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Aims and motivation

Spatial verification techniques aim to:
account for field spatial structure
provide information on error in physical terms
account for time-space uncertainties

Weather variables 
defined over spatial 
domains: coherent 
spatial structure
and features
(intrinsic spatial 
correlation) 



Verification on different scales
• Briggs and Levine (1997)
• Casati et al. (2004)
• Casati and Wilson (accepted)
• Denis et al. (2003), De Elia et al. (2002)

• Zepeda-Arce et al. (2000), Harris et al. (2001), Tustison et al. (2003)

Assess quality and skill on different scales
Scale dependency of predictability (no-skill to skill transition scale)
Assess the forecast ability of reproducing scale spatial structure of 
observed precipitation fields 

1. Decompose forecast and observation fields into the sum of spatial 
components on different scales features of different scales 
different physical processes and model parametrizations
Spatial filters: wavelets, discrete cosine transforms, Fourier, …

2. Perform verification on different scale components, separately 
(cont. scores; categ. approaches; probability verif. scores)

CONT (MSE, corr)
CAT (Heidke SS)
PROB (Brier SS)
CONT (Taylor D)



ECMWF Analysis 36-h Forecast (CCM-2)

500 mb GZ, 9 Dec 1992, 12:00 UTC, N. America

Briggs and Levine 1997
Wavelet scale components



Taylor diagram for precipitation
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Denis et al. (2003), 
De Elia et al. (2002)
Scale: cosine transforms
Verif: continuous scores
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Intensity-scale verification technique 
Casati et al. (2004), Met App, vol. 11

The intensity-scale verification approach measures the skill as 
function of precipitation intensity and spatial scale of the error

1. Intensity: threshold Categorical approach 
2. Scale: 2D Wavelets decomposition of binary images
3. For each threshold and scale: skill score associated to the MSE of 

binary images = Heidke Skill Score

Intense storm displaced

threshold = 1mm/h



Casati and Wilson (MWR accepted)

under-
forecast

over-forecast

Bias on different scales:

over-forecast of 320 km features 
for frequent lightning

Skill on different scales:

Transition scale ~ 500 km

Very negative skill for 320 km scale 
features for the frequent lightning

Scales by wavelets – probabilistic verification



Zepeda-Arce et al. (2000), Harris et al. 
(2001), Tustison et al. (2003)

Assess ability of 
reproducing multi-scale 
spatial structure and 
space-time dynamics   
of precipitation fields 

Assess scale-invariant 
parameters related to 
the scale-to-scale varia-
bility and smoothness, 
feature depth-area-
duration and spatio-
temporal organization
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Neighborhood-based verification
See talk of E. Ebert: Fuzzy verification

Use neighbor grid-points: 

Relax requirements for exact 
positioning; account of time-
space uncertainty; suitable for 
high resolution models
e.g. Atger (2001) spatial multi-event 
ROC curve; Rezacova and Sokol
(2005), rank RMSE;  Tremblay et 
al. (1996), distance-dependent 
POD, POFD; Roberts and Lean 
(2005), Fraction Skill Score; 

assess deterministic forecast 
with probabilistic verification 
approach 
e.g. Theis et al (2005); Marsigli et 
al (2005, 2006)

Note: scale = neighborhood size 
(smoothing process matching 

requirements more and more relaxed)



Decomposition of forecast error
Hoffmann et al. (1995):

Error =  displacement error +  amplitude error +  residual error

displacement error by translating the forecast (e.g. wind field) 
amplitude error by applying a scalar geopotential field
until a “best fit criterion” is satisfied (e.g. max correlation)

error measures directly physical quantities
(e.g. displacement in km); 

verification easily interpretable  (e.g. advection) 

Douglas (2000), Brill (2002), Du et al. (2000), Hoffman and Grassotti (1996), 
Nehrkorn et al. (2003), Brewster (2003), Germann and Zawadzki (2002, 2004) I, 
II and III Turner, Lee, …

Error decomposition is performed on different spectral components
Feedback used in data assimilation/now-casting; whole field



Hoffmann et al (1995)

500 hPa GZ: displacement 
and amplitude error

Brill (2002)
Mean sea level pressure       
east-west phase error = 166 km

Examples



Feature-based techniques and 
decomposition of forecast error

Ebert and McBride (2000), Grams et al (2006) 
Davis, Brown, Bullok (2006) I and II
Baldwin et al. (2001)
Nachamkin (2004, 2005)
Marzban and Sandgathe (2006)
Wernli, Paulat, Frei (SAL score)

1. Identify and isolate (precipitation) features in forecast and observation 
fields (thresholding, image processing, composites, cluster analysis)

