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Abstract

This paper discusses the problems arising from the presence of system bias in ocean data assimilation, taking
examples from the ocean analysis systems used at ECMWF for seasonal forecasting. It is shown that the
presence of system bias can be damaging for the representation of interannual variability due to the non
stationary nature of the observing system. It is also shown that some of the bias in the eastern Pacific is
caused by the data assimilation process, and it seems to be linked to the existence of a spurious vertical
circulation.

An explicit multivariate algorithm for treatment of bias in sequential data assimilation has been formulated
using the framework developed by Dee and Da Silva. The generalised scheme allows the multivariate
constraints for the bias to be different from those for the state vector error covariance matrices, and in
particular it encompasses the pressure gradient correction scheme of Bellet al. as a special case. A simple
model for the time evolution of the bias is also provided.

The algorithm has been implemented in the ECMWF ocean data assimilation system. Several ocean reanal-
ysis experiments have been conducted to evaluate the sensitivity of the results to the choice of multivariate
formulations and to the choice of time parameters. Confirming previous studies, results show that the pres-
sure correction scheme is successful in reducing the bias in temperature while also reducing the error in the
velocity field. Direct bias correction of only the temperature field can consistently reduce the mean assim-
ilation increment, but at the expense of increasing the error in the velocity field. Results also show a large
sensitivity to the choice of the parameters controlling the time evolution of the bias.

1 Introduction

Data assimilation is a common practice for the generation of historical climate reanalyses that can be used in
the study of climate variability (Jiet al. 1995, Cartonet al. 2000b, Stammeret al. 2002, among others) and
for the initialization of seasonal forecasts with coupled models (Behringeret al. 1998, Alveset al. 2004, Chen
et al. 2004 to cite some examples). Although the benefits of data assimilation in reducing the uncertainty
and in improving initial conditions for seasonal forecasts have been demonstrated (Alveset al. 2004, Vidard
et al. 2005) the procedure itself is not without problems. In some cases the estimate of the ocean state can
be degraded by the assimilation. The bias in the data assimilation system (or system bias) is one of the most
serious obstacles for the reliable representation of climate variability, since the ever-changing observing system
can induce spurious signals (Segschneideret al. 2000, Vidardet al. 2005), and may even be the cause of
systematic error in the analysis (Bellet al. 2004). The problem of bias is not exclusive to the ocean, but is also
present in atmospheric reanalysis (Dee 2005). In the case of the ocean the magnitude of the time-average error
or bias is comparable to, or larger than, the random component, as illustrated in this paper.

The standard procedure to deal with systematic error in a data assimilation system is to augment the model state
with a set of variables for the bias (Friedland 1969). Specific assumptions about the nature and time evolution
of the systematic error are needed. Following these ideas, Dee and Da Silva (1998) (DdS in what follows)
developed an algorithm for the online estimation and correction of the bias in sequential data assimilation. It
was succesfully applied by Dee and Todling (2000) to the global assimilation of humidity observations in the
Goddard Earth Observing System (GEOS) data assimilation system. The general algorithm was too costly for
multivariate bias estimation in a global system, since it required an extra assimilation step to estimate the bias.
A simplified version of the algorithm that avoids this extra step was first applied by Radakovitchet al. (2001)
to land-surface temperature assimilation. For a comprehensive review of bias correction algorithms see Dee
(2005).

Bell et al. (2004) (BMN in what follows) use the simplified DdS algorithm, but only for the on-line estimation
of subsurface temperature bias in the tropical oceans. However, in the BMN scheme the bias correction is not
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applied directly to the temperature field. Instead, it is applied as a correction to the pressure gradient. The
BMN method was also applied by Huddelstonet al. (2005) to diagnose errors in the wind stress forcing. The
ideas of the pressure correction have also been developed in parallel outside the field of data assimilation by
Shenget al. (2001), and have been successfully applied to the correction of the Gulf stream in eddy-permitting
models (Edenet al. 2004).

The simplified DdS algorithm requires proportionality between the bias and state error covariance matrices.
This is not the case in the BMN scheme, which uses different control variables for the bias and state vector.
In this paper we develop an explicit multivariate formulation of the simplified DdS scheme and relax some of
the unnecessary constraints. The BMN pressure correction scheme can be considered as a specific choice of
multivariate formulation.

The DdS bias correction algorithm requires the prescription of a model for the time evolution of the bias. The
simplest and most widely-used model is that of constant bias. Dee and Todling (2002) discuss this assumption,
pointing out the pitfall that a constant bias allows a single observation to influence the bias estimation indefi-
nitely. The introduction of a memory term may thus be desirable. Moreover, the systematic error may not be
constant in time: it may be flow dependent (i.e. depend on the diurnal or seasonal cycle), or it may be associ-
ated with the non stationary errors of the external forcing (such as discontinuities in the atmospheric analysis
system that provides the surface fluxes). Radakovitchet al. (2001) introduced a model for the bias where the
diurnal cycle is prescribed as a harmonic function. Chepurinet al. (2005) formulated a comprehensive model
for bias evolution that consists of the online estimation of the multiplicative coefficients associated with given
patterns of spatial variability. Although quite general and elegant, the method relies heavily on the robustness
and stationarity of the prescribed spatial patterns, and its application to historical reanalysis of the global ocean
may be premature (for instance, the patterns of error of subsurface temperature in the southern hemisphere
would be difficult to obtain from past records). In this paper we choose a simpler model for the time evolution
of the bias term that allows us to discuss the sensitivity of the solution to the prescribed parameters.

