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Detection of extreme events from a SAR image spectrum

Abstract

It is shown that the nonlinear mapping relation between a surface gravity wave spectrum and its SAR image
spectrum, as derived by Hasselmann and Hasselmann (1991), is not complete. The reason for this is that
the velocity bunching effect is so nonlinear that effects of skewness are as important as the nonlinear terms
already retained in the Hasselmann and Hasselmann approach. Furthermore, certain effects of kurtosis need
to be retained as well, but these will mainly affect the shape of the azimuthal correlation function. For a
Gaussian sea the azimuthal correlation function, which reflects the statistical properties of the sea surface,
can be approximated by a Gaussian function, This is expected to be an adequate model in most cases.
However, for extreme waves there are departures from the Normal distribution. This then will result in
departures from the Normal shape of the azimuthal correlation function as well. In other words, an analysis
of the azimuthal cutoff may reveal information on the non-gaussian statistics of the sea surface, and may
indicate the enhanced occurrence of freak waves.

1 Introduction

Nowadays there is an increased understanding of the reasons why freak waves may occur. On the open ocean
there are at least three mechanism responsible for the formation of freak waves. The first one is linear su-
perposition of waves. In this case the surface elevation probability distribution is a Gaussian giving relatively
small probabilities that extreme sea states may occur. A more promising mechanism is nonlinear focussing
of a unimodal wave system, because in such a case there may be, as reflected by finite values of the kurtosis,
considerable deviations from the Normal distribution resulting in an increased probability of extreme events.
Thirdly, nonlinear focussing may play an even more pronounced role in crossing sea states. An otherwise stable
windsea system may become unstable in the presence of a second, swell system.

Freak waves have been simulated numerically (in 1D and even in 2 D) and have been generated in the laboratory.
Inspecting time series from buoys it is found that extreme sea states really occur (and perhaps more frequently
then previously thought). In order to improve on safety of shipping, it is of the utmost importance to be
able to predict the occurrence of freak waves. Modern wave forecasting systems determine the evolution of
the wave spectrum, but do not provide information on the phases of the waves. Hence, it is not possible to
predict individual wave events. However, recently (Janssen, 2003) it was realized that the nonlinear four-
wave interactions imply a relation between spectral shape and the deviation of the surface elevation probability
distribution function (pdf) from the normal gaussian distribution. Here large deviations with positive kurtosis
correspond to the likely occurrence of freak waves. In one dimension, this theory has been succesfully validated
against laboratory observations from the big wave tank in Trondheim. This suggests that we can predict the
probability that extreme, freak waves do occur (probablistic wave forecasting). As a consequence, at ECMWF
a freak wave warning system has been implemented in October 2003.

Clearly, it is highly desirable to validate present ideas on freak wave formation on a global scale. In particular it
is important to try to validate the expected relation between the occurrence of extreme events and the statistical
properties of the sea surface, i.e. the shape of the pdf. Also, is it indeed so that there is a relation between
spectral shape and deviations from Normality? This requires that one needs to be able to monitor the statistical
distribution of the surface elevation and the wave spectrum at the same time. Although in theory a radar
altimeter could provide statistical information (Lipa and Barrick, 1981) as the waveform is a reflection of
the pdf of the sea surface, it does not measure the wave spectrum. For this reason we follow an alternative
approach and we ask ourselves the question whether a Synthetic Aperture Radar could provide, in addition to
wave spectra, information on the statistical properties of the sea surface.

