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Multivariate balance for variational ocean assimilation

Abstract

It is common in meteorological applications of variational assimilation to specify the error covariances of
the model background state implicitly via a transformation from model space where variables are highly
correlated to a control space where variables can be considered to be approximately uncorrelated. An
important part of this transformation is a balance operator which effectively establishes the multivariate
component of the error covariances. The use of this technique in ocean data assimilation is less common.
This paper describes a balance operator that can be used in a variable transformation for oceanographic
applications of three- and four-dimensional variational assimilation. The proposed balance operator has been
implemented in an incremental variational data assimilation system for a global ocean general circulation
model. Evidence that the balance operator can explain a significant percentage of background-error variance
is presented. The multivariate analysis structures implied by the balance operator are illustrated using single
observation experiments.

1 Introduction

The importance of the background-error covariances for determining the quality of analyses and forecasts is
well known (Daley 1991). Specifying appropriate background-error covariances is a complex research problem
which requires careful consideration of physical, statistical and computational issues. One important problem
is how best to define the multivariate component of the background-error covariances. The multivariate com-
ponent is responsible for transferring observational information between model variables and thus is critical for
extracting information about unobserved variables from directly observed quantities. The problem of defining
multivariate covariances is also intimately related to that of producing balanced initial conditions for initializ-
ing forecasts. In particular, improvements in the specification of multivariate covariances will usually translate
into better dynamically balanced analyses and therefore can reduce, or even eliminate, the need for a separate
‘initialization’ procedure.

In oceanography, various approaches have been developed to introduce multivariate constraints in data assimi-
lation systems. In some systems, they take the form of dynamical or physical constraints (e.g., geostrophic or
temperature-salinity (T-S) relations) that are applied a posteriori to a statistically-generated univariate analysis
(Burgers et al. 2002; Troccoli et al. 2002; Balmaseda 2004). While this generally leads to much better forecasts
than if no constraints were applied at all, it does not make optimal use of multivariate information in defining
the analysis itself and makes the assimilation of different data-types more difficult.

A more effective way of incorporating multivariate constraints in the data assimilation system is through the
background error covariances. A popular method in oceanographic applications of sequential data assimilation
schemes such as the Kalman filter is to compute the error covariances in a reduced-dimension subspace spanned
by a limited number of three-dimensional (3D) empirical orthogonal functions (Testut et al. 2003) or a few
members of an appropriately generated ensemble of ocean model states (Lermusiaux et al. 2000; Keppenne
and Rienecker 2003). While reduced-space methods are capable of producing complex multivariate covariance
structures, they have the disadvantage of restricting the analysis increment to lie only in the subspace spanned by
the chosen basis vectors. Various localization techniques have been proposed to overcome this rank deficiency
problem but unfortunately can be applied only at the expense of disrupting some of the attractive balance
properties of the original covariances.

The specification of the multivariate component of the background-error covariances for variational ocean data
assimilation has received much less attention. In ocean applications of four-dimensional variational assimila-
tion (4D-Var), cross-variable correlations in the background errors are often neglected altogether (Bennett et
al. 2000; Stammer et al. 2002; Weaver et al. 2003). This approximation is often justified by the fact that 4D-Var
includes the ocean model (or a linearized version of the ocean model) as a constraint in the assimilation prob-
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lem and so already contains a multivariate component. The validity of this approximation depends on several
factors such as the length of the assimilation window, the choice of control variables, and the particular appli-
cation. It is clearly a very poor approximation, however, in three-dimensional variational assimilation (3D-Var)
which does not include the ocean model as a constraint. In general, a well-tuned multivariate background-error
covariance model is beneficial to 4D-Var as well as 3D-Var.

This paper describes a very general method for incorporating multivariate constraints in variational ocean data
assimilation. It extends the work of Ricci et al. (2005) who proposed a technique for incorporating T-S con-
straints in a 3D-Var system. The fundamental idea is to simplify the specification of the background-error
covariances by designing a transformation from model state space, where variables are highly correlated, to an-
other (control) space where variables can be considered approximately mutually uncorrelated. The basic tech-
nique is commonly used in meteorological applications of variational assimilation (Derber and Bouttier 1999;
Cullen 2003) but has seen limited use in oceanography. In effect, the specification of the background-error
covariances in model state space is transformed into one of defining a more general observation operator. An
obvious advantage with this approach is that observation operators can be nonlinear whereas constraints that
are included in traditional covariance (matrix) formulations are necessarily linear.

The paper is organized as follows. An outline of the general approach for modelling background-error covari-
ances is given in section 2. Special attention is paid to some important practical issues concerning the imple-
mentation of the technique in incremental versions of 3D-Var and 4D-Var. Section 3 describes a multivariate
balance operator that can be used in a control variable transformation for 3D-Var and 4D-Var applications
with ocean general circulation models (OGCMs). The proposed balance operator has been implemented in a
variational assimilation system for the OPA OGCM. Examples with this system are presented in section 4 to
illustrate various properties of the balance operator. Conclusions are given in section 5. An appendix provides
some mathematical details on the relationship between the balance operator and the multivariate component of
the background-error covariance matrix.

2 An implicit representation of the background-error covariances

2.1 Formulation of the problem

The formulation of variational assimilation given by Derber and Wu (1998) provides a very general and conve-
nient framework for representing background-error covariances in model state space. In their formulation, the
variational analysis is defined by the minimization of a cost function of the form

J[v] =
1
2

[v−vb]T [v−vb] +
1
2

[G(v)−yo ]T R−1 [G(v)−yo ] (1)

where v is the control (analysis) vector, vb is the background estimate of the control vector, yo is the vector of
observations, R is an estimate of the observation error covariance matrix, including contributions from mea-
surement and representativeness error, and G is a nonlinear operator that maps the control vector onto the space
of the observation vector. The background-error covariance matrix of the control vector is assumed to be the
identity matrix (B(v) = I) as evident by the use of the canonical inner product for the background term in (1).
In other words, background errors for vb are assumed to be uncorrelated and to have unit variance. Clearly the
control vector must be constructed carefully for this to be a reasonable assumption; e.g., it would be a very poor
assumption if v were taken to be the model state vector. There are two advantages that result from this formu-
lation where the background term takes on a very simple form. First, it generally improves the convergence
properties of the minimization when the problem is solved with a conjugate gradient algorithm. For quadratic
cost functions, this is often explained by a reduction in the condition number of the Hessian (Golub and Van
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Loan 1996). Second, all constraints in the assimilation problem are now imposed through the nonlinear obser-
vation operator G, including multivariate and smoothness constraints that are used in conventional model-space
(matrix) formulations of the background-error covariances. In particular, this opens the way for incorporating
potentially more realistic (nonlinear) multivariate balance relationships in the analysis problem.

