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Progress achieved on assimilation of satellite data in 
NWP over the last 30 years

sub-title:  
Ancient Developments in the Use of Satellite Observations in NWP

Structure of talk
• Satellite soundings (passive IR/MW soundings of temp/humidity profiles)

• Early instruments
• Assimilation experience: 1970s and 1980s
• Problems with assimilation of retrievals
• Direct assimilation of radiances: 1990s

• Atmospheric Motion Vectors (AMVs)
• Scatterometry

• Early instruments
• Early assimilation experience

• More recent advances
• TOVS ATOVS, AIRS and IASI, other data types
• Radio occultation

• Strategies for various data types
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Weather satellites – early milestones

TIROS-1 1960 1st satellite giving images of Earth
NIMBUS-1 1964 1st meteorological research satellite
ATS-1 1966 1st geostationary weather satellite
ESSA-1 1966 1st operational weather satellite
NIMBUS-3 1969 1st temperature sounders
ITOS-1 1970 1st APT system – improved imagery
NOAA-2 1972 1st operational temperature sounder
SMS-1 1974 1st USA operational geostationary satellite
GMS-1 1977 1st Japanese operational geostationary satellite
Meteosat-1 1977 1st European operational geostationary satellite
TIROS-N 1978 New generation of operational polar satellites
FGGE 1979 First GARP Global Experiment
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Satellite soundings

• passive infra-red/microwave soundings of 
temperature/humidity profiles
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Satellite sounding instruments

Nimbus series – temperature/humidity sounders
• Nimbus-3 1969-70 SIRS, IRIS
• Nimbus-4 1970-71 SIRS, IRIS, SCR
• Nimbus-5 1972 ITPR, SCR
• Nimbus-6 1975 HIRS, SCAMS, PMR, LRIR
• Nimbus-7 1978-94? LIMS, SAMS

NOAA series – temperature/humidity sounders
• NOAA 2-5 1972-79 VTPR
• TIROS-N 1978-80 TOVS = HIRS, MSU, SSU
• NOAA-6/14 1979- TOVS = HIRS, MSU, SSU
• NOAA-15+ 1998- ATOVS = AMSU-A, AMSU-B, HIRS
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VTPR – weighting functions

VTPR Radiance Sensitivity

temperature humidity
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TOVS – weighting functions
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TOVS – scan patterns

HIRS and 
MSU scan 
patterns
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Assimilation experience: 1970s (1)

Australian experience
See W.Bourke, “History of NWP in Australia – 1970 to the present”, BMRC 

Workshop, October 2004

• Importance of satellite cloud imagery interpretation for analysis of surface 
pressure (PAOBs) and 1000-500 hPa thickness in SH.

• From 1972, Kelly used NOAA-2,3,4 VTPR data – retrievals from cloud-
cleared radiances.  

• 1976, Kelly demonstrated within a continuous data assimilation system 
benefits of assimilating VTPR and PAOBs.

• Kelly, Mills and Smith (BAMS, 59, 393-405, 1978) “Impact of Nimbus-6 
temperature soundings on Australian regional forecasts”:

• 14 days assimilation.  Average improvement of >5 skill scores points on 24h 
geopotential forecasts (surface 200 hPa)

In this story, this chap Kelly appears everywhere!
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Assimilation experience: 1970s (2)

UK experience
Atkins and Jones, “An experiment to determine the value SIRS data in 

numerical forecasting”, Meteorol Mag, 104, 125-142, 1975.

• SIRS data impact study
• Used operationally, at discretion of Chief Forecaster.
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Assimilation experience: 1970s (3)

Summary paper:
Ohring G, “Impact of satellite temperature soundings on weather forecasts”

(BAMS, 60, 1142-1147, 1979).

Summarised results from several OSEs
• Desmarais et al (1978) VTPR + Nimbus 6
• Halem et al (1978) VTPR + Nimbus 6
• Bonner et al (1976) VTPR
• Atkins and Jones (1975) SIRS
• Druyan et al (1978) VTPR
• Kelly (1977) VTPR
• Kelly et al (1978) Nimbus 6
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Assimilation experience: 1970s (4)

Summary paper:
Ohring G, “Impact of satellite temperature soundings on weather forecasts”

(BAMS, 60, 1142-1147, 1979).