The plan of this paper is as follows. First, a brief review of the SAR measurement theory is given. A SAR
basically measures the modulation of the short ocean wave spectrum by the long ocean waves, and other oceano-
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graphic and atmospheric phenomena. For low to moderate sea states those modulations are caused by tilt and
hydrodynamic motion of the backscattering elements (facets) by the long waves. For the SAR there is also
a modulation due to ’velocity bunching’ which is related to locating the position of the facet in the azimuth
(flight) direction at zero Doppler shift. This determines in principle the SAR image, which is basically the spa-
tial distribution of intensity of the radar backscatter. In order to obtain a relation with the ocean wave spectrum
Hasselmann and Hasselmann (1991) (denoted by H&H from now onwards) make use of the statistical property
of ocean waves that the pdf of the sea surface elevation is approximately a Gaussian distribution. For such a
distribution it is indeed possible to establish a relation between the SAR image spectrum and the surface gravity
wave spectrum, provided the tilt and hydrodynamic modulation and velocity bunching are linearly related to the
surface elevation. Here, we present a generalization of the result of H&H using the Gram-Charlier distribution,
which describes deviations of Normality in terms of cumulants of the distribution. Following the approach of
Krogstad (1992) it is then possible to obtain a general expression for the SAR image spectrum in terms of the
cumulants of the modulation in the intensity and the azimuthal displacement. For weakly nonlinear waves it is
possible to estimate all the relevant cumulants, and it turns out that a number of contributions related to the third
and fourth cumulant are as important as the nonlinear term of the H&H nonlinear mapping relation (1991). The
reason that these cumulants are important is explained by pointing out that for SARs flying on board of polar
orbiting platforms the velocity bunching mechanism is very nonlinear. Thus, the H&H nonlinear mapping is
not complete. However, it can be shown that only effects of the third (skewness) and fourth (kurtosis) cumulant
need to be included in order to get a complete description. Finally, in order obtain a closed nonlinear mapping
relation for the SAR image the cumulants need to be evaluated in terms of the wave spectrum which is a second
order cumulant (or moment). For weakly nonlinear waves it is shown how this is possible for both the third
and the fourth moment, but approximate solutions of the dynamical equations for surface gravity waves are
required.

2 SAR measurement theory

In this section a brief description is given of our present knowledge of the SAR imaging mechanism. Expres-
sions for modulations in the SAR image caused by tilt and the local advection velocity of the long waves, and
caused by velocity bunching are known for small amplitude waves. Next, we start from a general intensity field
and a general azimuthal displacement field with known statistical properties and we derive the general relation
between the SAR image spectrum and the cumulants of the intensity field and the azimuthal displacement field.

A brief overview of the SAR measurement theory is now given (taken from Section V.3 and V.4 of Komenet al.,
1994). A SAR is capable of detecting a variety of larger scale, oceanic phenomena which modulate the short
(Bragg) ocean ripple spectrum, such as fronts, internal waves, natural surface films, bottom topography and
ocean gravity waves. Of particular interest has always been the SAR imaging of ocean waves. The modulation
of the short waves by the longer ocean waves may be described by a two-scale model as the long waves
have scales that are much larger than the wavelength of the backscattering ripple waves. According to Bragg
theory, the return signal from the individual backscattering facets of the ocean surface arises through a resonant
interaction with the two Bragg components propagating towards and away from the antenna. In the two-scale
model the facet is regarded as large compared to the Bragg wave and small compared the the long waves of
interest. The orientation and local velocity of the facet are determined by the local slope and orbital velocity of
the long waves. Bragg theory is then applied to the local facet in a coordinate system with respect to the facet
normal and moving with the local advection velocity of the facet.

Modulations of the Radar backscatter now arise through a) variation in the local angle of incidence associate
with variations in the facet normal (tilt modulation, cf. Alpers and Hasselmann, 1978) and b) variations in the
energy of the Bragg backscattering ripples caused by hydrodynamic interactions between the short ripples and
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Figure 1: Azimuthal displacement of a facet in the SAR image plane due to the long wave orbital velocity. a) Linear
Imaging; b,c) Strongly nonlinear Imaging.

the longer waves (hydrodynamic modulation, cf. Wright, 1968; Feindtet al., 1986).

The superposition of the tilt and hydrodynamic modulation transfer function (MTF) yields the RAR (real aper-
ture radar) MTF. In addition to these two mechanisms, there exists for the SAR an important third modulation
mechanism, which is termedvelocity bunching. This is related to the use of phase information by the SAR to
locate the azimuthal position of a facet: a facet is positioned at the azimuthal location of zero Doppler shift.
The advection of the local facet by the long waves induces an additional Doppler shift which is misinterpreted
by the SAR as an azimuthal offset of the position of the facet. This is accompanied by variations in the apparent
facet density in the SAR image, which enables waves to be seen even when no Radar cross-section modulation
is present. The azimuthal displacementx (see Appendix) is found to be proportional to the product of the range
component of the orbital velocity of the waves andb = R/V which is the rangeR to velocityV ratio of the
SAR platform. When the displacement is small compared to the length of the wave of interest, the velocity
bunching effect is linear. However, if the facet displacement becomes comparable or larger than the length of
the longer waves, the wave patterns in the SAR image become severely distorted and can even be completely
smeared out. This ultimately limits the azimuthal resolution of the SAR at a finite cutoff wavenumber. This is
illustrated in Fig.1 for increasing nonlinearity of the ocean waves. In particular, for polar orbiting platforms
with large values ofb = O(100) s, the velocity bunching effect is a serious issue.

