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Abstract 

A number of questions relative to objective validation of ensemble prediction are discussed. It is argued that the quality 
of ensemble prediction (and more generally, of probabilistic prediction) lies in the conjunction of two properties. These 
are reliability on the one hand (i.e., consistency between predicted probabilities and observed frequencies of 
occurrence), and resolution on the other, (i.e., the property that reliably predicted probability elements are distinctly 
different from climatology). The impact of the size of the predicted ensembles, as well as of the size of the verifying 
sample, is discussed. Concerning the former, evidence is presented that no practical gain can be achieved from 
ensemble size beyond a few tens of units. As for the latter, it imposes strong limitations to objective validation of 
probabilistic prediction of (even moderately) rare events, as well as to validation of probabilistic prediction in multi-
dimensional state space. Other aspects, such as the impact of errors in the verifying observations, and the definition of 
initial ensembles, are briefly discussed. 

 

1. Introduction 
In spite of the importance it has acquired over the last 15 years or so, ensemble prediction is still a relatively 
new technique, and a number of questions remain as to how it can best be implemented and evaluated. These 
notes present a short review of the notions that lie at the basis of evaluation of ensemble prediction, and of 
the methods that are used for that evaluation. Particular aspects, such as the consequences of the finiteness of 
the predicted ensembles and of the validating sample, are discussed at some length. 

These notes do not aim at presenting an exhaustive discussion of the vast problem of evaluation of ensemble 
prediction, and they are certainly biased to some extent towards the authors’ personal interests. While some 
material is new, a significant part of what is presented below has already been published elsewhere, possibly 
in a slightly different form. We refer in particular to Murphy (1973), Wilks (1995), Anderson (1996, 1997), 
Talagrand et al. (1999), Toth et al. (2003), Candille et al. (2007). 

2. Reliability and resolution 
It will be convenient for a start to discuss two questions that seem to be rather fundamental. The first 
question is that of the precise goal, or goals, that can can be assigned to ensemble prediction, and of what can 
be expected from ensemble prediction. The second question is that of the means that can be used for 
objectively (and, as far as possible, quantitatively) evaluating the quality of an Ensemble Prediction System, 
i. e., assessing the degree to which it achieves the intended purposes(s). 

Which goal(s) can be assigned to ensemble prediction? Various goals have been considered in the literature 
for ensemble prediction. One is to reduce the forecast error, for instance by taking the mean of the predicted 
ensemble, thereby producing an individual forecast that can be hoped to be more accurate (at least 
statistically) than other individual forecasts that can be obtained. Other goals are simply to produce bounds 
on the meteorological quantities of interest, or else ‘scenarii’ as to what the future evolution of the 
meteorological flow will be. Still another goal is to produce an a priori estimate of the uncertainty on the 
state of the flow (‘forecast the forecast error’). A similar, but in a sense more precise goal is to predict 
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quantitative probabilities, for instance for the occurrence of a particular event. Quantitative probabilities, if 
they are reliable, can for instance help to minimize long-term loss in situations that involve a financial risk in 
relation with weather. 

All these goals are distinct, but can all be considered as particular aspects of a more general goal, which is 
simply to predict probabilities or probability distributions. If a probability distribution is available for a 
particular variable, the least-variance estimator for that variable is the expectation of the distribution. This 
defines a simple way for obtaining an accurate (or at least as accurate as possible given the uncertainty 
defined by the probability distribution) estimate of the quantity under consideration. Similarly, the 
knowledge of a probability distribution for the state of the flow defines bounds on variables (if not strict 
bounds, at least to within a degree of confidence), and bi- or multimodal distributions define ‘scenarii’. And 
of course a probability distribution for the future state of the flow defines an uncertainty for that future state, 
as well as quantitative probabilities for the occurrence of events. 