Summary:
• “on average, a small improvement in numerical forecasts”
• “beneficial but modest impacts”
• “hesitate to claim that satellite data changed a poor forecast to an accurate one”
• Greater improvements in forecasts in S Hem.

Problems:
• Differences between retrievals and collocated radiosondes of 2-3 deg
• Analyses using satellite data have lower eddy potential energy
• Satellite soundings not point observations – have their own error characteristic –

improved analysis schemes may enhance impact
• Improvements in retrieval methods likely - but basic problem is poor vertical 

resolution – “the statistical/climatological nature of retrieval techniques may suppress 
horizontal structure”
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FGGE – satellite data coverage

S FGGE:
First GARP Global 
Experiment

(GARP = Global 
Atmospheric Research 
Programme)

General observational period: 
01.12.1978 - 30.11.1979 

Special observational 
periods: 
05.01.1979 - 05.03.1979 
01.05.1979 - 30.06.1979 
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Assimilation experience: 1980s (1)

Halem M, E Kalnay, W E Baker and R Atlas, 
“An assessment of the FGGE Satellite Observing System during SOP-1”

BAMS, 63, 407-426, 1982

• OSEs for several obs types
• 6-hour forecast errors reduced downstream of data sparse areas by 

including satellite observations
• over N.America and Europe, small improvements in forecast skill
• over Australia, positive impact of satellite data is much larger
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Assimilation experience: 1980s (2)

Exeter Workshop 1982. Report of “JSC Study Conference on Observing 
System Experiments” (Gilchrist A,1982). 

From the summary:
• 4 centres, 11 experiments, 85 forecast-days
• 3 periods:  SOP-1, SOP-2, Nov 79 (2 NOAA satellites)

• ECMWF: NOSAT: “useful predictability reduced from 5.5 to 4.5 days in NH 
and from 5 to 3 days in SH

• GLAS: NOSAT: Large impact over S.America and Australia.  Smaller but 
+ve impact over N.America and Europe

• ANMRC: NO-SATEM: Substantial +ve impact in SH
• GLAS: NO-SATEM:  +ve impact over Australia.  Europe and N.America, less 

impact and variable
• NMC: NO-SATEM: +ve impact on one cycle at T+3.5 over E.USA
• ECMWF: space-based only.  “surprisingly good skill at T+4”, SH: small 

differences
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Assimilation experience: 1980s (3)

ECMWF Seminar 1984. “Data Assimilation and observing system 
experiments, with particular emphasis on FGGE”.

Summary:

• Accuracy of satellite temperature soundings … 2-3 deg below 850 hPa, 1.5-
2 deg above … satisfactorily assimilated … important role in analysing large 
scale weather systems at high and mid latitudes, in particular in SH

• “(satellite) atmospheric soundings … are an essential element of the GOS”

• Uppala et al
• AMVs important for analysis of tropics
• SATEMs of paramount importance for extra-tropical analysis over ocean 

areas
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Late 1980s: problems (1)

Kelly and Pailleux(1988). ”Use of satellite vertical sounder data in the 
ECMWF analysis system”.  ECMWF Tech Mem 143.

• Layering of retrievals:
• Change from 14 layers:  1000-850, 850-700, 700-500, 500-400, 400-300, 300-

250, 250-200, 200-150, 150-10, 100-70, 70-50, 50-30, 30-20, 20-10 hPa
• To 11 layers in 1985,
• To 7 layers in 1987: 1000-700, 700-500, 500-300, 300-100, 100-50, 50-30, 30-10

• SH: +ve impact, NH: mixed
• QC problems (cloud and rain)
• Improvements in stratosphere
• Reduced impact in NH compared with Uppala et al (1984)
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Late 1980s: problems (2)

Andersson et al. “Global observing system experiments on operational 
statistical retrievals of satellite sounding data”, MWR, 119, 1851-1864 (1991)

• The neutral impact of SATEMs with the 1987 system gave way to a negative 
impact in the 1988 system.  “In the present study the overall impact of 
SATEM data in the NH is negative”.