The work presented in this paper evaluates the sensitivity of the ocean analysis system to the multivariate
formulation of the bias covariance matrix and to the model for its time evolution. The emphasis is on the
equatorial oceans, in particular the Pacific ocean. In section 2, the outstanding problems arising from bias
in the system are illustrated with examples from the ECMWF operational ocean analysis systems. Section 3
introduces a generalized algorithm for treatment of system bias, based on DdS. The formulation allows the
balance relationships in the bias error covariance matrix to be different from those in the state error covariance
matrix. It also allows for slow time evolution of the system bias. The sensitivity to the multivariate formulation
and to the time evolution is discussed in section 4. A summary and conclusions are offered in section 5.

2 Bias in the ECMWF ocean analyses systems

2.1 ECMWF operational ocean data assimilation systems

ECMWF has had an operational ocean analysis since 1996 as part of the seasonal forecasting system. In January
2001, the data assimilation component of the original operational system (System 1 or S1 in what follows) was
upgraded together with other components in the seasonal forecasting suite. We refer to this second operational
analysis as System2 (S2), and at the time of writing is the current operational system. The operational system
consists of real-time as well as historical ocean analyses, the latter being used as initial conditions for the
hindcasts to calibrate the seasonal forecast system. A description of the two successive ocean analysis systems
is given in Andersonet al. (2003), Balmaseda (2004) and Alveset al. (2004). Here we just offer some concise
information.
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The background state for the data assimilation is produced by an ocean model forced by analyzed surface fluxes
of momentum, heat and fresh water. The ocean model is based on HOPE (Hamburg Ocean Primitive Equation
model) version 2 (Wolff et al. 1997). The ocean data assimilation scheme is an Optimum Interpolation (OI)
scheme, and in the results presented here only subsurface temperature data are assimilated. The original system
(S1) was univariate, while S2 includes balance constraints to update salinity and velocity, following the schemes
proposed by Troccoliet al. (2002) and Burgerset al. (2002) respectively.

Originally, the temperature data came from the GTSPP (Global Temperature Salinity Profiling Project) at
NODC (National Oceanographic Data Center). These include data from XBTs, mooring data from TAO, PI-
RATA and TRITON, and more recently from the ARGO floats. Since 2004, the observations are taken directly
from the Global Telecommunication System (GTS). An analysis is performed every 10 days, using observations
which span a window five days either side of the model background. There is no temperature assimilation in
the top model level; instead the model SST is relaxed to analyzed SST (Reynoldset al. 2002) with a relaxation
time-scale of 3 days.

In this section we will consider four sets of analysis: the operational analyses, calledASSIMS1 andASSIMS2
for systems S1 and S2 respectively, and the corresponding control analyses (CNTL S1 andCNTL S2) without
data assimilation. Forcing fields from ERA 15 (Gibsonet al., 1997) are used until 1993, and fluxes from the
operational atmospheric analysis after that. ERA 40 (Uppalaet al., 2005) was not available at the time of
operational implementation of S2, but fluxes from ERA 40 will be used in the experiments described in section
4.

2.2 Errors in the mean state

Figure1a shows a vertical profile of the 1987-2001 mean difference between the analyses and the observations
averaged over the Niño 3 area. The solid line corresponds toASSIMS2 and the dotted lineCNTL S2. Below
200 metres,ASSIMS2 is much less biased thanCNTL S2. In the upper 200 meters both analyses are biased
with respect to the observations, although in the opposite direction: the analysis without data assimilation is
too cold with respect to the observations, while the analysis with data assimilation is too warm. This suggests
that the data assimilation procedure is a source of error.

To assess the impact of the data assimilation it is important to use independent data such as the velocity data
provided by the TAO moorings. Figure1b shows the average zonal velocity at mooring location 110◦W. The
grey line represents the observations from TAO. The velocities fromASSIMS2 andCNTL S2 are represented
by the solid and dotted lines respectively. The maximum value of the undercurrent is better reproduced by
ASSIMS2 than byCNTL S2, which produces weaker-than-observed currents. However, in the assimilation,
the undercurrent is too broad, and does not have a sharp maximum centered around the thermocline as in ob-
servations. Although the large values of the zonal velocity beneath the thermocline may not seem particularly
worrying, they are associated with quite a large spurious downwelling circulation that will be the subject of
further discussion in section 4. The point made here is that the zonal current can be compared with obser-
vations, whilst the vertical velocity is difficult to measure. The degradation of the equatorial currents during
the assimilation of temperature data is a common feature in other assimilation systems (Burgerset al. 2002,
Vialardet al. 2003, Balmaseda 2004, Huddlestonet al. 2004, Ricciet al. 2005), although it seems to be absent
in 4D-Var analyses (Weaveret al. 2003, Vialardet al. 2003).

BMN suggested that spurious vertical circulations induced by the assimilation may cause additional errors in
the temperature field. They went further to suggest a possible positive feedback between errors induced by
the data assimilation (degradation of currents) and errors in the model temperature field, that could lead to
the existence of a bias in the system different from the bias in the analysis without data assimilation. The
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Figure 1: a) Vertical profiles of the 1987-2001 mean temperature analysis minus observation statistics averaged over the
Eastern Pacific (Nĩno 3 area). The solid line is for the ASSIMS2 operational ocean analysis, and the dotted line is for the
CNTL S2. The assimilation of data reverses the sign of the systematic error. b) Vertical profiles of the 1987-2002 mean
zonal velocity at 110◦W. The grey line represents the TAO current meter measurements. The solid line is for ASSIMS2
and the dotted line is for CNTLS2.