The position taken in these notes is therefore to consider ensemble prediction as producing probability 
distributions for the future state of the flow. A deterministic forecast is normally produced from an estimate 
of the initial state of the flow (the so-called analysis), and from the physical laws governing the evolution of 
the flow. These physical laws are available in practice in the form of a discretized numerical model. If a 
probability distribution is available for the uncertainty affecting both the analysis and the numerical model, 
the conditional probability distribution for the future state of the flow is unambiguously defined as a 
mathematical object. The complete explicit determination of that conditional probability distribution seems 
however to be totally beyond present technical means, at least in spaces with dimensions as large as those of 
present Numerical Weather Prediction models. Ensembles produced by an Ensemble Prediction System 
(EPS) are considered here as substitutes for the underlying inaccessible conditional probability distribution. 
Ensemble Prediction Systems thus appear as (degraded) forms of probabilistic prediction, the purpose of 
which is to predict probability distributions for numerical variables (or numerical probabilities for events). In 
particular, the validation tests considered below are tests of the hypothesis that the N elements of a predicted 
ensemble are independent realizations of a same probability distribution, of which the real state of the flow at 
verifying time is an (N+1)st independent realization. It is to be noted that this hypothesis may not be fully 
realistic. For instance, the initial perturbations of the ECMWF EPS consist of pairs of opposite perturbations, 
and are not mutually independent. For the sake of simplicity, we will however ignore possible mutual 
dependency between ensemble elements. 

Also for the sake of simplicity, and unless explicitly specified otherwise, the expression ‘probability 
distribution’ will be used hereafter in a broad sense, to denote not only probability distributions for mono- or 
multidimensional variables defined on a continuum, but also numerical probabilities for two- or multi-
outcome events. 

How can one objectively (and quantitatively) evaluate ensemble predictions? The object predicted in 
probabilistic prediction is a probability distribution for, say, a particular scalar variable, while the verifying 
object is an observation of that variable. These two objects are of a different nature, and (contrary to what is 
the case in deterministic prediction, where the predicted and observed objects are of the same nature), cannot 
be mutually compared. The difference is actually much deeper than that. The conditional probability that is 
meant to be predicted is not better known afterwards than it was beforehand. Worse than that, it is meant 
only to describe our uncertainty on the future state of the flow, and has as such no objective existence. 
Probabilistic prediction is thus of a totally different essence than deterministic prediction, in the sense that it 
bears on an object that has no objective existence, and cannot be objectively observed. 
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A first consequence is that it is not possible, except in rather extreme circumstances, to speak of the quality 
of an individual probabilistic forecast. If rain is predicted to occur with, say, 40%-probability, neither its 
occurrence nor its non-occurrence makes the prediction a success or a failure. It is sometimes said that the 
occurrence of an event after it has been predicted to occur with a high probability (say 80%) is a success. 
That is said particularly when the event under consideration is uncommon. But it would obviously be 
erroneous to interpret non-occurrence of the event as a failure of the forecast. If the event has been predicted 
to occur with probability 80%, there is a 20%-probability that it will not occur. It is its relative frequency of 
occurrence of the event over a large number of situations, not its occurrence or non-occurrence in a particular 
situation that matters. The only situation in which it can legitimately be said that a probabilistic forecast has 
been successful is when the forecast ensemble had a very small spread (significantly smaller than a typical 
uncertainty for the variable under consideration), and the observed verification fell within that small spread. 
The probabilistic forecast can then be considered as successful in that it has correctly predicted in advance 
that the prediction would be unusually accurate. Similarly, a probabilistic forecast can legitimately be 
considered as a failure if the verifying observation falls well outside the range of the predicted uncertainty. 
But, except in those rather extreme situations, objective evaluation of probabilistic prediction can at best be 
statistical. 

A first statistical property that is required for the quality of a probabilistic prediction system is consistency 
between the predictions and the observations. Temperature must go below freezing 30% of the times it is 
predicted to go below freezing with probability 30%. That form of consistency is obviously necessary, for 
instance for users who, in anticipation of the possible occurrence of a particular meteorological event, must 
take a decision that involves a financial risk. It is called reliability. Its most general definition is as follows. 
For any probability distribution F, let us denote ( )F F′  the conditional observed frequency distribution, 

given that F has been predicted. Reliability is the property that ( )F F F′ =  for any F. 

