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1. Introduction 
The bias correction of satellite radiances is important for enhancing the impact on forecast skill. This paper 
will detail the current method of satellite data bias correction in the NCEP Global Data Assimilation System 
(GDAS). Areas of investigation for improving the NCEP satellite data bias correction scheme will be briefly 
discussed based on the sources of the biases. 

2. Bias Correction Scheme 
The current bias correction scheme employed in the NCEP GDAS is detailed in Okamoto and Derber (2005). 
The bias correction in the GDAS consists of a slowly varying component and an air mass dependent 
component. The bias, b, for channel j is given by, 
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The slowly varying component, sjm, (also referred to as the fixed angle component) is intended to remove the 
bias across a scan. It is computed at each scan position m from quality controlled observed minus guess 
(O-G) brightness temperature fields accumulated over the last 30 days, updated at every post-analysis step. A 
time series of the fixed angle bias correction for NOAA-16 AMSU-A channels 1, 2, 3, and 15 is shown in 
Figure 1 (other instruments, both infrared and microwave show similar behaviour). This bias component is 
very stable with time and the only significant changes occur when there are GDAS updates (as occurred on 
Nov. 29) or if there is an anomaly with the instrument. 

The second bias component is an air mass dependent bias correction and it is expressed as a linear equation 
with five predictors, pjk. The predictor coefficients, cjk, are included as analysis variables and are determined 
globally. The current set of predictors used in the GDAS air mass bias correction is: 

1. a constant, 

2. the scan angle path, 

3. the cloud liquid water (CLW) retrieval, 

4. the lapse rate integrated over the simulated weighting functions for each observation, and 

5. the square of the integrated lapse rate. 

The CLW bias correction component has had a significant impact for microwave instruments. As described 
in Okamoto and Derber (2005), and shown in Figure 2, there is good correlation between the retrieved CLW 
and the DMSP-15 SSM/I observed minus simulated brightness temperature differences. 

The correlation of bias with CLW is seen with other microwave instrument channels; the CLW bias 
correction component for NOAA-16 AMSU-A channels 1, 2, 3, and 15 is shown in Figure 3. The CLW bias 
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correction is also relatively stable over time. The evolution of the CLW bias correction coefficients for the 
same channels over the same time period is shown in Figure 4. Again, the coefficients are relatively stable 
only changing significantly on Nov. 29, compensating for the updates to the fixed angle bias correction in the 
GDAS. 

 
Figure 1 Time series of the average (blue upper plots) and standard deviation (red lower plots) fixed 
angle bias correction. Data is for NOAA 16 AMSU-A channels 1, 2, 3, and 15 over the whole globe for 
the month of November 2005. Average and standard deviations listed to the left of each plot are for the 
time period. The discontinuity on Nov. 29 is due to an update in several aspects of the GDAS, but mainly 
due to a fixed angle bias correction update. Note the stability of the bias correction statistics both before 
and after the Nov. 29 GDAS update. 
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Figure 2 Dependency of observed-minus-guess brightness temperature difference (vertical axis, units 
are K) on cloud liquid water (CLW, horizontal axis, kg/m2) over the ocean. Data shown is from 
DMSP-15 SSM/I data after the thinning step at 00UTC on 1 July 2004. From Okamoto and Derber 
(2005). 

Variation of the bias corrected simulated minus observed brightness temperatures, ∆TB, across a scan are 
shown in Figure 5 for NOAA-16 AMSU-A. The one-, seven-, and 30-day averages and standard deviations 
versus scan angle are shown. These plots can indicate whether there is any anomalous behaviour across a 
scan with respect to time. The ∆TB averages for each time period typically sit on top of each other, with the 
standard deviations converging towards the 30-day result. Note that for the time period presented, the one-
day standard deviations are lower than the seven- and 30-day values. This is due to the change in the GDAS 
made on Nov. 29, as is evident from Figure 1. 

3. Future investigations 
Future research into improving the bias correction applied to simulated satellite radiances in the GDAS can 
be placed into four categories: a new radiative transfer (RT) model, the profile sets used to train the various 
components of the RT model, the instrument characterisation, and the methodology used to select predictors 
in the air mass bias correction scheme. 

3.1. New radiative transfer model 

The Community Radiative Transfer Model (CRTM) that is currently being integrated into the GSI is a 
framework of components that are being constructed with the ultimate goal of all-weather data assimilation 
of satellite radiances. There are four main components of the CRTM which are summarised below. Since the 
CRTM is still in a state of development, rather than address the potential contributions of each component to 
any final biases, it should suffice to state that each component (and, where applicable, each different 
algorithm for any particular component) will have its own unique set of assumptions and biases that will 
need to be evaluated and corrected for eventual operational use. 

