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Use of groundUse of ground--based based 
radar and lidar to radar and lidar to 

evaluate model cloudsevaluate model clouds



OverviewOverview
• Cloud radar and lidar sites worldwide
• Cloud evaluation over Europe as part of Cloudnet

– Identifying targets in radar and lidar data (cloud droplets, ice
particles, drizzle/rain, aerosol, insects etc)

– Evaluation of cloud fraction
– Liquid water content 
– Ice water content
– Forecast evaluation using skill scores
– Drizzle rates beneath stratocumulus

• The future: variational methods
– Optimal combination of many instruments 



Continuous cloudContinuous cloud--observing sitesobserving sites

• Key cloud instruments at each site:
– Radar, lidar and microwave radiometers

AMF shortly to move to 
Southern Germany for COPS



The Cloudnet methodologyThe Cloudnet methodology
Recently completed EU project; Recently completed EU project; www.cloudwww.cloud--net.orgnet.org

• Aim: to retrieve and evaluate the crucial cloud variables in 
forecast and climate models
– Models: Met Office (4-km, 12-km and global), ECMWF, Météo-France, 

KNMI RACMO, Swedish RCA model, DWD
– Variables: target classification, cloud fraction, liquid water content, ice 

water content, drizzle rate, mean drizzle drop size, ice effective radius, 
TKE dissipation rate

– Sites: 4 Cloudnet sites in Europe, 6 ARM including the mobile facility
– Period: Several years near-continuous data from each site

• Crucial aspects
– Common formats (including errors & data quality flags) allow all

algorithms to be applied at all sites to evaluate all models
– Evaluate for months and years: avoid unrepresentative case studies



Basics of radar and lidarBasics of radar and lidar

Radar/lidar ratio provides information on particle size

Detects 
cloud base

Penetrates ice cloud

Strong echo 
from liquid 

clouds

Detects 
cloud top

Radar: Z~D6

Sensitive to 
large particles 
(ice, drizzle)

Lidar: β~D2

Sensitive to 
small particles 

(droplets, 
aerosol)



← Level 0-1: observed quantities →|← Level 2-3: cloud products →



The Instrument synergy/The Instrument synergy/
Target categorization product Target categorization product 

• Makes multi-sensor data much easier to use:
– Combines radar, lidar, model, raingauge and μ-wave radiometer
–– Identical formatIdentical format for each site (based around NetCDF)

• Performs common pre-processing tasks:
– Interpolation on to the same grid
– Ingest model data (many algorithms need temperature & wind)
– Correct radar for attenuationattenuation (gas and liquid)

• Provides essential extra information:
– Random and systematic measurement errorsmeasurement errors
– Instrument sensitivitysensitivity
– Categorization of targets: droplets/ice/aerosol/insectsdroplets/ice/aerosol/insects etc. 
–– Data quality flags:Data quality flags: when are the observations unreliable?
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Target categorizationTarget categorization
• Combining radar, lidar and model allows the type of cloud (or 

other target) to be identified
• From this can calculate cloud fraction in each model gridbox



Example from
US ARM site:
Need to
distinguish
insects from
cloud

First step: target classificationFirst step: target classification

Ice

Liquid
RainAerosol Insects

• Combining radar, lidar and model allows the type of cloud (or other 
target) to be identified

• From this can calculate cloud fraction in each model gridbox



Observations

Met Office
Mesoscale 

Model

ECMWF
Global Model

Meteo-France
ARPEGE Model

KNMI
RACMO Model

Swedish RCA 
model

Cloud fractionCloud fraction



Cloud fraction in 7 modelsCloud fraction in 7 models
• Mean & PDF for 2004 for Chilbolton, Paris and Cabauw

Illingworth, Hogan, O’Connor et al., submitted to BAMS

0-7 km

– Uncertain above 7 km as must remove undetectable clouds in model

– All models except DWD underestimate mid-level cloud; some have 
separate “radiatively inactive” snow (ECMWF, DWD); Met Office has 
combined ice and snow but still underestimates cloud fraction

– Wide range of low cloud amounts in models



A change to A change to MeteoMeteo--France cloud schemeFrance cloud scheme

But human obs. 
indicate model now 
underestimates
mean cloud-cover! 
Compensation of 
errors: overlap 
scheme changed 
from random to 
maximum-random

• Compare cloud fraction to observations before and after April 2003
• Note that cloud fraction and water content are entirely diagnostic

before after

April 2003



Liquid water contentLiquid water content
• Can’t use radar Z for LWC: often affected by drizzle

– Simple alternative: lidar and radar provide cloud boundaries
– Model temperature used to predict “adiabatic” LWC profile
– Scale with LWP (entrainment often reduces LWC below adiabatic)

Radar reflectivity

Liquid water content
Rain at ground:

unreliable retrieval



Liquid water contentLiquid water content
• LWC derived using the scaled adiabatic method

– Lidar and radar provide cloud boundaries, adiabatic LWC profile then 
scaled to match liquid water path from microwave radiometers

– Met Office mesoscale 
tends to underestimate 
supercooled water 
occurrence

– ECMWF has far too great an 
occurrence of low LWC values

– KNMI RACMO identical to ECMWF: 
same physics package!