BMN method is successful in eliminating the spurious circulations induced by the data assimilation, and as a
consequence, reduces the bias in the temperature field.

Figure2 shows the time evolution of the temperature increment fromASSIMS2 in the Eastern Pacific (Niño
3 area: 90◦W-159◦W, 5◦N-5◦S) at 100 m depth. The 24-month running mean of the assimilation increment,
representative of the slow frequency (or systematic) component of the error, is shown in black, and the high-
pass residuals, representative of the random component of the error, appear in grey. Two important features
can be appreciated: a) the magnitude of the slow frequency component of error is large compared to the high
frequency component and b) the systematic error is not constant in time. Particularly noticeable is the negative
trend after 1998. The changes in the systematic error may be due to changes (local or remote) in the observation
coverage (introduction of the TRITON moorings in the Western Pacific, for instance). They could also be due
to the flow-dependent nature of the error: during the cold phase of ENSO (that started at the end of 1998) the
slope of the thermocline is very pronounced, which may be difficult to simulate with a model that tends to
produce a flatter-than-observed thermocline (see discussion in section 4). Or they could be caused by changes
in the surface fluxes associated with changes in the atmospheric analysis. More work is needed to understand
these trends, but in any case, figure2 highlights the non stationarity of the systematic error. Ideally, a bias
correction algorithm should take this into account.

2.3 Systematic error and Interannual Variability

In practice, the presence of systematic error may introduce spurious temporal variability in regions where the
observation coverage is not uniform in time, which may be a serious problem when the ocean analysis is used
to represent interannual variability.

Figure 3a shows the time evolution of the sea level in the equatorial Atlantic (70◦W-30◦E,5◦N-5◦S) from
ASSIMS1 (black line). The most striking feature is the sudden decrease in the sea level at around 1985.
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Figure 2: Time evolution of the low and high frequency components of the assimilation increment from S2 in the Nĩno 3
area at 100m depth. The 24-month running mean is shown in black and the high-frequency residuals are shown in grey.
Units areoC/hour.

The CNTL S1 (not shown) does not exhibit any particular anomaly during that time. An inspection of the
time evolution of the observations used in this analysis1, shown in fig3b, reveals a sudden increase in the
number of observations that were assimilated at the time in the equatorial Atlantic around January 1985. Other
(smaller) sea level changes apparent in theASSIMS1 run occur when the observation coverage changed: both
the increase in the number of observations at around 1992 and the appearance of PIRATA moorings around
1998 are associated with a decrease in the sea level of the equatorial Atlantic. The latter was reported by
Segschneideret al. (2000).

The sudden jump in sea level in theASSIMS1 run in figure3a is a side effect of the data assimilation. The data
corrects for a large error in temperature due to a very diffuse thermocline (not shown). The correction requires
a large negative increment to the temperature field. Without the corresponding balance correction to the salinity
field (as was the case inS1), the vertical stability of the water column is disrupted, and the assimilation induces
spurious convection. Convection could be prevented if the temperature-salinity (T-S) relationship of water mass
is preserved, which would imply updating the salinity field at the same time as the temperature (Troccoliet al.
2002).

The grey curve in fig3a shows the sea level evolution after applying the T-S constraint. The abrupt jump of
the sea level in 1985 is alleviated by the inclusion of the balance relationship, but changes in the sea level
associated with the evolution of the observing system are still noticeable. If changes in the observing system
are very sudden, it may be helpful to have ana priori estimate of the bias in the system, as will be discussed
in section 4. The knowledge of the climate variability in the Equatorial Atlantic remains a challenge, both for
ocean models and ocean data assimilation systems (Stockdaleet al. 2005). Ocean models with typical climate
resolution of 1◦ (lat/lon) are not able to simulate accurately the mean state and the interannual variability of
the equatorial Atlantic. Data assimilation is not a solution yet, and often degrades the representation of the
interannual variability in this area (Balmaseda 2004, Vidardet al. 2005).

1More comprehensive historical observational data sets are now available, such as that prepared as part of the ENACT project.
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a)

b)

Figure 3: Time evolution of a) the sea level averaged over the equatorial Atlantic, as represented by the ASSIMS1 (black
line) ocean analysis from S1 and by an ocean analysis where conservation of water mass characteristics is imposed (grey
line). b) Time evolution of the number of observations over the same region used in the analysis.
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3 Bias correction algorithm

3.1 Two-step and one-step bias correction algorithms

The standard procedure to deal with systematic error in a data assimilation system is to augment the model state
with a set of systematic error variables. The generic DdS bias correction algorithm for thekth analysis cycle of
a data assimilation system with biasb, state vectorx and observation vectory is given by

ba
k = b f

k
−L

[
yo

k−H(x f
k
−b f

k
)
]

xa
k = (x f

k
−ba

k)+K
[
yo

k−H(x f
k
−ba

k)
]

(1)

where the superscriptsf anda refer respectively to the forecast and analysis of a given variable. The matrices
L andK are the gain matrices for the bias and the state respectively, and are given by

L = PbHT
[
HPbHT +HP f HT +R

]−1

K = Pf HT [
HP f HT +R

]−1
(2)

wherePf andPb are the error covariance matrices for the unbiased state and for the bias term, respectively, and
R is the observation error covariance matrix.