3.1.1. Atmospheric absorption 

This component handles the absorption of radiation by atmospheric gaseous constituents (e.g. water vapour, 
ozone, etc). Currently, the atmospheric absorption algorithm used to generate optical depths is a compact 
version of OPTRAN (Kleespies, et al., 2004), but a version of the gaseous absorption component using the 
Optimal Spectral Sampling (OSS) algorithm (Moncet et al., 2004) is also under development. A short 
description of these two algorithms is shown in Table 1. 
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Figure 3 Time series of the average (blue upper plots) and standard deviation (red lower plots) cloud 
liquid water component of the variational air mass bias correction. Data is for NOAA 16 AMSU-A 
channels 1, 2, 3, and 15 over the whole globe for the month of November 2005. Average and standard 
deviations listed to the left of each plot are for the time period. 
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Figure 4 Time series of the coefficients for the cloud liquid water component of the variational air 
mass bias correction. Data is for NOAA 16 AMSU-A channels 1, 2, 3, and 15 over the whole globe for 
the month of November 2005. Average and standard deviations listed to the left of each plot are for 
the time period. The increase seen at Nov. 29 is due to operational changes made in the fixed scan 
angle bias. 
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Figure 5 Variation of the average (upper solid line plots) and standard deviation (dashed lower plots) 
bias corrected simulated minus observed brightness temperatures across a scan. Data is for NOAA 16 
AMSU-A channels 1, 2, 3, and 15 over the whole globe for the month of November 2005. Average and 
standard deviations listed to the left of each plot are for the time period. One, seven, and 30 day 
statistics are shown. 
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OPTRAN  OSS 

The effective band transmittance for each 
absorber j, jΤ , is predicted from the absorption 
coefficient, ψ , via regression fits, 
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The selected regression coefficients, cijk, are 
those that minimise the transmittance errors. 
These transmittances are then used in the 
atmospheric radiative transfer. 

 Channel radiances are obtained from a weighted 
sum of monochromatic radiances for a set of 
predefined nodes, 
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The monochromatic Rn are obtained from the 
OSS monochromatic optical depth profiles for 
the selected node frequencies. Nodes are 
selected and weights calculated for a channel to 
satisfy a specified accuracy (e.g. 0.05K). 
 
Higher accuracy ⇒ more nodes ⇒ longer 
computation times. 

Table 1. Comparison of the polychromatic OPTRAN and monochromatic OSS algorithms for computing 
clear sky optical depths/transmittances. 

It is expected that the model biases for these two algorithms, particularly for high resolution sensors where 
residual spectroscopic features still remain in the OPTRAN fits, will be radically different with the 
assessment of those biases and their subsequent corrections being implementation dependent. The situation 
becomes even more complex once cloud and aerosol scattering is included. Typical scattering algorithms use 
nadir optical depths scaled to whatever hemispheric stream angles are required. In the case of OPTRAN, 
because it is a polychromatic algorithm based on channel resolution transmittances, scaling of optical depths 
is not mathematically consistent. For OSS, due to the use of predefined nodes, the training process should 
encompass all the processes for which the atmospheric optical properties are required – otherwise the node 
selection may not be optimal. 

3.1.2. Atmospheric scattering 

The atmospheric scattering component of the CRTM is split into two parts: clouds and aerosols. The CRTM 
is currently set up to handle six different cloud types (water, ice, rain, snow, graupel, and hail) and four 
different aerosol types (sea salt, organic carbon, black carbon, and sulphates) with four size modes. Because 
this component of the CRTM is not yet operational, there are no statistics available to assess the bias 
associated with the scattering and absorption models. In addition, it is not clear whether biases for a 
particular cloud or aerosol type are similar to those of a different type, particularly – in the case of aerosols – 
when one also considers different particle size distributions. 

3.1.3. Surface optics 

The emissivity and reflectivity of different surface types are modeled by the surface optics components of the 
CRTM. Four different gross surface types (land, ocean, snow, and ice) are modeled separately for each 
distinct frequency region – currently only microwave and infrared frequencies are supported although visible 
frequency surface models can be included as they become available. Currently, diffuse and direct 
reflectivities are determined from the computed emissivities. 

3.1.4. Radiative transfer 

There are several radiative transfer schemes under consideration for use in the CRTM: fixed multi-stream 
models (e.g. Liou et al., 2005) and flexible-stream models (e.g. Heidinger et al., 2005). The selection of a 
scheme for use in operational use of the CRTM is be dependent on a number of factors such as accuracy, 
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speed, and memory usage, as well as algorithm features such as applicability across frequency regions (e.g. 
same algorithm for microwave and infrared?) and whether the scheme is fully polarimetric (e.g. full Stokes 
vector, or just V/H polarisations). 