The control vector v is assumed to be related to the model state vector x through a transformation of the form

v = U−1(x) (2)

where U−1 is a block-matrix operator, with possibly nonlinear blocks, which is assumed to be square and
invertible in the following. There is no complication if U is rectangular (i.e., if there are fewer control variables
than state variables) but in this case U would only be invertible in a generalized sense. If the observations are
distributed over a time window t0 ≤ ti ≤ tn then x can be interpreted, as in a conventional formulation of 4D-Var,
as the initial state of the dynamical model used in G to propagate the model state forward to the observation
times.1

Following Derber and Bouttier (1999), the operator U−1 can be split into three basic operators: a transformation
K−1 that produces a set of approximately mutually uncorrelated variables by removing any known dynamical
or physical balance relationships between model state variables; a diagonal matrix D−1 of normalization fac-
tors; and a roughening operator F−1 (the inverse of a smoothing operator) that acts separately on each of the
uncorrelated variables. The change of variables (2) is needed to compute the background estimate, vb, of the
control vector from the background estimate, xb, of the model state, while the inverse of the change of variables

x = U(v) = K (D(F (v))) (3)

is needed to evaluate the term G(v) in the observation term. Equation (2) can be used to compute covariance
statistics of the contrived control vector v from estimates of background error for the state vector x. In practice,
only a few aspects of the covariances (e.g., average variances) can be estimated reliably. From these estimates,
the assumption that B(v) ≈ I can be tested: if it is not well satisfied then either a new B(v) 6= I could be used to
weight the background term in (1) or the parameters in the operators F , D and K could be recalibrated so that
the approximation is better satisfied.

2.2 Incremental formulation

The incremental formulation (Courtier et al. 1994) provides a practical algorithm for approximately minimizing
(1). The incremental algorithm is defined by the iterative minimization of a sequence, k = 1, ...,Ko, of quadratic
cost functions

Jk[δvk] =
1
2

[
δvk −db,k

(v)

]T [
δvk −db,k

(v)

]
(4)

+
1
2

[
Gk−1δvk −do,k

]T
R−1

[
Gk−1δvk −do,k

]

where

db,k
(v) = vb −vk−1, (5)

do,k = yo −G(vk−1) (6)

1By interpreting x to be the initial conditions, the model and external forcing fields are tacitly assumed to be perfect. This assumption
can be relaxed in the above formulation by considering x to contain model-error or external forcing terms in addition to the initial
conditions.
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is the innovation vector, vk−1 is a reference state, δvk is an increment defined by vk = vk−1 + δvk , and Gk−1

is a linearized operator defined such that G(vk−1 + δvk) ≈ G(vk−1)+Gk−1δvk (when this equation is satisfied
exactly, (4) is identical to (1)). The superscript k−1 indicates that Gk−1 is the result of linearizing G about vk−1.
The sequence k = 1, ...,Ko are called outer iterations while the minimization iterations performed within each
outer loop are called inner iterations. Equations (5) and (6) are the effective “background” and “observation”
vectors for the inner loop minimization. In practice, it is customary to set v0 = vb and to choose vk−1, for
k = 2, ...,Ko, to be the solution obtained at the end of the previous outer loop. The minimum of (4) after the
Ko-th outer iteration defines the analysis increment, δva = δvKo . The analysis in model space is then given by
xa = U(va) where va = vKo−1 +δva.

The nonlinear transformation (3) is needed on each outer iteration to evaluate the term G(vk−1) in (4). Through
successive linearizations about vl , l = 0, ...,k−2, this transformation can be approximated by

xk−1 = U(vk−1) ≈ U(v0) +
k−1

∑
l=1

Ul−1δvl . (7)

By choosing v0 = vb, the first term on the right-hand-side of (7) becomes U(v0) = U(vb) ≡ xb. Equation (7)
then implies that xk−1 can be approximated as the sum of the model-space background state and the model-
space increments estimated using the inverse of the linearized change of variables. A further consequence of
choosing v0 = vb is that the difference vector (5) can be written as minus the sum of the increments generated
from previous outer iterations:

db,k
(v) = v0 − vk−1 = −

k−1

∑
l=1

δvl . (8)

Equation (8) together with the approximation (7) allow us to eliminate the explicit dependence of (4) on vk−1

and thus to iterate the incremental minimization algorithm without the need to perform either the nonlinear
transformation (2) or its inverse (3) (only the linearized transformations are required).

To complete the evaluation of G(vk−1), xk−1 must be propagated to the observation times using the model oper-
ator and then transformed to the observed quantities using the observation operator. The linearized counterpart
of this operator is required to evaluate Gk−1δvk in (4). As discussed in Weaver et al. (2003), 3D-Var and 4D-
Var can be distinguished by the type of linear model that is used to evolve the increments between observation
times. In 3D-Var the increments are persisted whereas in 4D-Var they are evolved by a dynamical model that
closely approximates the tangent-linear model. By distinguishing 3D-Var and 4D-Var at the incremental level,
they can be viewed as two different algorithms for approximately solving the same 4D assimilation problem
described by the nonquadratic cost function (1).