Equation (1) requires two analysis steps: one for the bias estimation and a second for the state vector. Radakovitch
et al. (2001) proposed a simplification that could be used if the bias is nearly constant in time,

b f
k
≈ ba

k−1 (3)

and the bias error covariance matrix is taken to be proportional to the forecast error covariance matrix, with the
proportionality constantg small compared to one,

Pb = gPf . (4)

If g is small then the bias updates will be small as well, and it may be acceptable to replaceba
k by ba

k−1 in (1).
Then we can reverse the order of the equations in (1) to approximately obtain

xa
k = (x f

k
−ba

k−1)+K
[
yo

k−H(x f
k
−ba

k−1)
]

ba
k = ba

k−1− gK
[
yo

k−H(x f
k
−ba

k−1)
]
. (5)

The algorithm described in (5) only requires one analysis step, since the second term on the right hand side
of the equations is the same, and thus the bias update equation is trival to compute. This simplification is
described in more detail in Dee (2005). The requirement of proportionality between the covariances matrices
may be too strong. It would require the balance constraints for the bias to be the same as those for the state
vector. In particular, it does not encompass naturally the BMN scheme, where the bias term acts only in the
momentum equation as a correction to the pressure gradient. In the following we show that the requirement of
proportionally can be safely relaxed if applied to the subspace orthogonal to the null space ofH (observable
subspace hereafter).
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3.2 Decomposition into observable and non-observable subspaces

Let us now decompose then-dimensional state space into two orthogonal subspaces of dimensionsp and
q = n− p that we call the observable and the null subspace. Vectorx, matrix K , and symmetric matrixP, of
dimensionsnx1, nxpandnxnrespectively can be written

x = x‖+x⊥
K = K ‖+K⊥

P = P‖‖+P⊥‖+PT
⊥‖+P⊥⊥ (6)

where subscript‖ represents the image of operatorH, or observable subspace, and subscript⊥ represents the
null subspace of operatorH. Let To be the projector operator from the state vector space onto the observable
subspace, defined such that

x‖ = Tox

Hx‖ = Hx

Hx⊥ = 0. (7)

With naming convention, operatorsL andK in (2) can be written

L ‖ = Pb
‖‖H

T
[
HPb

‖‖H
T +HP f

‖‖H
T +R

]−1

L⊥ = Pb
⊥‖H

T
[
HPb

‖‖H
T +HP f

‖‖H
T +R

]−1

K ‖ = Pf
‖‖H

T
[
HP f

‖‖H
T +R

]−1

K⊥ = Pf
⊥‖H

T
[
HP f

‖‖H
T +R

]−1
(8)

and the analysis equations (1) can be written for the observable and non observable subspace separately as
follows:

ba
‖k = b f

‖k−L ‖dk

xa
‖k = (x f

‖k−ba
‖k)+K ‖dk (9)

ba
⊥k = b f

⊥k
−L⊥dk

xa
⊥k = (x f

⊥k
−ba

⊥k)+Kodk, (10)

wheredk represents the innovation vector, a vector of the observable subspace defined as:

dk = yo
k−H(x f

‖k−ba
‖k). (11)

3.3 A generalized two-step bias correction algorithm

The algorithm can be further generalized by allowing the bias and state vector to have different vector compo-
nents. Let us define an operatorTx from the bias space with image in the state vector space such that:

bx = Txb. (12)
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To simplify the expressions we introduce the variabled̃ to represent the approximated unbiased innovation
vector:

d̃k = yo
k−H(x f

k
−b f

xk
), (13)

and the variablew to represent the approximately unbiased state vector

w f
k

= x f
k
−b f

xk
. (14)

If the bias and state gain matrices are proportional in the observable subspace,

L ‖ = gK ‖; g << 1 (15)

and the bias evolves slowly in time as required in eq3, then the two-step algorithm in eq1 can also be approx-
imated by a one-step algorithm as follows:

xa
k = w f

k
+Kd̃k

ba
‖k = b f

‖k− gK ‖d̃k

ba
k = F(ba

‖k) (16)

In (16), F is an operator acting over the component of the bias in the observable subspace into the bias sub-
space, and it represents the multivariate relationship for the bias. Note that the observations in (16) only give
information about the bias in the observable subspace (b‖), while the total bias vectorb can be derived fromb‖
throughF. There is freedom for the choice ofF, which allows the multivariate relationships for the bias to be
different from those for the state vector. In this way, different balance constraints can be specified for different
time scales (for instance, geostrophic balance for the short time scales and Sverdrup balance for the longer time
scales). In some cases it may be convenient to use different variables for the state and for the bias, provided that
there is a known transformation from one to the other. For instance, in the data assimilation system described
in section 2, the observable variable was temperature (T), and the state vector consisted of the 3D temperature,
salinity, velocity and sea level fields (T,S,~U ,h). In the BMN scheme, the bias vector consists only of pressure
gradient, which is derived from the T observations. In this way, expression (16) includes the BMN scheme as
a particular choice of multivariate relationship.