The velocity bunching mechanism is a purely geometrical, fully determined process. If the RAR MTF is also
known, the mapping of the sea surface into the SAR image plane and the nonlinear transformation of the
wave spectrum into the SAR image spectrum can be computed for a given realization of the sea surface. This
is the basis of the Monte Carlo approach of Brüning et al. (1988) where for a given spectrum a number of
random realizations of an instantaneous ocean-wave field is created. For each member of the ensemble the sea
surface is mapped into the SAR image plane. Fourier transformation of the image and averaging of the squared
amplitudes then gives an estimate of the SAR image variance spectrum.

A second approach, which we will study in more detail below, takes advantage of the known statistical proper-
ties of the sea surface. For a Gaussian sea state, Hasselmann and Hasselmann (1991) (see also Krogstad, 1992)
were able to express all higher order nonlinear properties of the wave field in terms of the wave spectrum and
to derive a closed integral transform relation between the wave spectrum and the SAR image spectrum. Here,
we will redo this derivation, but now for a more general statistical distribution.

In summary, in the framework of linear modulation theory the surface elevationh(x, t) and the local backscatter
cross sections(x, t) are represented by a superposition of surface gravity waves. From the outset we adopt a
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continuous representation, hence

h(x, t) =
∫ ∞

−∞
dk ĥ(k)exp(iq)+c.c

s(x, t) = s̄

[
1+

∫ ∞

−∞
dk ŝ(k)exp(iq)+c.c

]
(1)

whereq = k.x−wt, w = (gk)1/2 denotes the dispersion relation ands̄ denotes the spatially averaged cross
section. The cross section modulation amplitudeŝ and the wave amplitudêh are linearly related through the
RAR modulation transfer functionTR(k),

ŝ(k) = TR(k)ĥ(k). (2)

Here,TR(k) may be decomposed into its tilt and hydrodynamic contributions,

TR(k) = TT(k)+TH(k), (3)

but for present purposes we do not need to further specify the modulation transfer function. The resulting RAR
image will be denoted byIR(x) and it is directly proportional to the backscatter cross sections at a certain
instant in time, sayt = 0. Hence,

IR(x) = s(x,0) (4)

Introduce the Fourier decomposition ofIR(x),

IR(x) =
∫ ∞

−∞
dk ÎR(k)exp(ik.x), (5)

where because of reality of the image intensityÎR(k) = Î∗R(−k). Then, using Eqns. (5), (1) and (2), ÎR(k) can
be expressed as

ÎR(k) = TR(k)h(k)+(TR(−k)h(−k))∗ (6)

showing that the RAR image is indeed a frozen image of the surface.

The SAR image suffers, however, considerable modifications from the frozen image due to motion effects.
Here, only the so-called velocity bunching effect is considered which gives rise to an azimuthal displacement
of the apparent position of a facet in the image plane. In the Appendix a derivation of this azimuthal offset is
presented. The azimuthal displacementx (x) at a locationx is then given by

x (x) = bv (7)

wherev is the range component of the orbital velocity of the waves. In linear approximation the velocityv is
related to the surface elevation amplitude according to

v =
∫ ∞

−∞
dk TV(k)ĥ(k)exp(ik.x)+c.c, (8)

where

TV(k) =−w
(

sinq
kr

|k|
+ i cosq

)
(9)

with q the radar incidence angle andkr the wave number in the look direction.
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Following H&H the relation between the SAR and RAR images in the pure velocity bunching model is obtained
by mapping each facet at positionx′ into its corresponding positionx = x′+x (x′) in the image plane, i.e.

IS(x) =
∫ ∞

−∞
dx′ IR(x′)d [x−x′−x (x′)] (10)

The integration overx′ can be readily performed and the result for the SAR image intensity becomes

IS(x) =
IR(x′)

|1+dx (x′)/dx′|
, atx′ = x−x (x′) (11)

For the case when

|dx (x′)/dx′|<< 1 (12)

a linear relation between the SAR image and the surface elevation amplitude can be established. The inequality,
however, only holds for pure swell cases and in general Eq. (10) represents a strongly nonlinear transformation.