2.3 Diagnosing the effective background-error covariance matrix

Although the background-error covariance matrix in model space has not been defined explicitly, its effective
form on a given outer iteration can be easily diagnosed by transforming the background term in (4) into model
space using the linearized change of variables δvk =

(
Uk−1

)−1 δxk and its inverse δxk = Uk−1δvk . This yields

Jk
b =

1
2

[
δxk −db,k

(x)

]T (
Bk

(x)

)−1 [
δxk −db,k

(x)

]
(9)

where

Bk
(x) = Kk−1 Dk−1

(x̂) Fk−1

︸ ︷︷ ︸
Uk−1

Fk−1T
Dk−1

(x̂)

T
Kk−1T

︸ ︷︷ ︸
Uk−1T

, (10)
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and db,k
(x) = Uk−1db,k

(v). Equation (10) corresponds to the model background-error covariance matrix on the k-th

outer iteration. Since Bk
(x) depends, in general, on the linearization state xk−1, it may vary from one outer itera-

tion to the next. In this way, the outer iterations provide an adaptive mechanism for modifying the background-
error covariance model during the course of minimization. The background-error covariance matrix BKo

(x) used
on the final outer iteration Ko would be the effective covariance matrix used for the analysis. Note that in
4D-Var, BKo

(x) would be evolved (implicitly) within the assimilation window through the action of the linearized

dynamical model and its adjoint (Courtier et al. 1994). In 3D-Var, on the other hand, BKo
(x) would be fixed within

the assimilation window, although, as in 4D-Var, it may vary from one assimilation cycle to the next through
its dependence on the background state.

Equation (10) provides a valuable statistical interpretation of the control variable transformation. The product
Fk−1(Fk−1)T of the linearized smoothing matrix and its transpose can be interpreted as a correlation matrix,
provided that care has been taken to normalize the matrix so that the diagonal elements are all equal to one.
The correlations in Fk−1(Fk−1)T correspond to those of the errors of the transformed background variables
x̂b = K−1(xb), not to the error correlations of xb itself. By construction, cross-correlations between these
variables are neglected so that Fk−1(Fk−1)T is block-diagonal (univariate), where each block corresponds to
the auto-correlation matrix for each variable in x̂b. While the cross-correlations will never be exactly zero in
practice, the intent is that with an astutely chosen K−1 operator, they can be made sufficiently small so that
neglecting them is an acceptable assumption.

The diagonal matrix Dk−1
(x̂)

in (10) contains estimates of the standard deviations of the errors in x̂b. In meteorol-
ogy, it is typical to estimate the standard deviations (and parameters of the correlation model) from a suitably
constructed ensemble of forecast differences (Parrish and Derber 1992; Buehner 2005). To estimate statistics
of the control variables, the forecasts must first be transformed into x̂-space using K−1 or, as an approximation,
the forecast differences can be transformed directly using the linearized balance operator Kk−1. In (10), Kk−1

couples the different model variables and thus establishes the multivariate component of the background-error
covariances in x-space (Derber and Bouttier 1999). The remainder of this article is devoted to the specification
of a balance operator for ocean data assimilation. The problems of estimating background-error covariances
and deriving efficient and general smoothing algorithms for representing background-error correlations are both
very important but a proper discussion of these issues goes beyond the scope of this paper.

3 A balance operator for ocean state variables

3.1 General formulation

The variables comprising the model state vector are assumed to be potential temperature T , salinity S, sea
surface height (SSH) η , and the components of the horizontal velocity vector uh = (u,v)T 2. These variables
correspond to the standard prognostic variables in a free-surface, hydrostatic OGCM. In this section, an op-
erator K−1 is developed which can be used to transform x = (T,S,η ,uh)T into a vector x̂ = (T,SU ,ηU ,uh

U)T

whose elements T , SU , ηU and uh
U = (uU ,vU)T can be considered to be approximately mutually uncorrelated.

This can be achieved by separating the state variables into unbalanced and balanced components (Derber and
Bouttier 1999), except for one variable, taken here to be T , which is treated in totality and used as the starting
point to establish the balanced part of the other variables. The other elements SU , ηU etc. of x̂ represent the
unbalanced part of that particular variable.

2A superscript T will continue to denote the transpose of a matrix or vector and should not be confused with the potential temperature
variable T .

Technical Memorandum No. 491 5



Multivariate balance for variational ocean assimilation

The balance relationships used to define x = K(x̂) are described in detail in the next section. Symbolically, the
balance operator can be summarized by the sequence of equations

T = T
S = KST (T ) + SU = SB + SU

η = Kηρ(ρ) + ηU = ηB + ηU
u = Kup(p) + uU = uB + uU

v = Kvp(p) + vU = vB + vU

(11)

where

ρ = KρTS(T,S)
p = Kpρ(ρ) + Kpη(η)

(12)

are diagnostic quantities corresponding to density and pressure, respectively, and Kxy represents the transfor-
mation from the variable(s) y to x. The variables with a subscript B on the right-hand-side of (11) represent
the balanced component of those variables. The lower block-triangular structure of the balance operator (11)
implies that a balanced variable can be a function of the variables preceding it in the sequence but will be
independent of the variables following it in the sequence. It also allows the inverse balance operator K−1 to be
obtained trivially from the sequence of equations

T = T
SU = S − SB

ηU = η − ηB
uU = u − uB

vU = v − vB.

(13)

A linearized version of x = K(x̂) is required for the incremental formulation. According to (7), the linearized
balance equation can be approximated as

xk−1 ≈ xb +
k−1

∑
l=1

δxl (14)

where δxl = Kl−1 δ x̂l . This approximation is very convenient since it eliminates the need to specify the non-
linear version of the balance operator (it is implicit in xb). It is used in the rest of this section and in the
illustrations presented in section 4. It can be expected to be a good approximation when the balance operator is
weakly nonlinear.

From (11) and (12), the linear balance equations for the increment can be written in the general form

δT k = δT k

δSk = Kk−1
ST δT k + δSk

U = δSk
B + δSk

U
δηk = Kηρ δρk + δηk

U = δηk
B + δηk

U
δuk = Kup δ pk + δuk

U = δuk
B + δuk

U
δvk = Kvp δ pk + δvk

U = δvk
B + δvk

U

(15)

where

δρk = Kk−1
ρT δT k + Kk−1

ρS δSk

δ pk = Kpρ δρk + Kpη δηk.
(16)

As described below, nonlinear operators are used for the salinity balance KST and the density balance KρTS. All
the other balance operators are linear and thus independent of the linearization state xk−1. This has been made
clear in (15) by omitting the superscript k−1 from those matrix operators.
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3.2 A set of linearized balance relationships

Temperature plays an important role in the balance formulation since is used to compute all, or a significant
part of, the balanced component of the other variables. The relationship between temperature (T) and salinity
(S) is complex and traditionally determined empirically from scatter plots of historical T and S data. Han et
al. (2004) propose fitting a high-order polynomial function to T-S diagrams in order to determine an explicit
S(T) relationship. This procedure can work reasonably well in some data-rich regions such as the western
tropical Pacific Ocean, as illustrated by Han et al. (2004). Using a somewhat different formulation to the one
presented here, Han et al. (2004) then go on to show how such an S(T) relationship, together with an estimate
of the uncertainty in this relationship, can be used to correct salinity from temperature data within a variational
assimilation framework.