Reliability can be objectively evaluated by a number of well-known diagnostics that will not be discussed 
here. A limited list includes reliability diagrams, rank histograms, the Reduced Centred Random Variable, 
and the (appropriately named) reliability component of the Brier and Brier-like scores. Those various 
diagnostics, although they all measure some aspect of reliability, are not exactly equivalent. They are 
described, and their specific significance and properties are discussed, in a number of publications. We 
mention Murphy (1973), Wilks (1995), Talagrand et al. (1999), Toth et al. (2003), Candille and Talagrand et 
al. (2005). 

Assume a particular probability distribution F has been predicted often enough so that the corresponding 
conditional observed frequency distribution ( )F F′ is known from the verifying observations. The next time 

the system predicts F, the prediction can be replaced by ( )F F′ . That a posteriori calibration makes the 
system reliable. Lack of reliability, under the hypothesis of stationarity of the performance of the system, can 
be corrected to the same degree it can be diagnosed. But the diagnosis obviously requires a large enough 
validation sample. 

Now, reliability, if it is obviously necessary for the usefulness and the value of a probabilistic prediction 
system, is clearly not sufficient. A system that would always predict the climatological probability 
distribution would be perfectly reliable in the sense that has just been defined, but would nevertheless be 
devoid of any usefulness. A second property is therefore that the probability distributions F‘(F) be non 
trivial. That property can be expressed in several similar (but not necessarily exactly equivalent) forms. It 
can be expressed by the condition that the distributions ( )F F′  are different from the climatological 
distribution, or that they have small individual spread, or large mutual spread. That property will be called 
here resolution (although some authors disagree with that word). Like reliability, it can be quantitatively 
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measured by a number of (non exactly equivalent) scores such as (what everybody agrees to call) the 
resolution component of the Brier and Brier-like scores, the Relative Operative Characteristic (ROC) curve 
area, or the mean entropy (information content) of the distributions ( )F F′ . These scores are described and 
discussed in the same references mentioned above concerning scores for reliability. 

3. The size of the predicted ensembles and of the verification sample 
Three causes at least can introduce uncertainty on the diagnostics. These are the finiteness of the ensembles, 
the finiteness of the verifying sample and the noise in the verifying observations. All three causes have been 
studied, among other places, in Candille (2003). More recently, the question of the finiteness of the verifying 
ensemble has been discussed in Candille and Talagrand (2005). The question of the observational noise has 
been discussed in, e.g., Saetra et al. (2004), Bowler (2006a) and Candille and Talagrand (2008), who have 
proposed various ways for taking the noise into account. 

Concerning the size of the ensembles, an obvious question is Given the choice, is it better to improve the 
quality of the forecast model, or to increase the size of the predicted ensembles? Actually, if the size of the 
ensembles is the relevant quantity as concerns cost-efficiency, it is the numerical accuracy with which 
probabilities are predicted that is relevant from the purely scientific point of view. It is possible for instance, 
using ensembles with dimension 100, to lump elements together so as to predict probabilities with accuracy 
of, say, 1/20. What we will consider here is the accuracy with which probabilities are predicted. Figure 1, 
extracted from Talagrand et al. (1999), relative to the ECMWF Ensemble Prediction System, shows 
variations of the Brier Skill Score (a variant of the Brier Score) as a function of the number of elements in 
the ensemble. The event under consideration is that the 850-hPa temperature is higher than its climatological 
average. The verification area is the 30N-70N latitudinal belt, and the verification period is January-April 
1997. The size N of the ECMWF EPS ensembles was 50 at that time (as it still is). For each value n on the 
horizontal axis, the Brier Skill Score shown in the figure was obtained from n randomly drawn elements 
from the 50-ensemble. The left panel of the figure is relative to the operational EPS of ECMWF, the right 
panel to a ‘poor man’s EPS’ based on a search for analogues in the archives of the high resolution 
operational deterministic forecast (see Talagrand et al., 1999, for more details). For each panel, the 10 curves 
correspond to the 10 forecast ranges 1, 2, …, 10 days. The Brier Skill Score is positively oriented, and it is 
seen that the quality of the forecast decreases with increasing lead time. But what we want to particularly 
stress here is that the quality of the forecast increases with ensemble size, but also saturates very rapidly with 
that size. The score saturates for size smaller than 10 for 1-day forecasts, and for size smaller than 30 for 10-
day forecasts. Talagrand et al. (1999) mention that, assuming an infinitely large verification sample, the 
Brier Skill Score BSSN varies, as a function of the size N of the ensembles, as 