3 A general relationship between SAR image spectrum and cumulants of the
surface field.

Except for the strongly nonlinear velocity bunching effect, the SAR measurement theory has so far been based
on linear arguments. Here we would like to obtain a slightly more general result by allowing weakly nonlinear
effects in the surface wave field, and the task is to obtain a closed nonlinear mapping relation between SAR
image spectrum and the surface gravity wave spectrum. In order to achieve this we first would like to establish
a general relationship between the SAR image and the relevant cumulants of the wave field. This will be done
for arbitrary RAR imagesIR and azimuthal displacement fieldsx , i.e. we do not need the assumption that these
fields are linearly related to the surface elevation. The starting point is Eq. (10) which is a general relation
between on the one hand the SAR image intensity and on the other hand the RAR image intensity and the
azimuthal displacement.

Introduce the Fourier transform of the SAR imageIS(x),

ÎS(k) =
1

(2p)2

∫ ∞

−∞
dx IS(x)exp(−ik.x). (13)

Using Eq. (10) and performing the integration overx this becomes

ÎS(k) =
1

(2p)2

∫ ∞

−∞
dx′ IR(x′)exp(−ik.(x′+x (x′)). (14)

The SAR image spectrum now follows from the second moment〈ÎS(k1)Î
∗
S(k2)〉. Using Eq. (14) and some

rearrangement gives

〈ÎS(k1)Î
∗
S(k2)〉=

1
(2p)4

∫ ∞

−∞
dx1dx2 exp(−ik1.x1 + ik2.x2) G(x1,x2) (15)

where

G(x1,x2) = 〈IR(x1)IR(x2)exp[−i (k1.x1−k2.x2)]〉. (16)
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In the next step we utilize the assumption of homogeneity of the ensemble of waves, i.e. we assume that the
correlation functionG(x1,x2) is only a function of the differencer = x1− x2 and not of the mean location
s= x1 +x2. To that end we transform in the integral in Eq. (15) the integration variables from the pairx1,x2 to
the pairr ,s and because of homogeneity the integration overs can be performed. The result is

〈ÎS(k1)Î
∗
S(k2)〉=

1
4p2d (k1−k2)

∫ ∞

−∞
dr exp(−ik1.r) G(r) (17)

where

G(r) = 〈IR(x+ r)IR(x)exp[−ik.(x (x+ r)−x (x))]〉. (18)

for arbitraryx. Therefore, the SAR image field is homogeneous as well, and upon introduction of the SAR
image spectrum

〈ÎS(k1)Î
∗
S(k2)〉= FSAR(k1)d (k1−k2) (19)

one finds the desired result

FSAR(k) =
1

4p2

∫ ∞

−∞
dr exp(−ik.r) G(r) (20)

The next important step is the evaluation of the ensemble average appearing in the expression of the spatial
correlation functionG(r). It is evident that the ensemble average involves three stochastic variables, namely
IR(x+ r), IR(x) and the difference in azimuthal displacement∆x = x (x+ r)−x (x), and therefore the ensem-
ble average can only be evaluated when the relevant cumulants, such as mean, standard deviation, skewness,
kurtosis, etc. are known. This will be assumed for the moment.

In order to make things slightly easier we now introduce explicitely the fluctuationsd I around the mean inten-
sity I0, or,

I = I0(1+d I) , 〈d I〉= 0 (21)

and we drop the notationd I in favour of I . Because of homogeneity it is allowed to evaluate the spatial
correlation function at the arbitrary locationx = 0. ThenG becomes

G(r) = I2
0〈(1+ IR(r))(1+ IR(0))exp(−ik.∆x )〉, (22)

where∆x = x (r)−x (0). Krogstad (1992) now made the important remark that ensemble averages of this type
may be evaluated by means of the characteristic function of the stochastic processX = [IR(r), IR(0),∆x ]. Here,
the characteristic function ofX is defined as

K(m) = 〈eim .X〉. (23)

andm are auxiliary variables. Note that the characteristic function is nothing but the Fourier transform of the
pdf p(X) as

〈eim .X〉=
∫

dX p(X)eim .X . (24)