Troccoli and Haines (1999) propose an alternative and simpler method for adjusting salinity when only tem-
perature information is available. Their approach is designed to preserve the T-S properties of the background
state by making vertical displacements of the local background salinity field in response to changes to the local
background temperature field produced by the assimilation of temperature data. The attractive features of their
method are that it can be applied in a global system, it allows for state-dependency in the T-S relation, and it
does not require any prior statistical analysis of an observational database.

Ricci et al. (2005) describe a simple variant of the Troccoli and Haines (1999) scheme for implementation
within a linear balance operator. In their study, balanced salinity increments are defined by

δSk
B = γk−1 ∂S

∂ z

∣∣∣∣
S=Sk−1

∂ z
∂T

∣∣∣∣
T=T k−1

δT k (17)

where γk−1 = γk−1(T k−1,Sk−1,uk−1,vk−1) is a coefficient that is set to either zero or one, depending on various
conditions in the reference state. For example, to take into account the weak correlation between temperature
and salinity in well-mixed regions, γ k−1 is set to zero at grid points where the reference vertical mixing coef-
ficient is large, such as in the ocean mixed layer. When γ k−1 = 0, δSk is entirely described by its unbalanced
component δSU . To avoid a discontinuity in the balance at the base of the mixed layer, δS k

B is smoothly reduced
to zero at the surface from its non-zero value just below the mixed layer. The vertical derivatives in (17) are
used to estimate the local derivative of the background T-S relation and can be computed using finite differences
or a cubic spline. In practice, it has been found desirable to apply a horizontal smoothing operator (e.g., the
one used in Fk−1) to the balance coefficient in (17) in order to avoid generating noisy salinity increments. The
impact of the T-S balance has been evaluated in detail by Ricci et al. (2005) in a multi-annual cycled 3D-Var
experiment for the tropical Pacific Ocean. When assimilating temperature data alone, they showed that the
constraint can have a significant positive impact on velocity as well as salinity compared to a 3D-Var analysis
in which no T-S constraint is applied. Notice that, as the T-S constraint is dependent on the reference state, it
can evolve both during the course of minimization (via outer iterations) and from one assimilation cycle to the
next.

Density can be computed from potential temperature and salinity using a nonlinear equation of state (e.g.,
McDougall et al. 2003). The (balanced) density increment can be defined by linearizing the equation of state
about the reference state:

δρk = ρ0

(
−αk−1δT k + β k−1δSk

)
(18)

where αk−1 =(1/ρ0) ∂ρ/∂T |S=Sk−1,T=T k−1 and β k−1 =(1/ρ0) ∂ρ/∂S|S=Sk−1,T=T k−1 are thermal and saline ex-
pansion coefficients, respectively, and ρ0 is a constant reference density.

SSH can be computed diagnostically as a function of the state variables T , S and uh by filtering out nonstationary
contributions to SSH (e.g., from high frequency gravity waves) using the rigid-lid approximation (Fukumori
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et al. 1998). Furthermore, for flow regimes where the Rossby number is weak (regimes close to geostrophic
balance), contributions to SSH from advection, dissipation, and surface forcing can be neglected. The resulting
equation approximates SSH as the sum of two terms: a baroclinic term that depends on density and a barotropic
term that depends on the depth-integrated transport. For the global model used in the illustrations in the next
section, Ferry (2003) has demonstrated that SSH variability is indeed dominated by its baroclinic and barotropic
components, except in coastal regions where the contribution from surface forcing can be important. In the
following, the baroclinic and barotropic contributions to SSH are taken to be the balanced and unbalanced parts
of SSH, respectively.

The balanced (baroclinic) component can be estimated by computing the dynamic height at the surface z = 0
relative to a reference depth zre f :

δηk
B = −

∫ 0

z′=zre f

(
δρk(z′)/ρ0

)
dz′. (19)

(zre f = 1500m in the examples in section 4). Equation (19) is only an approximation of the baroclinic part
of (the increment of) SSH. The complete expression involves the solution of an elliptic equation (Fukumori et
al. 1998):

∇ ·H∇δηk
B = −∇ ·

∫ 0

z=−H

∫ 0

z′=z

(
∇δρk(z′)/ρ0

)
dz′ dz (20)

where z = −H(λ ,φ) is the total ocean depth, λ is longitude, φ is latitude, and ∇ and ∇· are the horizontal
gradient and divergence operators, respectively. Equation (20) takes into account variations in topography
and is independent of a reference depth, and therefore would be more accurate than (19) in regions where
bathymetry is important or where the ocean is shallow. For this study, however, the simpler equation (19) has
been adopted.

The balanced pressure increment at any depth z can be computed by integrating the hydrostatic equation from
z to the surface:

δ pk(z) =

∫ 0

z′=z
δρk(z′)gdz′ + ρ0 g(δηk

B +δηk
U) (21)

where the second term on the right-hand-side of (21) is the pressure exerted by the surface elevation, δ pk(0) =
ρ0 gδηk with δηk given by (15). Substituting (19) in (21) and reversing the order of integration of the first term
on the right-hand-side of (21) leads to

δ pk(z) = −
∫ z

z′=zre f

δρk(z′)gdz′ + ρ0 gδηk
U . (22)

Away from the equator, the balanced part of the horizontal velocity components (δu k
B,δvk

B) is assumed to be
in geostrophic balance; i.e., proportional to the horizontal gradient of (22) divided by the Coriolis parameter f .
The horizontal gradient of the first term in (22) is associated with a baroclinic geostrophic velocity, while that
of the second term is associated with a barotropic geostrophic velocity. The ageostrophic components of the
velocity increment are assumed to be associated with the unbalanced components (δu k

U ,δvk
U).

Special treatment of the geostrophic velocity balance is required near the equator where f → 0. There, the zonal
component δuk

B is taken to be geostrophically balanced while the meridional component δv k
B is reduced to zero.