0-3 km



Ice water contentIce water content
• IWC estimated from radar reflectivity and temperature

– Rain events excluded from comparison due to mm-wave attenuation
– For IWC above rain, use cm-wave radar (e.g. Hogan et al., JAM, 2006)

3-7 km

– ECMWF and Met Office within the 
observational errors at all heights

– Encouraging: AMIP implied an error 
of a factor of 10!

– Be careful in interpretation: mean 
IWC dominated by occasional large 
values so PDF more relevant for 
radiative properties



Model cloud

Model clear-sky D: Clear-sky hitC: Miss

B: False alarmA: Cloud hit

Observed cloud   Observed clear-sky

Comparison with Met Office
model over Chilbolton
October 2003

Contingency tablesContingency tables



Equitable threat scoreEquitable threat score
• Definition: ETS = (A-E)/(A+B+C-E)
• E removes those hits that occurred by chance:

E=[(A+B)(A+C)]/[A+B+C+DDD]
• 1 = perfect forecast, 0 = random forecast

From now on we use Equitable Threat Score with threshold of 0.1



Skill versus Skill versus 
heightheight

• Model performance:
– ECMWF, RACMO, Met Office models perform similarly
– Météo France not so well, much worse before April 2003
– Met Office model significantly better for shorter lead time

• Potential for testing:
– New model parameterisations
– Global versus mesoscale versions of the Met Office model



Equitable threat scoreEquitable threat score
• Definition: ETS = (A-E)/(A+B+C-E)

– E removes those hits that occurred by chance
– 1 = perfect forecast, 0 = random forecast

• Measure of the skill of forecasting cloud fraction>0.05
– Assesses the weather of the model not its climate
– Persistence forecast is shown for comparison

• Lower skill in summer convective events



Drizzle!Drizzle!
• Radar and lidar 

used to derive 
drizzle rate below 
stratocumulus

• Important for 
cloud lifetime in 
climate models

O’Connor et al. (2005)

• Met Office uses Marshall-
Palmer distribution for all rain
– Observations show that this 

tends to overestimate drop size 
in the lower rain rates

• Most models (e.g. ECMWF) 
have no explicit raindrop size 
distribution



11--year comparison with modelsyear comparison with models
• ECMWF, Met Office and Meteo-France overestimate drizzle rate

– Problem with auto-conversion and/or accretion rates?
• Larger drops in model fall faster so too many reach surface 

rather than evaporating: drying effect on boundary layer?

O’Connor et al., submitted to J. Climate

ECMWF model Met Office

Observations



Variational Variational retrievalretrieval
• The retrieval guy’s dream is to do everything variationally:

– Make a first guess of the profile of cloud properties
– Use forward models to predict observations that are available (e.g. 

radar reflectivity, Doppler velocity, lidar backscatter, microwave 
radiances, geostationary TOA infrared radiances) and the Jacobian

– Iteratively refine the cloud profile to minimize the difference between 
the observations and the forward model in a least-squares sense

• Existing methods only perform retrievals where both the radar 
and lidar detect the cloud
– A variational method (1D-VAR) can spread information vertically to 

regions detected by just the radar or the lidar
• We have done this for ice clouds (liquid clouds to follow)

– Use fast lidar multiple scattering model that incorporates high orders 
of scattering (Hogan, Appl. Opt., 2006)

– Use the two-stream source function method for the SEVIRI radiances
– Use extinction coefficient and “normalized number concentration 

parameter” as the state variables…



Solution methodSolution method
• Find x that minimizes a cost 

function J of the form 
J = deviation of x from a-priori

+ deviation of observations from    
forward model

+ curvature of extinction profile

New ray of data
Locate cloud with radar & lidar
Define elements of x
First guess of x

Forward model
Predict measurements y from 
state vector x using forward 
model H(x)
Also predict the Jacobian H

Has solution converged?
χ2 convergence test

Gauss-Newton iteration step
Predict new state vector:

xi+1= xi+A-1{HTR-1[y-H(xi)]
-B-1(xi-xa)-Txi}

where the Hessian is
A=HTR-1H+B-1+T

Calculate error in retrieval

No

Yes

Proceed to next ray



Radar forward model and Radar forward model and a prioria priori
• Create lookup tables

– Gamma size distributions
– Choose mass-area-size relationships
– Mie theory for 94-GHz reflectivity

• Define normalized number 
concentration parameter N0*
– “The N0 that an exponential 

distribution would have with same 
IWC and D0 as actual distribution”

