting in a wind speed 
bias that increased to the south (as a function of true scan time). CIMSS rapidly implemented a fix to their 
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wind processing system, and the observation impact and mean innovation values decreased to within their 
normal ranges (not shown). 

MTSAT Observation Impact 

 

MTSAT mean zonal wind innovation 

 

Figure 6: Total observation impact (left panel; J kg-1) for MTSAT winds for the period from 01 Jan. 2006 
to 28 Feb. 2006. The green shading indicates beneficial impact, while the red shading indicates non-
beneficial impact.  The mean zonal wind innovation (m s-1) for the same period is shown in the right 
panel. The slow wind speed biases due to the observation processing problem are shown by the blue 
shading in the southern hemisphere.  

5.1. Channel Selection for AIRS 

The observation impact has also been used with the NASA AQUA AIRS (Advanced Infrared Sounder) 
radiance observations as a method to identify beneficial and non-beneficial channels for assimilation 
(Ruston, 2006). With the observation impact approach, the observation impact is generated from a several-
week assimilation run using the subset of channels under consideration. The observation impact statistics are 
generated, and the non-beneficial observations are eliminated from the next forecast trial. This approach 
differs from other channel selection methods, such as entropy-reduction, adjoint sensitivity and Kalman filter 
sensitivity.  The entropy- reduction method iteratively selects the satellite channel that most effectively 
reduces the background error (Rodgers, 1996; Fourrié and Rabier, 2004). The adjoint sensitivity method 
(Doerenbecher and Bergot, 2001) is also an iterative approach, and preferentially selects the channel with the 
maximum observation sensitivity. The Kalman filter sensitivity (Bergot and Doerenbecher, 2002) iteratively 
chooses the channel that gives the maximum decrease in the forecast error variance.  Fourrié and Rabier 
(2004) showed that the last 3 methods produced similar results (in terms of the computed degrees of freedom 
for signal), even though the selected channels are not the same. In particular, the adjoint-based methods tend 
to favor channels with information in the sensitive regions of the lower troposphere, while the entropy-
reduction methods tend to include more information from the upper troposphere.  

An example of the AIRS and AMSU observation impact for the NAVDAS/NOGAPS system for an 
assimilation run from 19-25 August 2006 is shown in Fig. 7. For this example, the initial channel set was 
selected based on channel usage at other operational NWP centers.  The channels are grouped by frequency 
and labeled by channel number. Positive numbers along the abscissa indicate an increase in forecast error (in 
J kg-1) due to that channel, while negative numbers indicating a reduction in forecast error. The forecast 
metric is the moist static energy error norm, as described earlier. 

Some of the non-beneficial impact is easily explained – in the operational version of NAVDAS, only linear 
observation operators are allowed, and only those with sensitivity to the temperature state vector. Thus, it is 
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not surprising that the water vapor channels increase the forecast error.  The responses for AMSU channels 8 
and 10 are not as readily explained, nor are the varied responses for the short wave CO2 channels. 

The channels that contributed to the forecast degradation were removed, along with the ozone and water 
vapor channels, and the assimilation run was repeated. The results are presented in Fig. 8. 

       

 
Figure 7: Observation impact (absicca, in J kg-1) computed using moist static energy-weighted error 
norm for the NAVDAS/NOGAPS system for Aug. 19-25, 2006.  The impact for the AIRS and AMSU 
channels is plotted along the ordinate, where the numbers beside the bars indicate the channel number, 
with color-coding as follows: short-wave CO2 (blue and gray); water vapor (light blue); long wave 
window (brown), long wave CO2 (green), and the AMSU microwave (red).  Figure courtesy of Ben 
Ruston. 

 
Figure 8: Same as Fig. 7, but for the observation impact after the non-beneficial channels were removed.  
Figure courtesy of Ben Ruston. 
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Overall, the majority of the channels now act to reduce the forecast error. Interestingly, some of the channels 
that were previously beneficial are now non-beneficial.  We don’t know why this occurs, however it’s 
possible that examining the problem in a 1D-Var context would lend some insight into its nature. It’s also 
possible that this is an indication of the nonlinearity aspects of the problem discussed in section 4.3. 

5.2. NWP Center Inter-comparison Studies 

The Joint Center for Satellite Data Assimilation (JCSDA) has recently funded a collaborative effort between 
NRL and GMAO to evaluate and compare the observation impact for all in-situ and satellite observations 
used in the NAVDAS-NOGAPS and GEOS-5 forecast systems. The results will be used as guidance for data 
assimilation quality control, data thinning and observation selection, bias correction, and tuning of 
observation and background error.  An example of this approach is shown in Figs. 9a-d, for the AMSU-A 
observation impact for the NRL, GMAO, EC and ECMWF systems, respectively. 

NRL Observation Im pact for NOAA 15,16, 18 AMSU-A
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Figure 9a: Total observation impact (abscissa in J kg-1) versus channel index (ordinate) for NOAA-15 
(blue), 16 (gray) and 18 (green) AMSU-A observations assimilated by NAVDAS/NOGAPS for 1 Jan. to 28 
Feb. 2006 at 00 UTC.  