• Synoptically correlated biases

Kelly et al. “Quality control of operational physical retrievals of satellite 
soundings”, MWR, 119, 1866-1880 (1991)

• “the new physical retrievals have much the same problems of bias and noise 
that were noted with the statistical retrievals”

• Improved QC to mitigate the worst problems
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Late 1980s: problems  - synoptically correlated biases

From Andersson et al (1991).  Analysis increments and background,1000-700 hPa



Page 20Page 20

Problems with assimilation of sounder data

Problem No.1  - RADIOSONDES

Suomi’s 11th commandment: 
“Thou shalt not worship the radiosonde”

• early NWP systems designed to make use of sondes

• satellite sounders and sondes have opposite strengths and weaknesses

• treating satellite soundings as “poor-quality sondes” is flawed
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The history and future of data assimilation (1)

… backwards … and in 2 slides
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The history and future of data assimilation (2)

Bayesian:
• What is the probability of atmospheric state, x, given observations, yo ?
• Evaluate: P(x|yo) = P(yo|x).P(x)/P(yo)

Variational (VAR):
• What is the most probable atmospheric state, x, given observations, yo ?
• To maximise P(x|yo),

• maximise: ln{P(x|yo)}  =  ln{P(yo|x)} + ln{P(x)} + constant
• If PDFs are Gaussian, then minimise a PENALTY FUNCTION,

• J[x]  =  ½ (x-xb)T B-1 (x-xb)  +  ½ (yo-H[x])T (E+F)-1 (yo-H[x])

xb : background
B : background error covariance
H[x] : observation operator
E, F : error covariances of observations and observation operator
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The history and future of data assimilation (3)

Optimal Interpolation (OI) 
• Linearising the VAR problem 
• xa = xb +  K . (yo-H[x])

• where K  =  B.HT.(H.B.HT + E + F)-1

H is the Jacobian of the observation operator H[x]

Empirical
• xa = xb +  K . (yo-H[x])
• but with K as empirically-derived weights

___________________

Key issues for satellite soundings
• VAR provides method on handling large numbers of observations 
• … linked to analysis variables in a non-linear way
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Retrieval error characteristics

• Linearized retrieval equation: xa-xb = K.(yo-H[xb])

• Linearized forward equation: yo-H[xb] = H.(x-xb) + ε

• Combine: xa-xb =  K.H.(x-xb) + K.ε

or xa-xt = (I-K.H).(xb-xt)  +  K.ε
retrieval background measurement

error error error

where t denotes truth, I = unit matrix,     H = ∇xH[x]

• This equation shows why assimilating retrieved temperature/humidity profiles 
into NWP models is more problematic than assimilating radiances directly
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Direct assimilation of radiances: 1990s

Variational equations: for 1D-Var, 3D-Var, 4D-Var

Minimize:

J[x]  =     ½ (x-xb)T B-1 (x-xb)   +  ½ (yo-H[x])T (E+F)-1 (yo-H[x])

where x contains the NWP model state 
xb is background estimate of x (short-range forecast)
B is its error covariance, 
yo is vector of measurements
H[...] is “observation operator” or “forward model”, 

mapping state x into “measurement space”
E is error covariance of measurements,
F is error covariance of forward model. 

∇xJ[x]T =  B-1 (x-xb)  - ∇xH[x]T (E+F)-1 (yo-H(x))  =  0



Page 26Page 26

Direct assimilation of radiances: 1990s

TOVS in NWP via 1D-Var
• Eyre et al, QJRMS, 119, 1427-1463 (1993) ”Assimilation of TOVS radiance 

information through one-dimensional variational analysis”
• main advance over assimilation of SATEMs: 1D-Var produces no analysis 

increments when measured radiances agree with forecast radiances
• still needs care over assimilation because of use of forecast background in 