It is now straightforward to show thatG of Eq. (22) may be given in terms ofK(m) and its first and second
derivatives at the locationm0 = (0,0,−k). One has

G = I2
0

{
K(m0)− i

¶K
¶m1

− i
¶K
¶m2

− ¶ 2K
¶m1¶m2

}
, atm = m0. (25)
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For a Gaussian sea state the evaluation ofG now becomes an almost trivial algebraic task because the charac-
teristic function (which is the Fourier transform of the pdf) is a Gaussian. WithBi j the covariance matrix with
elements〈XiXj〉 the characteristic function for the stochastic processX with zero mean〈X〉 becomes

K(m) = e−
1
2mim j Bi j (26)

Krogstad (1991) used Eq. (26) in evaluatingG from (25) and he found identical results as H&H for the expres-
sion for the SAR image spectrum.1 It is noted here that this simple algebraic approach can also be extended
to fairly general forms of the pdf. A general expression of the pdf of any processX can, following Gram and
Charlier, be given in terms of the cumulants of the stochastic process. The corresponding characteristic function
becomes

K(m) = e−
1
2mim j Bi j

{
1− i

3!
mim jmkCi jk +

1
4!
mim jmkml Di jkl + ....

}
, (27)

where we used the summation convention over repeated indices. Up to fifth order inm the expansion coefficients
are identical to cumulants of the distribution function.

In order to explain the validity of the above expansion we discuss a one dimensional example. According to
Craḿer (1946) any pdfp(x) of compact support can be expanded in terms of orthogonal functionsf (n)(x) =
(d/dx)n f where f is given by the normal distributionf (x) = exp(−1/2 x2)/(2p)1/2,

p(x) =
∞

∑
n=0

(−1)n

n!
cn f (n)(x). (28)

Here the expansion coefficients can be expressed in terms of the central momentsmn of the pdf p(x). Thus,
one finds with zero mean and unit standard deviation thatc0 = 1, c1 = c2 = 0, c3 = m3, c4 = m4− 3, c5 =
m5− 10m3, c6 = m6− 15m4 + 30, etc. Alternatively, the expansion coefficients may be expressed in terms
of the cumulantskn, which are the expansion coefficients when the logarithm of the characteristic function
of the pdf is written as a series inm. One findsc3 = k3, c4 = k4, c5 = k5, c6 = k6 + 10k2

3 . Thus, the first
five expansion coefficients correspond to the cumulants of the distribution function, but not the sixth! As the
characteristic function ofp(x) is its Fourier transform (see (24)) thenth derivative of f (x) corresponds in the
expansion of the characteristic function to a term proportional to(−im)n. Eq. (27) is then just the extension for
many stochastic variables.

Let us now determine the general expression for the SAR image spectrum in terms of moments/cumulants of
the wave field. To that end we substitute Eq. (27) into Eq. (25) to obtain after some straightforward algebra

G(r) = I2
0e−

1
2k2B33×{(

1+
ik3

3!
C333+

k4

4!
D3333

)(
1+B12− ik(B13+B23)−k2B13B23

)
−ikC123−

k2

2!

(
C133+C233+D1233

)
+ik3

[
1
3!

(
D1333+D2333

)
+

1
2!

(
B23C133+B13C233

)]
+

k4

3!

(
B23D1333+B13D2333

)}
(29)

1 Details are, however, different. Krogstad uses a four dimensional stochastic vectorX =
[
IR(r), IR(0),x (r),x (0)

]
, but this is not

really needed as there are only three different stochastic variables in the problem.
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In deriving (29) we have utilized symmetries such asC123 = C132 etc. This general relationship between the
spatial correlation functionG(r) and the moments of the wave field is far too complicated to be of practical use.
Before we introduce simplifications based on the properties of weakly nonlinear wave fields we mention that
the H&H result for the nonlinear mapping relation can be easily obtained by ignoring all the moments except
the second order one. As a consequence one finds

G(r) = I2
0e−

1
2k2B33

(
1+B12− ik(B13+B23)−k2B13B23

)
(30)

which is in the present context an extremely simple result. Using relations such as

B12 = 〈IR(r)IR(0)〉,B13 = 〈IR(r)∆x 〉
B23 = 〈IR(0)∆x 〉,B33 = 〈(∆x )2〉 (31)

the exact correspondence with the original H&H result can then readily be established (making use of the linear
MTF’s of the previous Section). The question now is whether and which of the additional terms in the general
relation (29) need to be retained in the mapping relation of the SAR image spectrum. This will be discussed in
more detail in the next section.