 
Figure 9b: Same as for Figure 9a, but for the GMAO GEOS-5 system for July 2005 at 00 UTC. Note that 
this is for a one-month period, so the total forecast impact is roughly half that in Figure 9a.  The impact 
for NOAA-15 and NOAA-16 are summed together. Figure provided courtesy of Ron Gelaro, GMAO. 
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Figure 9c: AMSU-A observation impact per observation, for the EC 4D-PSAS system for August 2004. 
Note that the forecast impact (J kg-1) is on the ordinate, and the channel index is on the abscissa. The 
pale green bars are for NOAA-15, while the dark green bars are for NOAA-16 and the black bars are for 
AQUA. Figure provided courtesy of Simon Pellerin, Stéphane Laroche, Josée Morneau, and Monique 
Tanguay, EC. 

-35 -30 -25 -20 -15 -10 -5 0 5 10

5

6

7

8

9

10

11

12

13

14

C
ha

nn
el

J/kg

Amsua15 Amsua16 Amsua18 Amsua20

 
Figure 9d: As in Figure 9a, but for the ECMWF 4D-Var system, with observation impact computed using 
(14) for 15 June  to 15 July 2006, for 00 and 12 UTC. The blue bars are for NOAA-15, the red bars are 
for NOAA-16, the yellow bars for NOAA-18, and the green bars are for METOP-A. Figure provided 
courtesy of Carla Cardinali (ECMWF). 

The results are quite similar overall, with NRL, GMAO and EC showing the strongest forecast reductions for 
the mid-tropospheric channels (AMSU ch 5-8). The ECWMF results differ, in that they indicate stronger 
observation impact for the upper tropospheric channels.  It is unclear whether this is due to the higher model 
top for ECMWF forecast system, or the observation impact calculation itself. 

The most striking difference is the non-beneficial impact for AMSU channels 8 and 9 for the NRL system.  
These results suggest a problem with the assimilation of these channels, possibly due to the relatively low 
model top (effectively around 4 hPa), or insufficient model and analysis resolution near the tropopause.  This 
example also highlights the fact that although the adjoint can tell us when there is a problem, it can not tell us 
how to fix that problem!  
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5.3. Observation Impact for the Global Observing Network 

The observation impact for all observations assimilated by the NAVDAS/NOGAPS system daily at 00 UTC 
is shown in Fig. 10 for the 30 days ending 25 Sept. 2007.  In the left panel, the observation impact is binned 
according to observing platform and expressed as the total impact, or reduction in forecast error, over the 30 
days. In the right panel, the total impact is first scaled (by 1000) and then divided by the number of 
observations in each bin.  

  
Figure 10: Total (left panel) and per ob (right panel) 30-day 00 UTC observation impact (J kg-1) for the 
major observing platforms.  Negative values (green) indicate a reduction in forecast error. White bars 
indicate essentially neutral impact. Orange bars (not present) would indicate an increase in forecast 
error. 

In terms of total impact, for the NRL system, radiosondes are still the dominant source of information in the 
00 UTC analysis, followed by the AMVs and AMSU-A radiances.  The satellite total precipitable water 
observations rank as fourth.  These results are analogous to those found with OSEs, although it should be 
noted that the two are not equivalent. The adjoint-based methods quantify the reduction in forecast error due 
to an observing system, in the context of all observations assimilated. The OSE approach gives the impact 
relative to a control run when an observing system is removed from the assimilation. 

On a per observation basis, the two observing platforms with the most beneficial impact are the Australian 
surface pressure pseudo-observations (PAOBs) and the tropical cyclones pseudo-observations generated 
from the tropical cyclone warning messages. The total observation counts for each type are small, so it is 
possible that some of the nonlinear aspects discussed in 4.3 are relevant; however, these relative rankings 
have remained consistent over several years of monitoring. 

5.4. Observation Impact as a Function of  Observation Time 

The final example (Fig. 11) is from EC, and shows the mean Southern Hemisphere observation impact per 
observation for the 4D-PSAS system as a function of the time of the observation within the assimilation 
window.  A clear trend is apparent, indicating that the observations at the end of the assimilation window 
have the largest impact. This result is particularly relevant for satellite-data providers, as it shows that 
reduced data latency is of critical importance.  
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Figure 11: Mean observation impact per observation (ordinate in J kg-1) for the EC 4D-PSAS system, as 
a function of observation time relative to the assimilation window.  The observing platforms are color-
coded and given in the legend. Figure provided courtesy of Simon Pellerin, Stéphane Laroche, Josée 
Morneau, and Monique Tanguay, EC. 

6. Concluding Remarks 
The adjoint of the data assimilation system has proven to be a useful tool to help identify systematic 
problems with the observing network, to quantify the value of different observing platforms, and as a way to 
compare different data assimilation systems. One must keep in mind that the observation impact, as 
calculated via (12) or (14) is a very specific measure of forecast impact, as it depends upon the choice of J, 
the suite of observations assimilated, the data assimilation system, and the NWP forecast model. Despite the 
similar results obtained using different NWP systems, the observation impact is, strictly speaking, valid only 
for the data assimilation system and NWP forecast system used to compute the statistics7. Ultimately, that is 
its greatest strength, and potentially, its greatest weakness.  

The ongoing formal collaboration between NRL and GMAO, and the informal ones with EC and ECMWF 
will help clarify the extent that the observation impact informs us about issues with the global observing 
network and data assimilation systems in general.  
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7 The same is true for OSEs and OSSEs (Observing System Simulation Experiments). 
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