Planetary boundary layer information from GPS radio occultation measurements

Chi Ao, Steven Chan, Byron Iijima, Frank Li, Tony Mannucci, Joao Teixeira, Baijun Tian, Duane Waliser

> Jet Propulsion Lab. California Institute of Technology Pasadena, USA

GRAS-SAF Workshop on Applications of GPSRO Measurements Reading, UK, 16-18 June 2008

Overview

Why GPSRO are useful for studying PBL

- Global, diurnal sampling
- All-weather profiling
- High vertical resolution

Limitations

- Not all profiles reach the surface
- Negative N-bias when ducting occurs
- Temperature-humidity ambiguity

Depth Penetration (SAC-C CL)

Only 50% profiles reach < 2 km in the tropics

Depth Penetration (SAC-C OL)

 \sim 80% profiles reach < 2 km in the tropics

PBL Height/Depth

- PBL height is a crucial parameter that describes various PBL processes.
- Global climatology of PBL is poorly established due to lack of observation, esp. over the oceans.
- PBL top is often finely delineated: difficult to model and hard to resolve with most remote sensing observations.

Study Objectives

- 1. Develop a reasonable algorithm for determining PBL height from GPSRO
- 2. Validate algorithm
- 3. Construct global PBL height climatology
- 4. Compare with models

PBL Height Algorithm

- Options
 - Bending angle [Sokolovskiy et al. 2007]
 - CT/FSI amplitude [von Engeln et al. 2005]
 - Refractivity [Hajj et al., 2003; Sokolovskiy et al. 2006]
- Humidity: more direct comparisons with models
 - determine PBL top from the minimum of dq/dz

Data

FORMOSAT-3/COSMIC in 2006-2007

Processing at JPL

- Double-differencing
- Nav. data modulation removed
- Canonical transform on L1/CA data
- LT water vapor assuming T from NCEP
- Data available from <u>http://genesis.jpl.nasa.gov</u>

Estimated/Observed Errors

Comparison with RAOB

Mean agrees well, but large scatters

Examples: good agreement

Examples: bad agreement

Impact of "Incomplete" Profiles

Incomplete profiles result in higher PBL heights

Comparison with ECMWF

DJF 2006-07

50

30

10

-10

-30

-50

-180

-60

-20

20

60

-100

GPS heights are higher and more variant.

ECMWF DJF PBL mean

ECMWF DJF PBL std

2.5

1.5

.5

2.5

1.5

0.5

180

180

100

100

140

140

"Sharp" PBL Tops (DJF)

Profiles with "relative sharpness" in the top 25 %-tile

"Sharp" PBL Tops (JJA)

Profiles with "relative sharpness" in the top 25 %-tile

Summary

- GPSRO provides unique opportunities in sensing the PBL (global + diurnal cycle).
- A moisture-based, local-gradient, PBL height definition is proposed and investigated.
- Comparison with RAOB profiles validates approach, also exposes issues.
- Seasonal average comparison with ECMWF shows good agreement in general morphology, with GPS heights being higher and more variant.
- Sharp PBL tops are shown to be predominantly located in the subtropical subsidence region.