 ( )   1/NBSS BSS N A∞= −  (1) 

where BSS∞ is the score that would obtain with infinitely large ensembles, and the positive constant A  
decreases with increasing spread of the predicted probabilities (an exact proof of eq.1 is given in Richardson, 
2001). This is in agreement, at least qualitatively, with Fig. 1, where the score saturates more rapidly for 
short forecast ranges, for which predicted probabilities assume mostly the values 0 and 1, than for longer 
ranges, for which predicted probabilities assume intermediate values more often. 

The rapid saturation of scores with ensemble size in the range of a few tens seems to be very general. 
Candille (2003) has made systematic diagnostics, with real and simulated data, which all lead to the same 
conclusion, and the authors do not know of any evidence to the contrary, in particular in the more recent 
literature. This raises two new questions 
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a. Is it useful to use ensembles with dimension larger than a few tens of units, at which objective 
scores are observed to saturate? 

b. What is the reason for such a rapid saturation? 

 
Figure 1: Brier Skill Score for ensemble prediction of the 850-hPa temperature as a function of the 
ensemble size. Left panel : ECMWF operational EPS. Right panel : ‘poor man’s EPS’. See text for details 
(extracted from Talagrand et al., 1999). 

Concerning the first question, let us suppose an EPS produces ensembles with dimension N=200, which 
allows in principle to predict probabilities with accuracy 1/200. It is hard to imagine which user will ever be 
interested in knowing a priori probabilities with such an accuracy, and in knowing in advance whether the 
predicted probability for, say, rain is 132/200 or 133/200. In that respect, an accuracy somewhere in between 
1/50 and 1/10 seems to be largely sufficient for all practical purposes.  

And even if an accuracy of 1/200 is considered to be useful, then comes the question of the size of the 
verification sample that would be necessary to check that the difference between forecasts 132/200 and 
133/200 is significant. That is a difficult question, which does not seem to have been fully answered yet. 
Consider the simpler question of objectively assessing the reliability of a probability forecast of 1/N for an 
event E. In order to check whether that forecast is statistically correct, it must have been made αN times, 
where α is at the very least of the order a few units, and the event E must have occurred about α times out of 
those αN times. Let us assume one 10-day ensemble prediction is made every day, so that 10 successive 
forecasts are produced for a given date. Let us assume in addition that, among the 10 forecasts that precede 
an occurrence of E, the N+1 probabilities i/N (i = 1,…, N) are statistically predicted with the same frequency 
1/(N+1). The probability that the particular probability 1/N has been predicted over the 10 days preceding a 
given occurrence of E is then equal to about 10/N. Let in addition T be the mean time between two 
successive occurrences of E. The minimum waiting time for the event to have occurred α times, while 
having also been predicted to occur with probability 1/N, is then 

 /10TNα  (2) 
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For an event that occurs 4 times a year (hardly a rare event) and for α = 4 (not a very stringent requirement), 
the waiting time is 5 years for N = 50, and 20 years for N = 200. The prediction system will have 
significantly evolved before such waiting times have elapsed. 

