

Stochastic parametrization of multi-scale processes using a dual grid and 'real-time computer games physics'

Glenn Shutts, Tom Allen and Judith Berner November 7 2007

- review need for stochastic physics
- describe the latest ECMWF spectral stochastic backscatter scheme
- discuss the use of fluid motion emulators as enhanced pattern generators
- discuss the 'dual-grid' approach with examples and relate to ensemble prediction

Model error : physical parametrization deficiencies

- overly-simplified physics
- excessive numerical dissipation
- vertical column-based (missing horizontal structure)
- Quasi-statistical equilibrium assumption (incorrect diurnal cycle, missing fluctuations..)
- Numerical implementation problems (e.g. if-test intermittency, gridpoint storms..)

- account for unpredictable, near-gridscale statistical fluctuation (e.g. ECMWF 'stochastic physics' multiplicative noise)
- kinetic energy backscatter inject 'lost' KE back into the model proportional to dissipation rate (e.g. ECMWF/UKMO SSBS and SKEB schemes)
- inherently stochastic parametrization schemes (e.g. convection scheme of Plant and Craig, 2007)

- Streamfunction forcing pattern generator represented by a spherical harmonic expansion
- evolves spectral amplitudes as a 1st-order autoregressive process
- Streamfunction forcing is the product of the pattern maker and square root of a model dissipation rate
- 'roll off' of spectral power in the pattern generator tuned to match that deduced from big domain CRM simulations
- Backscatter ratio of about 2%

see: Berner, Shutts, Leutbecher and Palmer (2007)

Met Office

Estimated dissipation rates – breakdown of physical contributions

© Crown copyright

Spectral streamfunction pattern generator

50-member ensemble forecasts for 10 days started every 8th day in a one-year period

Page 8

Ignorance Skill Score based on *anomaly* > 1.5 std. devs. for 500 hPa geopotential height

> z at 500hPa, anomaly>1.5 stdev 2004050100-2005042600 (46), area n.hem

Page 9

© Cı

Reduction of systematic error of z500 over North Pacific and North Atlantic

No Stochastic Backscatter

Z500 Difference et38-er40 (12-3 1962-2001)

Stochastic Backscatter

Increase in occurrence of Atlantic and Pacific blocking

Backscatter scheme reduces erroneous westward propagating modes

Pattern generators in stochastic physics

- smoothed random numbers (LES backscatter; Mason and Thomson, 1992)
 - Cellular Automata (Palmer, 1997; 2001; Shutts, 2005)
 - spectral AR1 (Berner et al, 2007)
 - fluid motion emulators with coupling ?

- animators need to do real-time rendering of fluid motion (e.g. smoke movement) and cloudscapes
- •'accuracy' in the predictive sense not important : speed is
- animators use the same physical equations as atmospheric modellers
- Why not use this approach to create a class of fine-scale physics 'emulators' ?

Cloud rendering in flight simulators

From Harris, 2003 (PhD thesis sponsored by NVidia Corporation

Figure 6.6: An example of shading from two light sources to simulate sky light. The static particle-based clouds in this scene were illuminated by two light sources, one orange and one pink. Anisotropic scattering simulation accentuates the light coming from different directions.

Figure 6.7: An example oriented light volume (OLV) illumination of a 3D cloud. Left: the cloud density volume without illumination. Middle: the OLV. Right: the cloud density volume illuminated via modulation by the OLV.

- inaccurate advection e.g. simple semi-Lagrangian advection with bi-linear interpolation
- elliptic pressure solver accuracy comprised for speed e.g. small fixed no. of iterations
- over-simplified physics e.g. relaxation with different time constants

Stam and other computer games animators use this technique to counteract excessive diffusion associated with low-order interpolation in SL advection scheme

Effect of vorticity confinement in a simulation of turbulent jet

Steinhoff et al, 2005

Jet Plume Without Vorticity Confinement

Jet Plume With Vorticity Confinement

Animation without vorticity confinement

Simulation with vorticity confinement

Animation with vorticity confinement

Met Office

Convective cloud emulator

Approximations used in moist physics:

- Two water mixing ratios only: precipitating (q_R) and nonprecipitating water (q)
- Define cloud water to be q qsat and relax to zero at a rate proportional to the supersaturation
- rate of evaporation of q_R proportional to subsaturation
- Fall speed of precipitation given by Kessler formula for droplets
- Mixed qsat formula for liquid water and ice with transition between 0 C and -15 C.

© Crown copyright

Page 23

- if the emulator is based on same equations as the forecast model why not couple the two together as a dual-grid model ?
- the 'accurate' coarser NWP grid acts as a large-scale forcing field for an underlying 'inaccurate' fine-grid model with severely-approximated physics
- resembles super-parametrization/Multi-Model Framework (Randall et al, 2003)
- lower computational cost achieved by relaxing the requirement for numerical accuracy
- Nature of the coupling between the two grids will be crucial

Dual grid representation

- Compute physical parametrizations on a different resolution grid from the dynamics in the ECMWF model
- coarse physics and fine dynamics ?

Fine physics and coarse dynamics gives better skill (Hortal and Salmond, unpublished)

Parametrization strategies

Column-based parametrization

Comments on dual-grid method

- generates its own flow-sensitive quasi-stochastic fluctuations
- solution convergence as numerical and physical accuracy is improved
- fine grid computation of orographic drag
- surface fluxes integrated over fine-grid surface type specification
- accuracy compromises set by what is computationally affordable

- replace pattern generators that underpin 'stochastic physics' with emulators
- physics emulators attempt to mimic high resolution simulation models (e.g. CRMs) at a fraction of the cost
- each ensemble member would use a stochastically-perturbed physics emulator coupled to the forecast model fields