Geostrophic balance for δuk
B is computed near the equator using a β -plane geostrophic approximation (Lager-

loef et al. 1999), which involves the meridional derivative of the geostrophic equation. For this balance to exist,
the meridional pressure gradient must exactly vanish at the equator so that the standard (undifferentiated) form
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of the geostrophic equation is satisfied when f = 0. Picaut and Tournier (1991) suggest adding a latitudinally-
dependent correction term to the pressure field in order to force a zero meridional gradient at the equator while
leaving the meridional curvature of the original pressure field, and hence the estimate of the zonal geostrophic
current via the β -plane approximation, unaltered. A similar technique is adopted here. The correction term ef-
fectively filters out all flows with anti-symmetric pressure structures about the equator. An important exception
is an equatorial Kelvin wave, which is associated with a strictly zonal current in geostrophic balance and is thus
described by the proposed velocity balance on the equator.

To allow for a smooth transition between the equatorial (β -plane) geostrophic velocity and the standard ( f -
plane) geostrophic velocity away from the equator, weighting functions Wβ = exp (−φ 2/2L2

β ) and W f = 1−
Wβ are introduced, where Lβ is a length scale whose size is of the order of the equatorial Rossby radius of
deformation (Lagerloef et al. 1999). At the equator, Wβ = 1 and W f = 0, while far away from the equator,
Wβ ≈ 0 and W f ≈ 1. Experimental evidence is given by Lagerloef et al. (1999) to justify the Gaussian form
for the weighting function. The complete expression for the increments of the balanced velocity components
in spherical coordinates is then given by

δuk
B = −

1
ρ0

(
W f

f
+

Wβ

β
1
a

∂
∂φ

)
1
a

∂δ p̃k

∂φ
(23)

δvk
B =

1
ρ0

W f

f
1

acos φ
∂δ p̃k

∂λ
(24)

where β = ∂ f/∂ (aφ), and a is the radius of the Earth. To simplify the β -plane approximation, the differentiated
term involving the product f ∂δuk

B/∂ (aφ) has been neglected in (23). This term can be expected to be relatively
small near the equator where f ≈ 0. Following Picaut and Tournier (1991), the modified pressure increment in
(23) and (24) is defined by

δ p̃k = δ pk −φ
(

∂δ pk

∂φ

)

φ=0
exp (−φ 2/2L2

p) (25)

where the second term on the right-hand-side (25) corresponds to the pressure correction factor. The correc-
tion term does not affect (24), is negligible far from the equator, and satisfies both the β -plane constraint(
∂ 2δ p̃k/∂φ 2

)
φ=0 =

(
∂ 2δ pk/∂φ 2

)
φ=0 and the necessary condition for geostrophic balance at the equator,(

∂δ p̃k/∂φ
)

φ=0 = 0. The length scales Lp in the correction term and Lβ in the weighting functions are taken to
be equal and set to 1.55◦ as in Lagerloef et al. (1999).

4 Illustrations

The balance operator described in the previous section has been implemented in a 3D-Var/4D-Var system
(Weaver et al. 2003) for a global, free-surface version of the OPA OGCM (Madec et al. 1998; Roullet and
Madec 2000). The system has been exploited within the framework of the European ENACT project (see
http://www.ecmwf.int/research/EU projects/ENACT) to produce global ocean reanalyses using historical tem-
perature and salinity data (Ingleby and Huddleston 2005) and surface forcing fields from the ERA40 atmo-
spheric reanalysis (Uppala et al. 2005). It is beyond the scope of this paper to provide a thorough description
of the system and assessment of the reanalyses. Only certain aspects of the system concerning the balance
operator and background-error covariance formulation are discussed and illustrated here.
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4.1 Evidence of balance in ocean background errors

The balance operator can be considered effective if the variance of background error of the balanced variables
explains a substantial part of the variance of background error of the full variables. If this is not the case then
the balance operator would provide little useful information for the analysis. Since actual background error is
unknown, a suitable proxy must be defined in order to estimate its statistical properties. Here, background error
is approximated as the difference between the background state (xb(tn)) and the reference state (xK(tn)) at the
end of an assimilation window. The two states will differ since the background state over the window t0 ≤ ti ≤ tn
is obtained by forcing the model with the atmospheric fluxes only, whereas the reference state is obtained by
assimilating data over t0 ≤ ti ≤ tn in addition to applying the surface forcing. This approach is analogous to the
so-called NMC method used in meteorology to estimate background-error statistics (Parrish and Derber 1992).
Berre et al. (2005) discuss the conditions for which the NMC method is a good approximation to true forecast
error.

A set of 328 background-minus-reference state differences has been obtained by cycling the 3D-Var system
over the 9-year period 1993–2001 using a 10-day window. The inverse of the linearized balance operator was
then applied to each of these difference fields in order to retrieve the unbalanced components. From the average
variance, σ 2

x , of the full fields and the average variance, σ 2
xU

, of the unbalanced fields, the percentage ratio of
explained variance r = (1−σ 2

xU
/σ 2

x )× 100% was computed. For the global average, r is 37% for salinity,
94% for SSH, and 70% and 44% for the zonal and meridional components of velocity, respectively. Errors
computed using the NMC method were artificially small in regions poleward of 65◦N/S and below 1000m
since no data were assimilated there. Those regions were thus excluded from the global average. In so far
as the NMC method provides a reasonable representation of background errors, these results suggest that the
proposed balance operator can explain a substantial amount of actual background-error variance.

The percentage variance ratio has also been computed as a function of depth from the horizontally-averaged
variances in each model level, and as a function of latitude from the zonally- and depth-averaged variances.
The results are displayed in Figs. 1a and b. For salinity (solid curve), r is largest (up to 80%) below the level
of the mean thermocline (below 200m), and reduces gradually to zero between 200m and the surface (Fig. 1a).
The small value of r close to the surface is understandable since the salinity balance is deliberately reduced
in regions of strong mixing such as the surface mixed layer. Figure 1b suggests that the salinity balance is
most effective in the subtropical gyre regions (between 10◦N(S) and 30◦N(S)). For the u-component of velocity
(dashed curve), r is relatively uniform with depth, with values between 60% and 70%. The explained variance
is about 20% to 40% smaller for v than u, and decreases more rapidly with depth. The velocity balance for
the u-component is effective at all latitudes, even at the equator where it explains about 50% of the variance.
The value of r for the v-component (dotted curve) is, as expected, small near the equator where the weight
given to the geostrophic equation for v is reduced to zero (Eq. 24), but is comparable to the value of r for
the u-component poleward of about 10◦N/S. The SSH balance is particularly effective and explains over 90%
of the variance within 40◦ of the equator (dashed-dotted curve). At mid- and high latitudes, the barotropic
(unbalanced) component is known to be important, which probably explains the reduction in r in this region.