The estimate (2) is very crude, and probably very conservative in that it only defines a minimum waiting 
time. Candille (2003), using a different but more refined argument, evaluates the size of the verification 
sample that is necessary for checking significance of binary event probabilistic prediction with accuracy 1/N 
(e. g., checking that the difference between predictions 132/200 and 133/200 is significant). He finds that the 
size of the verification sample varies like BNlnN, where the constant B is of the order O(100). This grows 
more rapidly than (2). Without going into a more detailed (and more difficult) analysis, there are obviously 
very strong limitations to objective validation of probabilistic prediction of even moderately rare events. That 
conclusion must be tempered in several respects. Gross lack of reliability can be detected from a small 
verifying sample for intermediate probabilities (if an event is predicted every day to occur with probability 
½, and does not occur over one month, then the prediction is obviously unreliable). And an event that is 
relatively rare at a given location can be frequent over a whole hemisphere or the entire globe. If 
geographical location does not matter, the time T in eq.(2) can be short, even for an event that is rare in a 
given place. Validation is also possible, along what was done by Hamill and Whitaker (2007), through 
reforecasts over past situations. However, in view of the fact that the observing system evolves very rapidly, 
what can be obtained from reforecasts may not be representative of the performance of EPSs in the future. In 
addition, climate is expected to change significantly in the coming decades. This will further degrade the 
possible utility of long period past validation samples. 

Although the present picture is not entirely clear, there is substantial evidence, coming from two totally 
different sources (the observed performance of existing EPSs on the one hand, and considerations on the size 
of the verification sample that would be necessary to objectively evaluate large dimension ensemble 
predictions) that very little gain, if any, is to be achieved by using ensembles with dimension larger than a 
few tens of units. Is that conclusion is confirmed, it provides a clear answer to the question raised above as to 
whether it is better to increase the ensemble size and to improve the quality of the prediction model. Beyond 
an ensemble size of a few tens, it is preferable to improve the quality of the model. 

The second question raised above is why scores for evaluation of EPSs saturate in the range 30-50. The same 
phenomenon has been observed by Candille (2003) with low-dimensional systems that bear no relationship 
with atmospheric dynamics, so that it seems the reason is not to be sought in specific features of the 
atmosphere (such as for instance the number of unstable modes at a given time in the flow), but rather in 
some general properties of probability theory. A possible explanation is that probability distributions 
predicted by EPSs are generally of a simple, unimodal form. In addition, evaluation is most often performed 
on binary events (or events with a small number of possible outcomes), or on one-dimensional scalar 
variables. If an ensemble size of, say, 50, may seem ridiculously small for sampling a probability distribution 
in a space with dimensions 106 or more, it is certainly not for sampling a one-dimensional probability 
distribution, and the gain obtained by increasing the ensemble size must rapidly saturate in a small dimension 
space. 

4. Is validation possible in large state dimensions? 
The last remark raises in turn a new question. Is it possible at all to evaluate prediction of large dimension 
probability distributions? According to the definitions that were given above for reliability and resolution, 
full assessment of a probabilistic prediction system first requires, for each predicted probability distribution 
F, to wait until it has been predicted a large enough number of times so that the corresponding conditional 
frequency distribution ( )F F′  can be reliably assessed. Consider the case of probabilistic prediction of the 
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500-hPa geopotential field over the midlatitude winter Northern Atlantic. To fix ideas, assume the prediction 
is made over a 5x5-degree2 grid covering the area (10-80W, 20-70N), which corresponds to 165 gridpoints. 
Assume the ensemble size is N=5, and ‘probabilities’ are defined at each gridpoint by the positions of the N 
predicted values for that gridpoint with respect to L=2 predefined thresholds. That is a very crude way of 
defining a one-dimensional probability distribution, and the whole thing is perfectly feasible with present 
computing power. It is actually very economical in comparison to the computing requirements of the present 
EPSs of major meteorological centres. The number of ways of positioning N numerical values with respect to 
L thresholds is equal to the binomial coefficient  

N L
L
+⎛ ⎞

⎜ ⎟
⎝ ⎠

 

i. e., 21 for N=5 and L=2. This leads to the absurd value 21165 ≈ 10218 for the number of probability 
distributions that the system can in principle predict over the 165-point grid. Most of those probability 
distributions will of course never be predicted, but one can seriously doubt whether any of them will ever be 
predicted twice. This clearly shows that objective validation of probability distributions in large dimensional 
spaces is simply impossible. Drastic reduction of the effective dimension of the predictions is necessary for 
validation. In the present case, that would mean lumping gridpoints together over at least large fractions of 
the geographical domain of the prediction. That is what is done, out of necessity, is validation of existing 
EPSs, but any possibility of validating probabilistic prediction of spatial patterns in the flow is  lost. 