– Forward model predicts Z from the 
state variables (extinction and N0

*)
– Effective radius from lookup table

• N0 has strong T dependence
– Use Field et al. power-law as a-priori
– When no lidar signal, retrieval 

relaxes to one based on Z and T 
(Liu and Illingworth 2000, Hogan et 
al. 2006) Field et al. (2005)



Lidar forward model: multiple scatteringLidar forward model: multiple scattering
• Degree of multiple 

scattering increases with 
field-of-view

• Eloranta’s (1998) model 
– O (N m/m !) efficient for N

points in profile and m-order 
scattering

– Too expensive to take to more 
than 3rd or 4th order in 
retrieval (not enough)

• New method: treats third 
and higher orders together
– O (N 2) efficient 
– As accurate as Eloranta when 

taken to ~6th order
– 3-4 orders of magnitude 

faster for N =50 (~ 0.1 ms)

Hogan (Applied Optics, 2006). Code: www.met.rdg.ac.uk/clouds

Ice cloud

Molecules

Liquid cloud
Aerosol

Narrow 
field-of-view: 

forward 
scattered 

photons escape

Wide field-of-
view:

forward 
scattered 

photons may be 
returned



Ice cloud: nonIce cloud: non--variational variational retrievalretrieval

• Existing algorithms can only be applied where both lidar and 
radar have signal

Observations

State 
variables

Derived 
variables

Retrieval is 
accurate 
but not 
perfectly 
stable 
where lidar 
loses signal

Aircraft-
simulated 
profiles with 
noise (from 
Hogan et al. 
2006)



Variational Variational radar/lidar retrievalradar/lidar retrieval

• Noise in lidar backscatter feeds through to retrieved extinction

Observations

State 
variables

Derived 
variables

Lidar noise 
matched by 
retrieval

Noise 
feeds 
through to 
other 
variables



……add smoothness constraintadd smoothness constraint

• Smoothness constraint: add a term to cost function to penalize 
curvature in the solution (J’ = λ Σi d2αi/dz2)

Observations

State 
variables

Derived 
variables

Retrieval 
reverts to 
a-priori N0

Extinction 
and IWC 
too low in 
radar-only 
region



……add aadd a--priori error correlationpriori error correlation

• Use B (the a priori error covariance matrix) to smooth the N0
information in the vertical

Observations

State 
variables

Derived 
variables

Vertical 
correlation 
of error in 
N0

Extinction 
and IWC 
now more 
accurate



……add visible optical depth constraintadd visible optical depth constraint

• Integrated extinction now constrained by the MODIS-derived 
visible optical depth

Observations

State 
variables

Derived 
variables

Slight 
refinement 
to 
extinction 
and IWC



……add infrared radiancesadd infrared radiances

• Better fit to IWC and re at cloud top

Observations

State 
variables

Derived 
variables

Poorer fit 
to Z at 
cloud top: 
information 
here now 
from 
radiances



Example from the AMF in NiameyExample from the AMF in Niamey

94-GHz radar reflectivity

532-nm lidar backscatter

ARM Mobile 
Facility 

observations 
from Niamey, 

Niger, 22 July 
2006

Also use SEVIRI 
channels at 8.7, 

10.8, 12µm



Retrievals in 
regions where 
only the radar 
or lidar detects 
the cloud

94-GHz radar reflectivity (forward model)

532-nm lidar backscatter (forward model)

Retrieved visible extinction coefficient

Retrieved effective radius

ResultsResults
Radar+lidar onlyRadar+lidar only

By forward 
modelling radar 
instrument 
noise, we use 
the fact that a 
cloud is below 
the instrument 
sensitivity as a 
constraint

Preliminary results!



Retrievals in 
regions where 
only the radar 
or lidar detects 
the cloud

Retrieved visible extinction coefficient

Retrieved effective radius

Results Results 
Radar+lidar onlyRadar+lidar only

Large error 
where only one 
instrument 
detects the 
cloud

Retrieval error in ln(extinction)

Preliminary results!



TOA radiances 
increase the 
optical depth 
and decrease 
particle size 
near cloud top

Retrieval error in ln(extinction)

Retrieved visible extinction coefficient

Retrieved effective radius

Results Results 
Radar, lidar, Radar, lidar, 

SEVERI radiancesSEVERI radiances

Cloud-top 
error is 
greatly 
reduced

Preliminary results!



Future workFuture work
• Ongoing Cloudnet-type evaluation of models

– A large quantity of ARM data already processed
– Would like to be able to evaluate model clouds in near real time (within 

a few days) to inform model update cycles
– BUT need to establish continued funding for this activity! 

For quicklooks and further information:

www.cloud-net.org

• Variational retrieval method
– Apply to more ground-based data
– Apply to CloudSat/Calipso/MODIS (when Calipso data released)
– New forward model including wide-angle multiple scattering for both 

radar and lidar
– Evaluate ECMWF and Met Office models under CloudSat
– Could form the basis for radar and lidar assimilation