It is worth noting that if the balanced and unbalanced fields were truly independent then σ 2
x = σ 2

xB
+σ 2

xU
, where

σ 2
xB

denotes the variance of the balanced field. The percentage variance ratio r would thus be equivalent to
r̂ = (σ 2

xB
/σ 2

x )× 100%. Comparing r̂ with r would then provide a measure of the validity of the assumption
that the two fields are approximately uncorrelated. In particular, comparing Figs. 1a and b with the equivalent
figures for r̂ (not shown) illustrates that r and r̂ do have similar structure and amplitude for all fields, except for
u and v for which there is a tendency for r̂ to increase with depth rather than decrease with depth as in Fig. 1a.
The reasons for this discrepancy are not known at present but will need to be explored in future work.
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Figure 1: The percentage ratio (r) of background-error variance explained by the balanced part of salinity (solid curve),
SSH (dashed-dotted curve), the u-component of velocity (dashed curve) and the v-component of velocity (dotted curve).
a) r computed from horizontally-averaged variances and plotted as a function of depth; b) r computed from zonally- and
depth-averaged variances and plotted as a function of latitude. Background errors have been estimated from a set of 329
background-minus-reference state differences.

4.2 Single observation experiments with 3D-Var and 4D-Var

The multivariate properties of the background-error formulation are most clearly illustrated using single obser-
vation experiments. A mathematical demonstration of this point is given in Appendix A. For simplicity, the
unbalanced components of salinity, SSH and velocity are ignored (they are assumed to have zero error variance)
so that only the univariate T covariances need to be specified. In other words, the balance operator is applied as
a strong constraint (Lorenc 2003). This is sufficient to illustrate basic properties of the balance operator which
is the objective here. For practical applications, however, it would be better to apply the balance operator as
a weak constraint by prescribing a non-zero covariance to the unbalanced components, provided reasonable
estimates of these covariances can be computed (e.g., using ensemble methods).

The univariate 3D smoothing operator for T is defined as the product of a 1D and 2D anisotropic diffusion
operator (Weaver and Courtier 2001). The resulting correlation structures are approximately Gaussian. The
parameters of the 3D diffusion operator are the same as those used for the T-T correlations in the study of
Weaver et al. (2003), except for the vertical correlation scales which have been slightly reduced here. The error
variances, (σ k

T )2, for T have been made dependent on the vertical gradient of the reference T field in order to
focus the largest errors at the level of the thermocline where thermal variability is greatest. Weaver et al. (2003)
illustrate how this simple parameterisation of the background T errors can account for some of the dynamical
effects implicit in a Kalman filter. A similar parameterisation is used in the operational ocean data assimilation
systems at the National Centers for Environmental Prediction (Behringer et al. 1998) and European Centre for
Medium-Range Weather Forecasts (Alves et al. 2004). To avoid prescribing unrealistically small variances in
the mixed layer and deep ocean where vertical T gradients are small, the parameterisation is modified so that

σ k
T =

{
max

{
σ̃ k

T , σ ml
T

}
in the mixed layer,

max
{

σ̃ k
T , σ do

T

}
below the mixed layer,

(26)

where

σ̃ k
T = min{|(∂T/∂ z|T =T k−1) δ z| , σ max

T } , (27)
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b) S increment at 100m
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c) u increment at surface

 

c) u increment at surface

 

160E 180 160W 140W 120W
Longitude

10S

5S

0

5N

10N

La
tit

ud
e

d) v increment at surface
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e) SSH increment
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Figure 2: Horizontal sections of the analysis increments for a) temperature, b) salinity, c) zonal velocity, d) meridional
velocity, and e) SSH generated by the 3D-Var assimilation of a single temperature observation (positive innovation)
located at a depth of 100m on the equator in the central Pacific. The contour interval is 2.0 K in a), 0.2 psu in b), 0.1 m/s
in c), 0.01 m/s in d), and 0.02 m in e). The fields have been multiplied by a factor 100. Solid (dashed) contours indicate
positive (negative) values.

σ max
T being the maximum-allowed value of σ k

T , δ z a vertical scale, and σ ml
T and σ do

T lower bounds in the mixed
layer and deep ocean, respectively. The specification of σ k

T is thus transformed into one of choosing appropriate
values for these parameters. For the examples presented here, σ max

T = 1.5 K, δ z = 10 m, σ ml
T = 0.5 K, and

σ do
T = 0.07 K.

In the first example, the impact of a single T observation in 3D-Var is considered. For this special case,
the analysis of the T field depends entirely on the univariate T covariances (it is independent of the balance
operator) and the analysis increments for the other variables are independent of the univariate covariances
of their unbalanced component. Those increments could be obtained a posteriori by applying the linearized
balance operator directly to the analyzed T increment. This point is clarified in the appendix. Figure 2 shows
the 3D-Var analysis increment for a single T observation chosen to be 1K warmer than the background T value,
and located in the thermocline (100m) on the equator in the central Pacific (160◦W). The observation-error
variance has been set to (1.0 K)2. These increments are proportional to the implicitly defined background-
error covariances with T at the observation point (Ko = 1 in all experiments). The structures are physically
sensible. The positive T anomaly in the subsurface (Fig. 2a) is associated with an elevated SSH (Fig. 2e) and
a geostrophic current at the surface with an eastward zonal component that is symmetric about the equator
(Figs. 2c) and a meridional component that is asymmetric about the equator (Figs. 2d). The dependence of the
T-S balance and the T error variances on the reference state can lead to an anisotropic response in the T and S
increments. To avoid generating noisy increments, both the T-S balance coefficients and σ b

T were smoothed in
each level using the horizontal diffusion operator in Fk−1.