Consider the much more modest goal of long-range (e.g., monthly or seasonal) probabilistic prediction of 
weather regimes (still for the winter Northern Atlantic). Vautard (1990) has identified four different weather 
regimes, with lifetimes of between one and two weeks. The probabilistic prediction is then for a four-
outcome event. With N = 5-sized ensembles, this gives 56 possible distributions of probabilities. In view of 
the lifetimes of the regimes, there is no point in making more than one forecast per week. That would make 
60 forecasts over a 3-year period. That would be hardly sufficient for accurate validation, especially if one 
takes into account the fact that the prediction system will probably have evolved to some extent over a 3-year 
period.  

There are obviously very strong limitations, even for small ensemble sizes, to the validation of multi-
dimensional probabilistic forecasts. These limitations result from the ineluctably small dimension of the 
validation sample (at least in comparison with the dimension that would be required for accurate validation), 
and will not be relaxed by technical progress. 

Further work is certainly necessary to assess more precisely what the limitations to probabilistic prediction 
are, but the discussion of this section suggests that, in addition to the previous conclusion that ensemble sizes 
beyond a few tens of units are useless, objective validation of large dimensional probabilistic prediction is 
simply impossible. 

5. The impact of observational errors 
The verifying observations will most often, if not always, be affected by errors, and it is important to 
determine the impact of those errors on the validation. One possibility is to perturb the ensemble elements 
with random noise that is meant to simulate the uncertainty in the observations. This approach has been 
studied by, e.g., Saetra et al. (2004). It does not however evaluate how accurately the prediction predicts the 
reality, but how it predicts the observations. Candille and Talagrand (2008) have observed that most of 
validation scores for ensemble prediction do not require the validating observation to be a uniquely 
determined numerical value, but can very well deal with observations that are considered as numerical 
probabilities (for events) or a probability distributions (for numerical variables). The Brier and the Brier-like 
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scores can thus be extended to the case of noisy observations, as can the ROC area score. The former keep 
their standard reliability-resolution decomposition in that new setting. The Reduced Centred Random 
Variable can also be extended to the case of noisy observations. Numerical simulations show that, generally 
speaking (but not systematically), the scores are degraded in comparison to what they would be in the 
absence of observational noise. However, that approach may not be fully satisfactory in that it is also an 
assessment of the degree to which the prediction fits the observation, not the reality. In the case of the Brier 
score, the estimated performance can actually decrease if the forecast error becomes smaller than the 
observational error (which is perfectly conceivable, especially for short range forecasts). 

Still another possibility is suggested by the work of Bowler (2006a). Let ( )F F′  be the conditional 
probability density function for reality, given that the probability density function F has been predicted (we 
are here more precise than we were above, in that we specifically consider density functions). If the 
observational error is statistically independent of reality, the observed conditional density function will be 
the convolution product 

 F F G′′ ′= ∗  

where G is the density function of the observational error. The Fourier transform [ ]F G′∗F  of a 

convolution product is the numerical product of the Fourier transforms of the factors. 

 [ ] [ ] [ ]F G F G′ ′∗ = ×F F F  

This defines in principle a way for determining F ′  from F ′′  and G, thereby filtering out the effect of 
observational errors. It remains however to see if that is practical, and in particular if the size of the 
validation sample will be large enough to allow reliable estimation of F’.  

6. The definition of initial conditions 
A question that is still debated is the best definition of the initial conditions for ensemble prediction. 
ECMWF uses a combination of singular modes of the flow (Molteni et al., 1996). The singular modes are the 
modes which are most unstable, in a precise sense, over a given time period. They are independent of any 
estimate of the initial uncertainty on the state of the flow. The National Centers for Environmental Prediction 
(USA) use the ‘bred modes’, which are obtained through a procedure which can be described as a crude 
approximation of the assimilation process (although observations are not used), and leads to initial 
perturbations which are concentrated in the directions that have been unstable in the recent past (Toth and 
Kalnay, 1997). Other methods, like the so-called Perturbed Observations method (Houtekamer et al., 1996), 
the Ensemble Kalman Filter (EnKF, Evensen, 2003) and the Ensemble Transform Kalman Filter (ETKF, 
Bishop et al., 2001), are assimilation methods, and produce an ensemble that is meant to sample the 
uncertainty on the flow at the initial time of the prediction. The Ensemble Kalman Filter is used at present by 
the Meteorological Service of Canada for the definition of the initial conditions of its EPS. 