4 A simplified nonlinear mapping relation for SAR image spectra

In order to simplify the expression for the SAR image spectrum we will make the assumption of weakly non-
linear ocean wave fields, which will furnish an estimate of the size of the expansion coefficients in Eq. (29) and
which allows to show that indeed one may get a closed expression. The same approach has been followed in
the derivation of the rate of change of the spectrum due to nonlinear four-wave interactions.

Weakly nonlinear waves have a wave steepness, defined here ase = k0〈h2〉1/2 (with k0 a ’typical’ wave number)
which is small. The rate of change of the spectrum due to four-wave interactions is then obtained by assuming
that the sea state is close to the Normal distribution. Deviations from normality are expressed in terms of the
cumulants of the distribution, and for weakly nonlinear waves a consistent ordering of the cumulantskn is

kn = O(e2n−2),

reflecting the condition that the sea state is close to a Gaussian as the higher-order cumulantskn with n≥ 3
are relatively small compared to the second order one. However, in the present problem there is an additional
parameter which plays an important role, namelyw0b , as this measures the amount of degradation in azimuth
resolution owing to the velocity bunching effect. Typically,w0b is large, and to get definite answers it is
important to assess the relative importance of these two dimensionless parameters.

The size of the parameter2 b compared toe is now obtained from the H&H result (30). Apart from the
Gaussian factor, the H&H result contains three terms. Their respective sizes are

B12 = O(e2), B13' B23 = O(be2), B33 = O(b 2e2) (32)

Because there are three terms there are three possibilities to estimateb . Balancing the first and the second
term givesb = O(1), while balancing the first and the third, nonlinear term givesb = O(1/e). Finally, the
balance of the third and second term givesb = O(1/e2). Now, the choiceb = O(1) is unrealistic because
with the estimate ofB33 one sees that the damping by velocity bunching is small, on the other hand the choice
b = O(1/e2) gives excessive damping. We are therefore left with the estimate

b = O(1/e). (33)
2from now on I will be a bit sloppy because actuallyw0b should be used
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This gives a damping by velocity bunching of the order one, which is what one should expect. From now on
we will refer to this relation as thevelocity bunching ordering.

For the higher cumulants now the following ordering will be obtained:

C333 = O(b 3e4) = O(e), D3333= O(b 4e6) = O(e2),
C123 = O(be4) = O(e3), C133'C233 = O(b 2e4) = O(e2) (34)

D1233= O(b 2e6) = O(e4), D1333= O(b 3e6) = O(e3)

Applying the above ordering to Eq. (29), and retaining only those terms which have a size ofO(e2) or larger
we obtain the much simpler expression

G(r) = I2
0GVB

{
1+B12− ik

(
B13+B23

)
−k2B13B23−

k2

2!

(
C133+C233

)}
, (35)

where

GVB(r) = e−
1
2k2B33

(
1+

ik3

3!
C333+

k4

4!
D3333−10

k6

6!
C2

333

)
. (36)

Here, the functionGVB is related to the sole effects of velocity bunching as it only involves moments of the
azimuthal displacementx . It is given by the average of〈exp(−ik.∆x )〉 and the presence of the term proportional
toC2

333 will be explained in a moment. The other terms in Eq. (35) are the usual terms from the H&H approach,
except the term involving the skewnessC.

For completeness, we mention that in terms of the moments the relevant expansion coefficients are given by

C333 = 〈(∆x )3〉, D3333= 〈(∆x )4〉−3〈(∆x )2〉2

C133 = 〈IR(r)(∆x )2〉, C233 = 〈IR(0)(∆x )2〉. (37)

The actual determination of the additional expansion coefficients of (37)) in terms of the surface wave spectrum
still needs some work. In the context of the linear MTF’s of section 2 this is expected to be a straighforward,
but laborious task. For example, Janssen (2003) obtained a theoretical expression for the fourth cumulant of
the surface elevation by solving in an approximate fashion the Zakharov equation. It is expected that the third
cumulants can be expressed in terms of the wave spectrum as well.