The previous example does not illustrate the full potential of the balance operator for exploiting different obser-
vation types in the assimilation process. When information about state variables other than T is assimilated, the
analysis results from a generally complex interaction between the balance operator, its adjoint and the covari-
ance statistics of the uncorrelated variables. For example, a SSH observation would provide direct information
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Figure 3: Vertical cross section at the equator of the analysis increments for a) temperature and b) salinity generated by
the 3D-Var assimilation of a single SSH observation (positive innovation) located on the equator in the central Pacific.
The contour interval is 2.0 K in a), and 0.1 psu in b). The fields have been multiplied by a factor 100. Solid (dashed)
contours indicate positive (negative) values.

on SSH as well as indirect information on T and S via the dynamic height relation (19). In this case, the covari-
ances for the unbalanced components of S and SSH, as well as those for T, would influence the analysis, and
the adjoint of the balance operator would be required in the minimization process to map gradient information
from SSH into gradient information for the other fields (see Appendix A).

Figure 3 shows a zonal-vertical section at the equator of the T increment (Fig. 3a) and S increment (Fig. 3b)
generated by the 3D-Var assimilation of a single SSH observation, chosen to be 5cm higher than the background
SSH, on the equator in the eastern Pacific (110◦W). The observation-error variance has been set to (0.5 cm)2.
To fit the SSH observation, 3D-Var produces T and S increments with largest amplitude at the level of the
thermocline. The vertical structures are noticeably anisotropic. The increments display a pronounced upward
tilt from west to east commensurate with the tilt of the background isotherms in this region. This anisotropic
response is produced by the gradient-dependent T variances. The S increment has a dipole-like structure where
the transition from negative to positive values occurs at the level of the salinity maximum in the background
state. Above this level, the vertical derivative of the background salinity is negative (salinity increases with
depth), whereas below this level, the vertical derivative is positive (salinity decreases with depth). Since the
vertical derivative of the background temperature is everywhere negative (temperature decreases with depth),
there is a change in sign in the derivative ∂S/∂T |T=T b,S=Sb in (17) which gives rise to the dipole in Fig. 3b.

The previous examples illustrate the fundamental importance of the balance operator in establishing a physi-
cally sensible (multivariate) response in 3D-Var. The balance operator also plays an important role in 4D-Var.
This is illustrated in Fig. 4 which shows the SSH increments produced from two 4D-Var single T observation
experiments performed without and with the balance operator activated (Figs. 4a and b, respectively). The
geographical location of the single T observation is the same as in the example in Fig. 2. In these experiments,
the control variables are a function of the model initial conditions which are taken to be 10 days before the
observation time. For the experiment without the balance operator, the background-error covariances must be
specified for the full fields at initial time. The correlation models for S and velocity are taken to be identical to
those used by Weaver et al. (2003) for a rigid-lid version of OPA, while the correlation model for SSH is taken
to be identical to the horizontal correlation model for T and S. The variances are set to values typical of the
climatological variability of these fields: (0.08 m)2 for SSH, and surface values of (0.25 psu)2 for S, (0.4 m/s)2

for u, and (0.1 m/s)2 for v. The variances for S, u and v are gradually reduced below the surface. For the exper-
iment with the balance operator, the unbalanced variances are set to zero as in the previous example, while the
variances of the balanced components are defined implicitly via interactions between the balance operator and
univariate T covariances.

The increments shown in Figs. 4a and b are those produced at the observation time (day 10) and have been
computed by using the tangent-linear model to propagate forward the analysis increment at initial time. The
SSH increment in the first 4D-Var experiment has localized structure similar to that obtained by 3D-Var with
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b) SSH increment with balance
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Figure 4: Horizontal section of the SSH analysis increments generated by the 4D-Var assimilation of a single temperature
observation (positive innovation) located 10 days into an assimilation window at the same geographical location as in the
example in Fig. 2. The increments are displayed on day 10 for a 4D-Var experiment a) without and b) with the balance
operator activated. The fields have been multiplied by a factor 100 and the same contour interval has been used in panels
a) and b), and Fig. 2e. Solid (dashed) contours indicate positive (negative) values.

the balance operator (cf. Fig. 4a and Fig. 2e). In terms of the analysis of SSH, nothing much appears to have
been gained by using 4D-Var. When the balance operator is included, however, the temperature observation
projects much more effectively onto large-scale equatorial wave-modes as clearly illustrated in Fig. 4b by the
presence of a westward-propagating baroclinic Rossby wave to the west of the observation location. Contrary
to the 4D-Var experiment without the balance operator, the observation is able to have a much wider impact
than in 3D-Var.

5 Summary and conclusions

The background-error covariances are often cited as a critical component of a statistical data assimilation sys-
tem. An arguably more fundamental component is the operator that is needed to compute the model counterpart
of the assimilated observations. In this paper, it was shown how linear balance and smoothness constraints that
are traditionally used to model multivariate covariances of background error could be cast within the more
general, nonlinear, framework of an observation operator. The key aspect of this procedure is the design of
a transformation, possibly nonlinear, from the space of highly correlated model state variables to a space of
nondimensional control variables that are approximately mutually uncorrelated. In the space of the trans-
formed variables, the background-error covariance matrix is assumed to be the identity matrix. The inverse of
the transformation, or its generalized inverse if the dimension of the control space is smaller than that of model
space, is also needed so not all transformations are suitable.

This paper outlined a control variable transformation for application to variational ocean data assimilation. The
focus was on the balance operator, the inverse of which is designed to decorrelate the model state variables of
temperature, salinity, SSH and velocity. In the proposed formulation, the inverse of the sequence of balance
relationships left temperature unaltered but removed parts from salinity that could be related to temperature,
parts from SSH that could be related to temperature and salinity, and parts from velocity that could be related to
temperature, salinity and SSH. Both linear constraints (geostrophy, hydrostatic, dynamic height) and nonlinear
constraints (T-S relationship, equation of state) were employed. In incremental variational assimilation, non-
linear constraints are linearized about a reference state as part of the minimization process. Furthermore, by
linearizing the control variable transformation within the definition of the reference state itself, the minimiza-
tion problem can be solved without the need to perform either the nonlinear transformation or its inverse. This
is a convenient approximation but may break down when the increments are large. Further research is needed
to quantify the impact of this approximation for the nonlinear balance operator proposed here.