3.4 The generalized two-step bias correction algorithm

We have seen in the previous section that the bias term evolves in time, although slowly. The hypothesis of
constant bias in equation (3) could be relaxed to allow for the slow time evolution of the bias without incurring
large errors. Chepurinet al. 2005, propose a generalized model for the time evolution for the bias that allows
flow-dependent errors and seasonal cycle. Radakovitchet al. 2001 includes the diurnal cycle as a sinusoidal
harmonic. Here we propose a less parameterised model for the time evolution of the bias. The rational behind
this simplification is to avoid having to fit a large number of degrees of freedom with a reduced number of
observations, while still giving some flexibility. The model for the time evolution of the bias is the following:

b f
k

= b̄+b′ fk
b′ fk = ab′ak−1 (17)
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The total bias is represented as the sum of two terms: a prescribed bias termb̄, estimateda priori, and a
departureb′k from b̄. Only the departureb′k is estimated with the on-line algorithm. The termb′ f has finite
memory given by the factora. The introduction of the memory term will limit the influence in time of isolated
or sporadic observations. It is a way of accounting for the uncertainty in the estimation of the bias term, which
is proportional to the age of the observations and it also has the potential to allow for time dependent bias. A
side effect is that values ofa less than one will underestimate the magnitude of the bias. To compensate for
that, the constant term̄b is introduced in (17).

The termb̄ is not affected by the on-line estimation and has to be estimateda priori, preferably with independent
information. If there is not enough information for independent estimation, it can always be set to zero. Apart
from compensating for the damping effects of the memory term, the inclusion of thea priori bias term offers
other practical advantages. It has the potential to prevent abrupt changes in the analysis associated with the
appearance of observing systems (note that the bias estimated online may prevent discontinuities due to the
disappearance of observing systems, but it does not necessary help with changes due to the appearance of new
observing systems). The prescribed term could also represent well-known systematic errors of faster time scale
than that allowed by the longer memory term of the online estimation, such as the seasonal cycle (the seasonal
cycle is not easy to represent by a limited number of harmonics). Finally, the a-priori estimation may give
information about other variables or balanced relationships not easy to estimate through the on-line procedure.
For instance, the bias in the T, S and mean sea level could be estimated independently using geoid information
from satellite gravity missions such as GRACE, together with some climatology of the hydrography, while the
bias estimated on-line would act only on pressure.

Combining equations (16) and (17), the final expression used in the estimation of the bias would be:

w f
k

= x f
k
− (b̄xk+ab′axk−1)

xa
k = w f

k
+Kd̃k

b′a‖k = ab′a‖k−1− gK ‖d̃k

ba
k = b̄k +F(b′aok) (18)

In (18) it is clear that the estimation of the bias will depend on the values of parametersa andg that control
the time evolution and the amplitude of the bias, on the estimation ofb̄ and on the prescription ofF. In the
following section we conduct a set of experiments to evaluate the sensitivity of the solution to these factors.

4 Sensitivity experiments

4.1 Experimental setup

For the sensitivity experiments we use an up-to-date version of the data assimilation system described in section
2. The observations come from the more comprehensive and quality-controlled data set produced as part of
the ENACT project (Ingleby and Huddleston 2004). The forcing fields are derived from ERA 40, with the
modifications in the fresh water introduced by Troccoli and Kallberg (2004). The version of the ocean model is
the same as for S2, but at lower resolution (2 x 2 degrees lat/lon with equatorial refinement). All the experiments
start from the same spin up and span the period January 1987 - December 2001. Only subsurface temperature
data are assimilated, but salinity and currents are updated through the multivariate relationships described in
section 2.

Table 1 shows the summary of the different experiments. Experiment E0 was conducted as a control, with
standard assimilation and no bias correction. Then, a set of 3 experiments was conducted to test the sensitivity
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Experiment time-decay∼ a−1 g F(T,S,P) b̄(T,S,P)
E 0 0 (0,0,0) (0,0,0)
E inf infinite ( a = 1 ) 0.3 (0,0,P) (0,0,0)
E 2Y 2 Years 0.3 (0,0,P) (0,0,0)
E 2Yslow 2 Years 0.1 (0,0,P) (0,0,0)
E 2Yslow T 2 Years 0.1 (T,0,0) (0,0,0)
E 2Yslow TS 2 Years 0.1 (T,S,0) (0,0,0)
E 2Yslow b̄ 2 Years 0.1 (0,0,P) (T,S,0)

Table 1: Summary of experiments conducted

to the parameters controlling the time evolution and amplitude of the bias (a andg). In these experimentsF
was chosen to simulate the BMN scheme, i.e. the information from the temperature observations is used to
correct the pressure gradient, but no explicit correction is made to the temperature field. In experiment Einf,
a is set to 1., so the observations will influence the bias estimate indefinitely. The value ofg is initially set to
0.3. In experiment E2Y, g is still 0.3, but the value ofa is equivalent to a time-decay of 2 years. In experiment
E 2Yslow the time-decay is 2 years, butg is decreased to 0.1, so that the bias is updated more slowly (see
equation (18)). In all of these experiments̄b is zero.

To test the sensitivity to the multivariate formulation, another experiment E2Yslow T was conducted, with
the same time parameters as E2Yslow but withF such that only the temperature field is corrected, without
modification to the pressure gradient. Similarly, in experiment E2Yslow TS the temperature and salinity fields
are corrected.

Finally, experiment E2Yslow b̄ was used to evaluate the importance of the prescribed bias. The termb̄ con-
tained modifications to the temperature and salinity fields, and zero correction to the pressure gradient. The
term was derived from a climatological model run, where the ocean model was forced by climatological ERA
40 fluxes and relaxed to the WOA98 climatology (Levituset al. 1998) with a time scale of 3 years. Thēb was
estimated as the annual mean of the corrections due to the WOA98.