The unexpected result is that higher order statistics arealwaysrequired to give an accurate representation of
the SAR image spectrum. In the first instance, it was expected that in cases of extreme sea states, such as freak
waves are, which may have large deviations from Normal statistics, effects of skewness or kurtosis would be
important. However, now it appears that according to Eq. (35) these effects are always relevant. The reason for
this is that a SAR flying on board of a polar orbiter always suffers from serious effects of velocity bunching.
This is reflected by the large values ofb in the velocity bunching ordering. For this reason H&H needed to
retain the nonlinear termB13B23 in their nonlinear mapping relation. However, to be consistent one needs to
retain the skewness termsC133 andC233 as well. Also, the skewness termC333 and the kurtosis termD3333need
to be included.

Finally, the question whether there is convergence is of importance. If the nth expansion coefficientcn of the pdf
was just given by the nth cumulantkn then the answer would be a straightforward ’yes’. However, as pointed
out in section 3, already the sixth-order expansion coefficientc6 starts to deviate from this regular pattern, as
c6 = k6 +10k3

3 . Let us consider the velocity bunching term〈exp(−ik.∆x )〉 in detail because all the moments
in its expansion depend on the azimuthal displacementx = bv which is formally ofO(1) according to the
velocity bunching ordering. The velocity bunching term is equal to the characteristic functionK(m) of Eq.
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(27) where the stochastic process vectorX = ∆x just contains one element. Again, using the velocity bunching
ordering it is then straightforward to show that the fifth order expansion coefficient can be neglected because
it gives a contribution ofO(e3). However, the sixth-order coefficient gives anO(e2) contribution, becausec6
is proportional to the square of skewnessk3, which is ofO(e2) and is much larger than the sixth cumulant
(= O(e4)). For this reason we have included the term proportional toC2

333 in the expression forGVB of Eq.
(36). Therefore, to be sure, the size of the seventh and eighth-order expansion coefficients was checked as well.
These turned out to give contributions that areO(e3) or smaller and therefore up toO(e2) Eq. (35) can be
regarded as a closed form.

Let us return now to the issue of extreme sea state detection. It was pointed out that it would be desirable
to be able to measure quantities such as the skewness of the surface elevation. Here, it is pointed out that an
azimuthal cutoff analysis (see, e.g. Kerbaolet al., 1998) might give information on the kurtosis of the pdf of
the vertical component of the orbital motion. In order to see this, consider the velocity bunching factor of Eq.
(36) and suppose one manages to measure its magnitude. To the required approximation one then obtains

|GVB(r)|= e−
1
2k2B33

∣∣∣∣1+
k4

4!
D3333

∣∣∣∣ , (38)

in other words the contribution by the skewness termC333 vanishes and all that is left are effects of kurtosis.

5 Conclusions

Recent observations of freak waves and theoretical developments on nonlinear focussing have increased our
understanding of the generation of freak waves. A nonlinear, coherent sea state, having a large kurtosis, is most
likely to produce these extreme events. This notion is supported by evidence from laboratory studies, however,
validation of all this in the field is still required.

It would be most desirable to be able to monitor the kurtosis of the sea surface by means of satellite observations.
In theory, the wave form as observed from an altimeter could provide this information (Lipa and Barrick, 1981).
In this note we have explored the possibility whether the SAR would be able to give information on the kurtosis
of the pdf and hence on extreme sea states.

Extending the approach of H&H by allowing for deviations from Normality and using the method developed
by Krogstad (1992) we have obtained a closed form for the SAR image spectrum in terms of cumulants of
the ocean wave field. According to the velocity bunching ordering, we find the surprising result that effects of
skewness and kurtosis need to be included in the expression for the SAR image spectrum. This is evident when
it is realized that velocity bunching is a strongly nonlinear process. In fact, becauseb = R/V is large, details of
the sea surface elevation such as skewness and kurtosis are amplified by the SAR imaging process. Therefore,
the H&H expression for the SAR image spectrum is not complete, but since the SAR imaging acts like a
magnifying glass there may be, at least in theory, a unique opportunity to observe relatively subtle parameters
such as skewness and kurtosis.
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A Velocity bunching

Consider a SAR on board of a satellite flying at a speedV at a height of about 800 km. The SAR is looking
under an incidence angle of about 20◦ towards the ocean surface and has a finite aperture angle∆q . See for an
explanation of some of the details Fig.2. Suppose that at a certain instant in time the Radar spots an object.
Viewed from the SAR the object will be advancing with a speedV along the flight direction and when the
object is not in the centre of the aperture cone, it will have a component of the velocity in the direction from
which the electro-magnetic waves are propagating. When these waves “reflect” from the object they will have a
Doppler shift in the frequency. The location of the object can now be determined very accurately by measuring
the Doppler shift while the object is passing, and when the Doppler shift vanishes the object is at the centre of
the aperture cone.