1D-Var retrieval
• operational ECMWF, June 1992

TOVS in 3D-Var
• Derber and Wu, MWR, 126, 2287-2299 (1997).  “The use of TOVS cloud-

cleared radiances in the NCEP SSI analysis system”.
• operational at NCEP, October 1995

• Andersson et al, QJRMS, 120, 627-653 (1994). “Use of cloud-cleared 
radiances in three/four-dimensional variational data assimilation

• operational at ECMWF, January 1996

TOVS in 4D-Var 
• Operational at ECMWF, November 1997
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Atmospheric motion vectors

• winds derived by tracking features in imagery
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Scatterometry



Page 29Page 29

Scatterometry: satellites and instruments

year satellite instrument freq views res swath
GHz km km

73-74 Skylab MRSA 13.9 (Ku-band) 1* 15 185

78 SEASAT SASS 14.6 (Ku-band) 2 25 1000

91-00 ERS-1 AMI 5.3 (C-band) 3 25 500

95- ERS-2 AMI 5.3 (C-band) 3 25 500

96-97 ADEOS-I NSCAT 14.0 (Ku-band) 3 50 1000

99- Quikscat Seawinds 13.4 (Ku-band) 4 25 1800

06- Metop ASCAT 5.3 (C-band) 3 25 1000

* dual polarisation
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Scatterometry: ERS-1 and -2 (1)
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Scatterometry: ERS-1 and -2 (2)

ERS scatterometer:

the measurement cone 
in σ0-space

Wind speed increases along
the cone

Wind direction changes 
through 360º for twice around
the cone
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Scatterometry: early assimilation experience

• Baker et al  (JGR, 89, 4927-, 1984)   SEASAT  
• Impact negligible in NH (~2% in skill score in PMSL).  Impact +ve in SH removed 

when VTPR included.  (Low-resolution model with no PBL scheme.)
• Yu and McPherson (MWR, 112, 368-, 1984)    SEASAT   

• Significant impact in SH, but not possible to assess if impact is positive.
• Andersson et al (JGR, 96, 2653-, 1991)   SEASAT   

• Neutral
• Stoffelen and Cats (MWR, 119, 2794-, 1991)   SEASAT

• LAM, QE-2 storm.  Positive impact.
• Hoffman   (JGR, 98, 10233-, 1993)    ERS-1   

• Neutral
• Breivik et al  (DNMI Tech Rep 104, 1993)  ERS-1  

• Norwegian LAM.  Small positive impact.
• Bell  (Proc 2nd ERS-1 Symp, 1994)  ERS-1  

• Positive in SH at T+120
• Stoffelen and Anderson (QJ, 123, 491-, 1997)  ERS-1   

• Positive in short-range.
• Operational at ECMWF ? (with 3D-Var, January 1996?)
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More recent advances
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More recent advances: TOVS ATOVS

AMSU-A TOVS = HIRS + MSU+ SSUAMSU-B 
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More recent advances: AIRS and IASI

IASI v. HIRS 
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More recent advances: other observation types

Other satellite data now assimilated in NWP:

• SSMI MW imagery (for surface wind, water vapour, cloud water)
• SSMI cloud-affected radiances (for precipitation)
• geo WV radiances
• geo retrieved cloud
• ozone (SBUV, SCIAMACHY)
• MIPAS limb radiances
• SSMIS MW sounder radiances
• GPS-WV (satellite-to-ground)

• GPS-RO (satellite-to-satellite)
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Radio occultation: the technique (1)

© GFZ-Potsdam, Germany



Page 38Page 38

Radio occultation: the technique (2)
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Refractivity gradients caused by gradients in:
• density (pressure and temperature)
• water vapour
• electron density
• (liquid water)

N     =     κ1 p/T     +      κ2 e/T2     +     κ3 ne/f2      +    κ4 W

“dry” “moist” ionosphere    “scattering”

N  = refractivity = (n -1) x 106 ;      n = refractive index
p  = pressure
T  = temperature
e  = water vapour pressure
ne = electron density
f   = frequency
W = liquid water density

Radio occultation: the physics
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• globally distributed