4.2 Sensitivity to the multivariate formulation

Figure4 shows the 1987-2001 average of a longitude-depth section of the assimilation increments along the
equator from experiments E0, E 2Yslow T and E2Yslow (panels a, b and c respectively). The mean incre-
ment in fig4a has a large-scale dipolar structure, as if the data assimilation were correcting the slope of the
thermocline, making it deeper in the western Pacific and shallower in the eastern Pacific. This kind of error
could appear if the equatorial winds were too weak, although it may be due to other mechanisms. In section
2, it was suggested that the negative increment in the Eastern Pacific is in fact induced by the assimilation
process. In the experiments E2Yslow T and E2Yslow, where the bias has been corrected online, the resulting
mean increment is smaller (the mean increment is not expected to be removed entirely sincea is less than 1).
The reduction of the mean increment in temperature is expected from the mathematical consistency of the bias
correction algorithm. However, the smaller mean increment does not guarantee a better analysis.

For a more impartial test of the performance of the bias correction algorithms we need to look at independent
variables. Figure5 shows an equatorial cross-section of the vertical velocity for the same three experiments
shown in figure4. The spurious vertical circulation in the Eastern Pacific associated with the degradation of the
zonal current discussed in section 2 is evident in panel a. Correcting the bias in temperature only degrades it
even further (fig5b). The behaviour is similar to (and consistent with) that observed in experiments where the
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a)

b)

c)

Figure 4: Equatorial longitude-depth section of mean assimilation temperature increment for experiments (a) E0, (b)
E 2YslowT and (c) E2Yslow. Contours every 0.5◦C/10-days. The mean corresponds to the time average during the
period 1987-2001.
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weight given to the observations is increased: the equatorial currents are systematically degraded (not shown).
Ultimately, if a bias correction algorithm is used, the observations are indirectly given more weight, since they
are allowed to influence the estimate twice (and for longer time).

In the experiment where the bias is treated by applying a correction to the pressure gradient using the BMN
scheme (fig5c), the spurious circulation does not appear. This result illustrates large sensitivity of the results to
the choice of multivariate relationship. As pointed out by Burgerset al. (2002), the systematic error may have
its origins in the momentum equation (resulting from inaccuracies in the wind field and in the vertical mixing
of momentum among others). If so, the error should be “adiabatic”, since it is due to the wrong redistribution
of heat. The BMN is a way of imposing adiabaticity in the assimilation of temperature data, by assuming
that the error arises entirely from an incorrect value in the pressure gradient terms, and using the temperature
increments given by the assimilation to derive a correction to the pressure gradient.

It can be argued that in experiment E2Yslow T, where the bias acts only on temperature, no balance corrections
are made to salinity, with the potential of disrupting the water mass characteristics. (Ricciet al. (2005) show
that the impact of salinity on the velocity field is not neglegible). In experiment E2Yslow TS, the salinity
field is updated using a gain matrix proportional to the gain matrix of the state vector, which represents the T-S
preservation scheme of Troccoliet al. (2002). Results (not shown) were very poor, with very visible trends
in salinity and sea level. A possible reason for the poor results may lie in the nonlinear nature of the T-S
relationship: the bias in S obtained by accumulating the salinity increments of the independent analysis cycles
is not the same as if the nonlinear T-S relationship is computed using the bias in T. This result also highlights the
separation of the bias correction into observable and non-observable subspaces. In fact it implies that applying
the proportionality criteria in (4) beyond the observable subspace is not appropriate. The preservation of water
mass characteristics can still be used as a constraint for the bias term, but further work is needed for its correct
implementation.

4.3 Sensitivity to the time evolution

Figure6 shows results from experiments conducted to evaluate the sensitivity to the time evolution of the bias
term. In the left column, the time evolution of the estimated temperature bias over the region Niño 3 at three
different depths is shown. The time evolution of the 24-month running mean of the temperature increment in
shown in the right column, together with the value of the mean assimilation increment (ticks on the right y-
axis). Because of the 24-month running mean, the time axis in these graphs is limited to the period 1989-2000.
The black solid line is for experiment E2Yslow, the grey solid is for experiment Einf and the grey dashed
line is for experiment E2Y. For reference, the thin black line shows the value that the bias would have had in
experiment E0, had it been estimated using the same parameters as in E2Yslow (remember that the online
bias correction is not active in E0). The resulting values and behaviour of the bias estimates are very different
in the different experiments. In the following section we try to use these diagnostics to assess the quality of the
resulting analysis.

One possible criterion for assessment is to require that the estimate of the biasa posteriori is consistent with
the model prescribeda priori for the time evolution of the bias. For instance, if thea priori assumption is that
the bias is constant, thn the resulting estimate should exhibit asymptotic convergence to a constant value, after
reaching which the innovation vectors should be white noise with zero mean. In general, the time average of
the temperature increment should be as close as possible to zero.