A number of systematic comparisons have been performed, on models of varying complexity (and most 
often with simulated data), in order to assess the relative quality of those different methods. An incomplete 
list is Houtekamer and Derome (1995), Anderson (1997), Hamill et al., (2000), Wang and Bishop (2003), 
Bowler (2006b) and Descamps and Talagrand (2007). Figure 2, obtained from experiments performed with 
the NWP primitive equation model ARPÈGE of Météo-France, shows, as a function of lead time, the 
statistical quality of ensemble predictions for three different initialization methods. More precisely, it shows 
the (negatively oriented) Brier score for the event that the 700-hPa relative humidity differs from its 
climatological mean by more than one standard deviation (that event occurs with frequency 0.38). The 
comparison is made here between the methods of perturbed observations (full curve), of bred vectors (dashed 
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curve) and of singular vectors (dash-dotted curve). It is shown that the quality of the predictions (and of the 
initial conditions too) decreases in that same order. 

Similar results are obtained with other variables and validation scores, both as concerns reliability and 
resolution. More generally, the results of figure 2 are typical of those that have been obtained in the various 
comparison studies mentioned above. Methods that are intended, through a process of ensemble assimilation, 
at producing a sample of the initial uncertainty on the state of the flow, most often perform better than 
methods that only intend at identifying the unstable modes of the flow. For instance, Descamps and 
Talagrand (2007) have performed comparisons between EnKF, ETKF, bred modes and singular vectors. The 
results vary somewhat with the model that is used, the variable on which the validation is done, and the score 
used for the validation, but the performance almost systematically ranks as EnKF > ETKF > bred modes > 
singular vectors. All those results are in full agreement with a notion which seems obvious to the authors, 
namely, that if a probabilistic prediction system is evaluated by how well it samples the uncertainty on the 
future state of the flow, then the best initial conditions are those that sample best the initial uncertainty. In 
other words (and although there is an obvious link between present uncertainty and instabilities that have 
developed in the recent past), it is better to diagnose directly where the uncertainty lies than to identify the 
unstable components of the flow. 

 
Figure 2: Brier Score for ensemble prediction of the 750-hPa relative humidity with the ARPÈGE model 
(simulated data ; see the text for details). Intial ensembles are defined by the Perturbed Observations 
method (full curve), bred modes (dashed curve) and singular vectors (dash-dotted curve). 

Now, Buizza (pers. com.) has performed comparison experiments with the ECMWF EPS (and in particular 
with real data) that lead to an opposite conclusion, in that the best performance is obtained with singular 
vectors. Obviously, more work is still to be done on the best definition of the initial conditions of 
probabilistic prediction. 

7. Conclusions 
A number of questions relative to the validation of ensemble prediction have been briefly discussed in these 
notes. Although further work is clearly necessary on many aspects, several conclusions can be drawn. Two 
totally different lines of argument (the observed performance of EPSs on the one hand, and the size of the 
validation sample that would be required on the other) strongly suggest that no gain can be obtained by 
increasing numerical accuracy of predicted probabilities beyond 1/N, where N is of the order of a few tens of 
units. Very strong limitations also exist on objective evaluation of probabilistic prediction of even 
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moderately rare events, as well as on objective evaluation of probabilistic prediction in multi-dimensional 
state spaces. Those limitations need to be more precisely assessed. Finally, the question of the best definition 
of the initial ensembles remains open. The authors’ view is that it is preferable to identify where the initial 
uncertainty lies than to identify the unstable components of the flow per se. But additional work is certainly 
necessary on that aspect too. 
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