• temperature in stratosphere and upper troposphere, and ...
• humidity on lower troposphere

• high vertical resolution:  0.5 - 1 km
• low horizontal resolution:  ~ 200 km

• high accuracy: 
• random errors ~1K
• systematic errors <0.2K (to be demonstrated in practice)

• “all-weather”

• space/time sampling determined by number of GPS receivers

• relatively inexpensive

Radio occultation: characteristics
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Radio occultation missions (1)

Past:
• GPS/MET: 1995 - 1997 experimental, selected periods only

Present:
• CHAMP 2000 - … exptl, continuous since 2001; NRT since 2006
• SAC-C 2000 - … sporadic measurements, experimental
• GRACE-A 2002 - … exptl, continuous since 2003; NRT since 2006
• COSMIC 2006 - … demonstration mission, 6 satellites
• MetOp/GRAS 2006 - … operational from 2007
• TerraSAR-X 2007 - …

Future:
• EQUARS 2007? emphasising equatorial region
• OCEANSAT-ROSA   2009? Italian / Indian mission
• COSMIC-2 ?
• CICERO ? 20-100 satellites
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Radio occultation missions (2)

COSMIC

CHAMP

Metop/GRAS
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Error analysis: radio occultation with IASI

Collard and Healy, 2003
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Radio occultation: data coverage in 6 h – 4 satellites
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… compared with sondes
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Options:
(1)  assimilate retrieved profiles of temperature and humidity

(2)  assimilate retrieved profile of refractivity, N(z)

(3)  assimilate measured refracted angles, α(a), directly

Special problems with RO data:
• non-separability of temperature and humidity

• addressed by (2) and (3)

• limited horizontal resolution / problems of horizontal gradients

• partially addressed by (3)

Radio occultation: assimilation options
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Radio occultation: monitoring

COSMIC-1 

3 Jul -2 Aug 2007

Statistics of observation 
increments in % refractivity

Statistics are remarkably 
stable:

• day to day
• satellite to satellite
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More recent advances: radio occultation

Recent results 
(M.Rennie, Met Office)

Temperature: mean difference (top) 
and RMS difference (bottom) from 
sondes, SH, T+24
CONTROL, COSMICx6

The assimilation of GPSRO reduces  
RMS errors in the upper troposphere 
and corrects model biases.

Similar patterns in NH and TR, but 
smaller impact
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More recent advances: radio occultation

Recent results – bias and RMS v. forecast range
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Strategies for various data types
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Direct assimilation of observations
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Assimilation of satellite data: 
strategies for various data types

Ref.: Eyre, “Variational assimilation of remotely sensed observations of the 
atmosphere”, J Meteorol Soc Japan, 75, 331-338 (1997).

Direct assimilation of “raw” observations

Advantages
• Within variational schemes, the “observation operator”, H(x), can be nonlinear -

important for many remotely-sensed observations
• In principle, we can use "raw" measurements - in the space of the observed 

variables - e.g. radiances, backscatter coefficients - simpler errors

Limitations
• H(x) must simulate observation in the form in which it is presented to the system -

H(x) must be matched to any pre-processing
• Raw observations have more complex operators
• Some obs are affected by physical variables NOT contained in the control variable
• Logistical problem - need to develop/maintain expertise on all satellite observation

operators and associated errors - STRATEGY NEEDED: improved links between 
"assimilation centres" and "satellite centres” NWP SAF, JCSDA
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Assimilation of satellite data: 
strategies for various data types

Summary  - Needs careful consideration for each obs type

• Passive temperature/humidity soundings 
• as radiances

• Winds 
• small-scale as AMVs, large-scale as radiances?

• Scatterometry
• as retrieved “ambiguous” wind vectors 
• not backscatter, for subtle reasons - high degree of nonlinearity of obs operator

• MW imagery (water vapour, cloud water, precip, wind speed)
• complex issues:

• nonlinearity of multi-variate operators, 
• low vertical resolution (dependence on B-matrix)

• Cloud imagery
• as retrieved cloud or as radiances?

• Radio occultation 
• as retrieved refractivity or bending angle
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