At 30m depth (fig6a), the bias in experiment Einf (which assumes constant bias) does not converge. The
bias keeps increasing with time, and the resulting value is of the opposite sign to the reference experiment
E 0 but with much larger amplitude. The 24-month running mean assimilation increments (fig6b) are mainly
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a)

b)

c)

Figure 5: Equatorial longitude-depth section of the 1987-2001 average vertical velocity for the experiments (a) E0, (b)
E 2YslowT and (c) E2Yslow. Contour interval is 0.5m/day
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Figure 6: Time evolution of the estimated bias (left column) and 24-month running mean assimilation increment (right
column) at different levels in the Niño 3 area. Values for the 1988-2001 average assimilation increment are shown on the
right y-axis of the right panels. Shown are the results from experiment E2Yslow (thick solid black line), Einf (solid grey
line), E 2Y (grey dashed line) and E0 (thin solid back line). In the case of experiment E0 the bias is only a diagnostic;
it is not corrected interactively.

positive, and after 1996 exhibit large fluctuations in time. The value of the mean temperature increment in
E inf is positive and has the largest absolute value. The resulting velocity field is too weak compared to the
observations (not shown). It can be concluded that at least for this region and level, the time evolution of bias
diagnosedaposteriorifor experiment Einf is not consistent with model for the bias prescribedapriori; the bias
is overcorrected, resulting in a change of sign. It is not clear at this point if the pathological behaviour of Einf
is caused by the infinite memory (g = 1) or by the larger amplitude of the bias (which is a function ofa andg).
The bias in the experiments with finite memory is more stable. The evolution of the 24-month running mean
increment shows that at 30m depth both E2Y and E2Yslow have less bias than E0.

At 50m depth, the behaviour of the experiments is more varied. From the point of view of the bias, experiment
E inf is still the outlier, and again it overestimates the value of the bias, although not as clearly as before. In
fact, it shows the smallest absolute value of the mean increment. The sensitivity of the results to parameter theg

can now be appreciated by comparing the experiments with finite memory: E2Yslow whereg is .1 (black line)
to experiment E2Y, whereg is 0.3 (dashed grey line). Consistent with a larger value ofg, experiment E2Y
exhibits more time variability, and clearly adapts faster to a large negative value after the change observed in
1998 (and discussed in section 2), where it remains until the end of the run. From this graph it is not easy to say
if the resulting value of the bias after 1998 is correct. There is a hint that the 24-month running mean is going
back to zero after 1999, which is consistent with the stabilisation of the bias. This is the experiment where
the high frequency of the assimilation increments had smaller variance (not shown). Experiment E2Yslow
exhibits much smoother temporal behaviour, as expected from the smaller value ofg. The magnitude of the
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bias is smaller than that in experiment E0, which reflects the positive impact of the on-line correction. The
mean assimilation increment is also smaller than in E0, but larger than in E2Y. In the two experiments with
finite memory the velocity field is improved with respect to the reference experiment E0 (not shown).

At 100m depth, in terms of mean absolute error, the best estimator is the experiment with infinite memory. The
experiment with fast update (E2Y) follows closely, and experiment E2Yslow underestimates the magnitude
of the bias (fig6f). Although in some areas Einf is good, it tends to overestimate the bias, sometimes producing
quite pathological behaviour, and the experiments with finite memory, as expected, tend to underestimate the
bias.

There is no experiment that behaves best in all locations, which suggests that the time parameters may need to
be spatially dependent. Without any further theoretical insight, the spatial distribution of parametersa andg
could be estimated empirically, together withb̄ (which appears in (18) but has not been discussed yet).

The results illustrate that the sensitivities to the time evolution of the bias are quite large, and sometimes
complex behaviour can arise from the coupling between the bias and the state vector in the estimation algorithm
(in equation (18) the coupling is implicit in the innovation vectord̃k).

From these results it is clear that further work is needed to develop a satisfactory framework for treatment of
time dependent bias, or more generally, for treatment of errors at different time scales. There is also a need
for well defined metrics that allow us to assess the mathematical consistency and physical validity of the bias
correction algorithms.

4.4 Sensitivity to the prescribed bias

In order to make good use of recently-developed and future observing systems, such as the ARGO floats, it
may be desirable to have ana priori estimate of the bias term. Otherwise, the arrival of new information may
induce discontinuities and spurious variability in the analysis of traditionally poorly observed areas. In our
simple model for the evolution of the bias (Eq.17), thea priori bias estimate is given bȳb.

If observations are scarce,b̄ may not be easy to estimate. By gathering all the existing observations in a clima-
tology, such as the WOA98, it would be possible to “gain” spatial coverage by sacrificing the time dimension
(and under the strong assumption that the system is stationary). This is roughly the strategy followed here to
estimate the term̄b. The ocean model forced by ERA 40 climatology is nudged, with a time scale of 3 years,
to the WOA98 climatology. The time scale for relaxation is an ad-hoc way of introducing uncertainty for the
WOA98 estimate. There may be more optimal ways of estimatingb̄, but we chose a simple one for demon-
stration purposes. The relaxation terms in the T and S equations are taken to provide the estimate ofb̄, which
would be used to correct T and S directly. There is no pressure correction inb̄ (see experiment E2Yslow b̄ in
Table 1).

As expected, poorly observed regions such as the Equatorial Indian Ocean are better represented if the termb̄
is introduced (in the sense that the mean assimilation increments are reduced). The Equatorial Indian Ocean is
only sensitive to thēb term, while the on-line correction to pressure has almost no effect.