However, when the object has itself an ’unknown’ velocityv, because it is sitting on a wavy ocean surface,
there will be an additional Doppler shift, which gives rise to a mislocation of the object. Although the ratio
v/V is small the azimuthal shift is surprisingly large. Let us calculate the azimuthal shift. The distance between

Figure 2: Definition sketch of the velocity bunching problem with a SAR.

the SAR and the object is given by two contributions, namelyr1 = R/cosq andr2 = −vt, wherev is taken
positive when the object moves towards the SAR, and timet is defined in such a way that it vanishes when the
object is at the centre of the cone. Hence,

r = R/cosq −vt (A1)

Of course, time is directly related to the azimuth angleq . With ∆t the travel time through the aperture cone,
one finds

q =
V
R

(t−∆t/2) (A2)

Eliminating time from the expression forr one thus finds

r = R/cosq −bvq +const (A3)

with b = R/V. The object is now located by minimizing the distancer as function of the azimuth angleq ,
which is equivalent to the condition of zero Doppler shift. Thus,

¶r

¶q
= r

[
sinq

cos2q
− v

V

]
= 0 (A4)
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gives the azimuth location of the object. Solving for sinq gives

sinq =
−1+

√
1+4(v/V)2

2v/V
' v

V
+O

( v
V

)3
(A5)

Since, in practicev/V ' 10−4 is extremely small, the cubic term may be disregarded and to a very good
approximation one finds the azimuthal mismatchdq = v/V. However, in order to obtain the mismatch in
azimuthal locationx one needs to multiplydq with the rangeR, which is a large number. Hence

x = bv (A6)

For SAR’s flying on board of ERS and ENVISATb = O(100) and sincev is O(1) the azimuthal displacement
may easily be of the order of 100 m, i.e. comparable to the wavelength of the dominant surface gravity waves.
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Feindt, F.J., J. Schröter and W. Alpers, 1986: Measurement of the ocean wave-radar modulation transfer func-
tion at 35 GHz from a sea based platform in the North Sea.J. Geophys. Res., 91, 9701-9708.

Hasselmann, K, and S. Hasselmann, 1991. On the nonlinear mapping of an ocean wave spectrum into a SAR
image spectrum and its inversion.J. Geophys. Res., C96, 10713-10729.

Janssen, P.A.E.M., 2003. Nonlinear Four-Wave Interactions and Freak Waves.J. Phys. Oceanogr.33, 863-884.

Kerbaol, V., B. Chapron, and P.W. Vachon, 1998. Analysis of ERS-1/2 synthetic aperture radar wave mode
imagettes.J. Geophys. Res., C103, 7833-7846.

Komen, G.J., L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann, and P.A.E.M. Janssen, 1994:Dynamics
and Modelling of Ocean waves(Cambridge University Press, Cambridge)

Krogstad, H.E., 1992. A simple derivation of Hasselmann’s nonlinear ocean-sar transformation.J. Geophys.
Res., C97, 2421-2425.

Lipa, B., and D.E. Barrick, 1981. Ocean surface height-slope probability density function from SEASAT
altimeter echo.J. Geophys. Res., 86, 10921-10930.

Mori N. and P.A.E.M. Janssen, 2006: On Kurtosis and Occurrence Probability of Freak Waves.J. Phys.
Oceanogr., 36, 1471-1482.

Wright, J.W., 1968: A new model for sea clutter.IEEE Transactions on Antennas and Propagation, AP-16,
217-223.

Technical Memorandum No. 531 13


	1 Introduction
	2 SAR measurement theory
	3 A general relationship between SAR image spectrum and cumulants of the surface field.
	4 A simplified nonlinear mapping relation for SAR image spectra
	5 Conclusions
	A Velocity bunching