2. assess displacement and amount error for each pairs of obs and 
forecast features; identify and verify attributes of object pairs (e.g. 
intensity, area, centroid location); evaluate feature-distance based 
contingency tables and categorical scores; verification as function of 
feature size (scale); classification of mesoscale features; add time 
dimension precipitation systems and timing error assessment 



Ebert and McBride (2000), Grams et al (2006)
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Davis, Brown, Bullok (2006)

Objects categ verif as function of scale 

Rain systems



Marzban and Sandgathe (2006), cluster analysis
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Nachamkin (2004)
mistral composite:

collect events from multiple occasions



Structure – Amplitude –Location (SAL)
Wernli, Paulat, Frei

Idealized small-intense obs and large-weak model: 
A = 0 (area mean precip error), S > 0 structure is different 
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Distance measures for binary images

1. Average distance
2. Housdorff metric
3. Baddeley metric
4. Pratts’ figure of merit
5. ...

Account for object 
shape, distance, …

Binary images 
alternative to use along 
with traditional 
categorical scores
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Venugopal et al. (2005);             
Gilleland et al.(2006)



1. Motivation: coherent spatial structure and features  

2. Scale verification: features of different scales, 
assess different physical processes and model 
parametrizations (scale structure, predictability)

3. Neighborhood-based (fuzzy) verification: relax 
time-space matching requirements; probabilistic 
approaches

4. Error decomposition: displacement + amount
5. Feature-based approaches: error measured by 

physical quantities
6. Distance metrics for binary images

Summary



Spatial verification techniques need 
observations over spatial domains

1. Spatial observations: satellites, radars, …
2. Point observations: radiosondes, gauges, …
3. Analysis background model (can be incestuous)
4. Block kriging, Cressman analysis, Barnes analysis, …

Canadian precipitation analysis relies heavily on forecast 
background model; radar measurements suffer still of several 
uncertainty in QPE;  radar network covers only southern 
Canada; satellite and radar are not (yet) assimilated for 
precipitation. What remains ? GAUGES …



1. Compute wavelet coefficients 
from sparse gauge obs

2. Reconstruct field as sum of 
components on different scales

Reconstruction of a 
precipitation field from 
sparse gauges obs by 
using 2D Haar wavelets
Background idea: any real function 
can be expressed as linear 
combination of wavelets (i.e. sum 
of components on different scales)

NOTE: no gauges = missing obs, 
no dense gauge network = no 
information on small scales, 
large scales only !
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Example: 6h acc (mm)
27th Aug 2003, 6:00 UTC 

WAV RECONSTRUCTED OBS

GAUGES OBSERVATIONS

ANALYSIS

1. Account for existence 
spatial structures on different 
scales

2. Account for gauge network 
density

3. Value at station location = to 
gauge value 



FORECAST   T+6hWAV REC OBS

No gauges = missing obs, 
but forecast has features!

1. Decompose forecast with 
wavelets 

2. Set to NA wavelet 
coefficients where no obs

3. Reconstruct forecast field

WAV REC FORECAST



Discrete wavelets = squared 
areas with fix location; these 
are not always representative

Eliminate discrete effect by 
dithering the wavelet support 
and averaging (100 random)

Continuous wavelets

WAV REC OBS FORECAST   T+6h

WAV REC FORECAST



Verification
on different scales, but only 
where obs are available

1. Energy squared:

Measures the quantity of 
events and their intensity 
at each scale => BIAS, 
scale structure

2. MSE Skill Score:
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Summary
Wavelet-based approach to reconstruct a precipitation 

field from sparse gauge observations:

• Account of existence of features and field coherent 
spatial structure + scales

• Account of gauge network density
• Preserve gauge precip. value at its location

Verification on different scales/resolution, but only where 
obs are available

Future work: uncertainty mask
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Wavelets are locally defined real functions characterised
by a location and a spatial scale.

Wavelets are a basis: Any real function can be expressed 
as a linear combination of wavelets, i.e. as a sum of 
components with different spatial scales. 

Wavelet are local => deal better than Fourier with 
discontinuous, on/off fields with features (e.g. precipitation)

Haar mother wavelet ψ
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Haar Wavelet filter

deviation from 
mean value

mean value
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27 Aug 2003 6:00Z   
6h accumulation

FATHER 
WAVELET 
SPACES



27 Aug 2003 6:00Z   
6h accumulation

MOTHER 
WAVELET 
SPACES



27 Aug 2003 6:00Z   
6h accumulation

GAUGES 
NUMBER



Hausdorff metrics, Baddeley Δ metric

OBSERVATION FORECAST  1 FORECAST  2

Δ = 0.5625 Δ = 0.96875

hits = 9; false alarms = 11;  misses = 7; 
corr.rej. = 37

Baddeley (1992);            
Venugopal et al. (2005);             
Gilleland et al.(2006)

Measure distance between binary images
Account for object shape, distance, …

Alternative to use along with traditional categorical scores
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