Figure 7 shows the vertical profiles of the 1987-2001 mean assimilation increments for region EQ3 in the
Central-Western Pacific (150◦E-190◦W, 5◦N-5◦S) and for region EQATL in the Equatorial Atlantic. Shown
are the results for experiments E0 (solid back line), E2Yslow (black dashed line) and E2Yslow b̄ (in solid
grey). In region EQ3 (left panel of fig7), which is a relatively well observed area, the term̄b has a visible
impact on the reduction of the mean temperature increment in the upper ocean. The impact of the T and S
corrections from the term̄b is comparable to the impact of the on-line pressure correction. This suggests that
the reason for error in this area, where the mixed layer is quite deep, may be a combination of diabatic and
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Figure 7: Vertical profiles of the 1987-2001 mean temperature assimilation increment for region EQ3 (left column) and
for region EQATL (right column). Shown are the results for experiments E0 (solid back line), E2Yslow (black dashed
line) and E2Yslowb̄ (in solid grey).

adiabatic problems, and where direct corrections to the temperature and salinity equations are required as well
as corrections to the pressure gradient.

The termb̄ also improves the estimate of the Equatorial Atlantic, both the mean (reduced mean assimilation
increment in left panel of figure7), and the interannual variability. The quality of the interannual variability
can be measured by the correlation of the analysed sea level anomalies with those from the altimeter data. The
correlation period is 1993-2001. If no bias correction is applied, the data assimilation degrades the correlation
(from 0.65 in the analysis with no data assimilation to less that 0.4 in the experiment E0). The inclusion of the
on-line correction in pressure in experiment E2Yslow slightly improves the estimate, but the correlation is still
lower than the no data assimilation case. By introducing the termb̄ in experiment E2Yslow b̄ the value of the
correlation increases to 0.8. The higher value of the correlation due to the termb̄ is an encouraging result.

5 Summary and conclusions

The presence of bias in an ocean data assimilation scheme is a serious obstacle to the reliable representation
of climate by historical ocean reanalysis. It is shown that both the ocean mean state and variability can be
degraded by data assimilation in some areas. The examples have been taken from the ECMWF operational
ocean analysis systems, but they are common to other ocean data assimilation systems.

In large areas of the equatorial Pacific the low frequency component of the temperature assimilation increment is
large compared to the higher frequency component, which is clear evidence that the forecast error is correlated.
It is also shown that the low frequency component of the error is not stationary, but exhibits considerable low
frequency variability. Particularly noticeable and worth further investigation is the change in behaviour of
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the system after 1998, where the temperature increments around the thermocline in the Niño3 area become
increasingly negative.

Consistent with other assimilation systems, comparison with TAO currents shows that the equatorial zonal
velocity in the Eastern Pacific is degraded when assimilating temperature data. The degradation of the zonal
velocity is associated with a spurious vertical circulation underneath the thermocline. As pointed out by BMN,
the results suggest that the spurious circulation can be the cause of this systematic error: the error in the data
assimilation has the opposite sign to the error in an analysis where no data have been assimilated.

Data assimilation systems affected by bias are very vulnerable to changes in the observing system. This fact
was illustrated by showing the degradation of interannual variability in the Equatorial Atlantic due to the sudden
changes in the observation coverage. The sustainability of observing systems is therefore vital for ongoing and
future estimates of climate variability. To make optimal use of new and existing observations it is necessary to
develop data assimilation algorithms that explicitly deal with bias.

In this paper we presented a modified version of the DdS 1-step algorithm for on-line estimation and correction
of system bias. The modifications included an explicit multivariate formulation which allows the balance
constraints for the bias to be different to those for the state vector. In this context, the correction applied to the
pressure gradient proposed in the BMN scheme can be considered as a particular choice of balance relationship.
Modifications have also been introduced in the equation for the time evolution of the bias, by inclusion of a
memory term that allows for non-stationary bias, and a prescribed bias term that can act as a first guess. The
modified bias correction algorithm has been applied to the ECMWF ocean data assimilation system, and a
series of ocean reanalyses have been conducted with different multivariate constraints and time evolution. All
the experiments span the period January 1987 - December 2001 and use the ENACT experimental setup.

Experiments reflect the sensitivity of the results to the choice of multivariate formulation. Direct correction of
the bias in temperature (observed variable) does not lead to better analyses, and in fact can degrade the equa-
torial currents. However, if the bias is corrected using the BMN scheme by modifying the pressure gradient,
the bias in temperature is reduced and the velocity field is improved. It is therefore important to have insight
into the nature of the error. If the error in temperature is due to adiabatic processes that erroneously redistribute
heat, the bias gain matrix should reflect this adiabaticity. Otherwise, it will introduce sources and sinks of heat
that may eventually deteriorate the solution. Budget analysis of the assimilation statistics (Ricciet al. 2005) is
a very valuable tool to obtain information about the nature of the error.

Although the sensitivity to the time parameters varies considerably from region to region and from level to
level, experiments with finite memory tend to do better, at the expense of underestimating the size of the bias.
The multivariate scheme is quite sensitive to the parameters controlling the time evolution of the bias. While
stability of the univariate algorithm is mathematically guaranteed, the stability of the multivariate system is
less clear. It has been shown that under the assumption of constant bias, the multivariate algorithm can lead to
overestimation of the bias term. In the upper levels of the Eastern Pacific, the system fails to stabilize, producing
estimates that are worse than the non-bias corrected results. From a practical point of view, underestimation of
the bias is probably a safer option, unless the stability of the system is well understood.

In order to avoid discontinuities in the ocean analysis due to changing observing systems it would be desirable
to have ana priori knowledge of the system bias, preferably obtained using independent data. The new geoid
information provided by the gravity mission GRACE could be very valuable in this respect.
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