Evidence that the proposed ocean balance operator can explain a substantial amount of actual background-error
variance was provided by considering the statistical balance properties of a large set of differences between
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model forecasts verifying at the same time. Single observation experiments were performed to illustrate the
multivariate analysis structures implied by the balance operator. One example illustrated how the balance op-
erator could be used as an effective way to project SSH (altimeter) data onto the subsurface density field in
3D-Var. Another example illustrated the potential benefits of the balance operator for equatorial analysis with
4D-Var. To obtain full benefit from the balance formulation in realistic implementations will require care-
ful specification of the error covariance statistics of the transformed (uncorrelated) state variables. Ensemble
methods could be very promising for this purpose.
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Appendix A: Matrix representation of the background-error covariance model

In this appendix, an explicit form of the background-error covariance matrix is derived to illustrate how, on a
given outer iteration of the incremental variational algorithm (Eq. (10)), the components of the balance operator
combine with the univariate blocks of the covariance matrix of the uncorrelated variables to produce a full-rank
multivariate covariance matrix for the model variables. For clarity of notation, the superscript k−1 on linearized
operators will be omitted. From (10), the background-error covariance matrix of the model state x is related to
the background-error covariance matrix of the uncorrelated state variables x̂ by

B(x) = KB(x̂)K
T (28)

where B(x̂) = D(x̂) FFT DT
(x̂) is a block matrix of the form

B(x̂) =




BTT 0 0 0 0
0 BSU SU

0 0 0
0 0 BηU ηU

0 0
0 0 0 BuU uU

BT
vU uU

0 0 0 BvU uU
BvU vU




, (29)

with B x̂x̂ = Dx̂Fx̂x̂FT
x̂x̂DT

x̂ , x̂ = T , SU , ηU and uh
U . The four-block submatrix in the lower corner of (29) corre-

sponds to Buh
U uh

U
. A non-zero cross-covariance between uU and vU arises since the smoothing operator Fuh

U uh
U

employed involves a vector Laplacian operator which smooths separately horizontal divergence and relative
vorticity (Weaver et al. 2003).

The balance operator is a lower diagonal matrix of the form

K =




I 0 0 0 0
KST I 0 0 0
KηT KηS I 0 0
KuT KuS Kuη I 0
KvT KvS Kvη 0 I




(30)
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where, from (15) and (16),

KηT = Kηρ KρT

KuT = Kup Kpρ KρT

KvT = Kvp Kpρ KρT

KηS = Kηρ KρS

KuS = Kup Kpρ KρS

KvS = Kvp Kpρ KρS

Kuη = Kup Kpη
Kvη = Kvp Kpη .

Substituting (29) and (30) in (28) and carrying out the matrix multiplication gives

B(x) =




BTT BT
ST BT

ηT BT
uT BT

vT

BST BSS BT
ηS BT

uS BT
vS

BηT BηS Bηη BT
uη BT

vη
BuT BuS Buη Buu BT

vu
BvT BvS Bvη Bvu Bvv




(31)

where

BST = KST BTT

BηT = KηT BTT

BuT = KuT BTT

BvT = KvT BTT

BSS = KST BTT KT
ST + BSU SU

BηS = KηT BTT KT
ST + KηSBSU SU

BuS = KuT BTT KT
ST + KuSBSU SU

BvS = KvT BTT KT
ST + KvSBSU SU

Bηη = KηT BTT KT
ηT + KηSBSU SU KT

ηS + BηU ηU

Buη = KuT BTT KT
ηT + KuSBSU SU KT

ηS + Kuη BηU ηU

Bvη = KvT BTT KT
ηT + KvSBSU SU KT

ηS + Kvη BηU ηU

Buu = KuT BTT KT
uT + KuSBSU SU KT

uS + Kuη BηU ηU KT
uη + BuU uU

Bvu = KvT BTT KT
uT + KvSBSU SU KT

uS + Kvη BηU ηU KT
uη + BvU uU

Bvv = KvT BTT KT
vT + KvSBSU SU KT

vS + Kvη BηU ηU KT
vη + BvU vU .

To interpret the results of the single observation experiments in section 4, it is helpful to illustrate how the
algebraic structure of (31) determines the expression for the increment δxk on each outer iteration. Consider
the exact minimizing solution of (4), which is found by setting the gradient of (4) to zero and solving for δvk

(e.g., see Daley 1991):

δvk = GT (
GGT +R

)−1
do,k. (32)

For a single observation, do,k = do,k , R = (σ o)2 and GGT = (σ k)2 are scalars, where the latter two quantities
correspond to, respectively, the observation-error variance and the effective background-error variance for the
observation on the k-th outer iteration. If the observation is situated at the end of the assimilation window
(t = tn) then G = HnM(tn, t0)U where Hn = hT is the observation operator, which for a single observation
is a vector of the same length as δx, and M(tn, t0) is the linearized forward propagator which is the identity
matrix in 3D-Var (FGAT) and the tangent-linear operator in 4D-Var. Substituting these expressions into (32)
and transforming the increment into model space gives

δxk = Uδvk = cB(x) M(tn, t0)
T h (33)
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where c = do,k [(σ k)2 +(σ o)2]−1 and, from (10), B(x) = UUT . From (33) it is clear that δxk will be proportional
to the columns of the matrix B(x) M(tn, t0)T , or simply the columns of B(x) in the case of 3D-Var. For example,
for a temperature observation h = (eT ,0,0,0,0)T where e is a vector corresponding to the temperature com-
ponents of δxk, and the other elements of h are zero vectors corresponding to the other variable components.
(If the temperature observation is located exactly at a model grid point then e = (0, ...,0,1,0, ...,0)T where
the non-zero entry is associated with that grid-point.) In this case, it is easy to see that the 3D-Var increment
will be proportional to the first block-column of B(x), in particular, dependent on BTT and the forward balance
operators only. Likewise, the 3D-Var increment will be proportional to the second block-column of B(x) for
a salinity observation, proportional to the third block-column of B(x) for a SSH observation, and proportional
to the third plus fourth block-columns of B(x) for a velocity observation. Notice that in 4D-Var, regardless of
what type of observation is assimilated, δxk will be a non-trivial linear combination of all block-columns of
B(x) since the action of the adjoint operator M(tn, t0)T will result in a transfer of information from the observed
quantity to all model variables.
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