3.2. Profile training sets 

3.2.1. Clear sky profile data 

Profile sets used in training fast radiative transfer models typically refer to those profiles used to describe the 
range of gaseous absorbers only, with no cloud or aerosol profile information. In this case, there are still 
issues to be addressed. At NCEP/EMC, two profile sets are used in training fast radiative transfer models: the 
UMBC48 and ECMWF52 profile sets, containing 48 and 52 entries respectively of temperature, water 
vapour and ozone profiles. The UMBC48 set is used to train the NASA-JPL operational AIRS radiative 
transfer model, and the ECMWF52 set is used to train the ECMWF operational radiative transfer models. 

Initially, training of OPTRAN and OSS for use in the CRTM was to be done using the same profile set 
(UMBC48). However, each model is sensitive to different issues (e.g. OPTRAN has to have absorber 
overburden in its predictor set due to polychromaticity) and thus have different requirements of the training 
data. It was found that OPTRAN is better trained using the UMBC48 set (see Figure 6) and OSS using the 
ECMWF52 set (see Figure 7). It is beyond the scope of this paper to investigate the origin of these 
differences, but the point needs to be made that the suitability of a training set for an atmospheric absorption 
algorithm used in a fast radiative transfer model is not necessarily apparent from the results of training other 
algorithms. 

 
 (a) (b) 

Figure 6 Comparison of statistics for OPTRAN training of HIRS channels. (a) Training with UMBC 
48 profiles, validated with ECMWF 52 profiles. (b) Training with ECMWF 52 profiles, validated with 
UMBC 48 profiles. 
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 (a) (b) 

Figure 7 Comparison of statistics for OSS training of AIRS channels. (a) Training with UMBC 48 
profiles, validated with ECMWF 52 profiles. (b) Training with ECMWF 52 profiles, validated with 
UMBC 48 profiles. In both cases the UMBC set was used with its average profile, hence the reference 
to 49 UMBC profiles. (from J-L. Moncet, AER Inc.) 

 
 (a) (b) 

Figure 8 MODIS top-of-atmosphere (TOA) channel brightness temperature differences between 
radiative transfer results for an average detector SRF (for 10 detectors) and the average of radiative 
transfer results for the 10 individual detector SRFs. The ECMWF52 profile set was used. (a) MODIS 
Terra. (b) MODIS Aqua. 

3.2.2. Cloud and aerosol profile data 

Currently, there is no profile set in hand that characterises the range of cloud and aerosol conditions that will 
need to be covered in using the CRTM. For an OPTRAN based CRTM – assuming the scaling of 
polychromatic optical depths can be done correctly – this is less of an issue since the training is done on 
transmittances directly. The current OSS algorithm, however, trains on radiances so, for optimal selection of 
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monochromatic nodes in both clear sky and cloudy or aerosol-laden conditions, the training set must include 
information about all the physical processes used in the radiative transfer model. Work is being done on the 
utility of training OSS by transmittances. Regardless of the outcome of that work, the NWP/data assimilation 
community in general would benefit from a compilation of cloud and aerosol profile data for use in radiative 
transfer modeling. 

3.3. Air mass predictor selection. 

The main focus of future investigation into the air mass bias correction is how to optimise the selection of the 
air mass bias predictors. The current set of predictors, described in §2, do provide significant bias correction, 
but some preliminary work suggests they are not optimal. Inspection of the various components of the air 
mass correction indicate that a small bias may be introduced due to the angular dependence of the integrated 
lapse rate term and, for those affected microwave channels, the cloud liquid water term. A methodology for 
handling these residual angular dependencies is under development. 

3.4. Instrument characterisation 

Modeling of instrument channel radiative transfer is almost always channel-based rather than detector-based, 
and detector differences are typically folded into a mean detector value. This means that any detector array 
(and thus spectral response function, SRF) differences are not modeled. An example of the effect of this is 
shown in Figure 8 for the MODIS instrument on EOS Terra and Aqua. The differences are generally small, 
with some channels performing better than others, and are really only an issue for broadband instruments. 
Because detector differences are not stable over time, or simply because official SRF measurements may not 
adequately represent the true instrument response, a variational method of correcting instrument channel 
characteristics may be useful. This approach would be accompanied by its own set of issues – similar to the 
variational correction of air mass biases – and it may be simpler to apply and interpret regular offline updates 
to instrument characteristics. 

4. Comments 
Research of satellite radiance bias correction schemes at NCEP in the near future will be focused on methods 
for more optimal selection of the air mass prediction coefficients in the short term, and development of bias 
correction schemes for new components of the CRTM as it is integrated into the GDAS in the longer term. 
For the latter work, a comprehensive data set of cloud and aerosol profiles that describe expected amounts 
and size distributions is needed and will be invaluable in training and validating the CRTM in the GDAS. 
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