Model biases

Anton Beljaars (ECMWF)

with contributions by: Antonio Garcia-Mendez, Anna Ghelli, Isabel Trigo, Pedro Viterbo, Xubin Cheng

- Temperature
- Moisture & spinup
- Land surface
- Ocean surface

Systematic errors (differences): Monthly averages of temperature 200508 (fc-an)

Radio sonde statistics of temperature for August 2005 (20N-20S)

VRS80 & VRS90 all data VRS80 & VRS90 used data 1-31 AUG 2005 1-31 AUG 2005 20S-180W/20N-180E 208-180W/20N-180E 00/06/12/18 UTC DATA COMBINED 00/06/12/18 UTC DATA COMBINED -80 -45 -30 -15 0 15 -80 -45 -30 -15 0 15 - 9 12 15 9 12 15 1663 1636 10 10 20-2299 20 2225 30-3529 30-3425 50-4336 50 4164 70-4742 70 4384 100-4688 100 -5121 150 3647 150 -3675 200 3669 200-3663 250 3916 250-3927 300 5400 300 -5406 400 7292 400 -7314 500 9261 500-9316 700-6796 9041 700 -650-5034 650-5075 925-3296 925-3400 2001 -15-1-05005115 1000 3010 -15-1-05005115 1000-05 2 25 15 05 15 2 25 4 STD (TEMP) BIAS (TEMP) STD (TEMP) BIAS (TEMP)

COMBINED SONDES MEAN OBS-FG TEMPERATURE DIFFERENCES V SOLAR ELEVATION JAN 2004 - JUL 2005

COMBINED SONDES MEAN OBS-FG TEMPERATURE DIFFERENCES V SOLAR ELEVATION JAN 2004 - JUL 2005

Long wave radiation tendencies averaged over August 2002 (ERA40)

Average of p101/t162 20020801 00 step 6 Expver 0001 (180.0W-180.0E)

Short wave radiation tendencies averaged over August 2002 (ERA40)

Average of p100/t162 20020801 00 step 6 Expver 0001 (180.0W-180.0E)

Long + short wave radiation tendencies averaged over August 2002 (ERA40)

Average of p100/t162 20020801 00 step 6 Expver 0001 (180.0W-180.0E)

Workshop on bias estimation, November 2005

Systematic differences: Monthly averages 200508 (fc-an)

Systematic errors (differences): Monthly averages 200508 (fc-an)

Radio sonde statistics of relative humidity for August 2005 (20N-20S)

Systematic errors (differences): Monthly averages 200508 (fc-an) MM-analysis_TCWV 20050800

Total column water vapour

Workshop on bias estimation, November 2005

Systematic differences: Monthly averages 200508 (fc-an)

MM-errer_R 20050800, step:24, level:700hPa

difference (%) 700-hPa (24-hr fc - anal)

Relative humidity

MM-errer_R 20050800, step:24, level:925hPa

Relative humidity difference (%) 925-hPa (24-hr fc - anal)

Systematic differences: Monthly averages 200508 (fc-an)

Vertical velocity (Pa/s) 500-hPa (an)

Vertical velocity difference (Pa/s) 500-hPa (24-hr fc-an)

Monthly averaged thermodynamic profiles 200508: (24 Hr fcsts/Sonde)

Monthly averaged thermodynamic profiles 200508: (24 Hr fcsts/Sonde)

Radiosondes-land sfc-700 hpa obs-FG obs-AN

Model 1 to 2 % too moist compared to sondes

obs-FG obs-AN Model about 2 % too dry compared to SYNOP's

SYNOP's-land

Time series of q at Cabauw (Netherlands)

Data: Fred Bosveld, KNMI

CECMWF

Conclusions on moisture

- Errors are small
- The errors with respect to analyses are confirmed by sonde profiles
- Moisture structure is controlled by:
 - 1. Advection (Vertical + horizontal)
 - 2. Boundary layer diffusion (including shallow convection clouds + stratocumulus clouds)
 - 3. Deep convection
- Errors in moisture are likely to be related to errors in all 3, but vertical motion (divergent motion) may dominate
- Moisture acts like a tracer: dynamic link between moisture increments and divergent flow is needed (more emphasis on dynamic control variable rather than q to adjust moisture in 4DVAR?)

History of spin-up (20N-20S)

CECMWF

Conclusions on spin-up

• Spin-up has improved with:

- 1. A modest reduction in precipitation spindown
- 2. A substantial reduction in TCWV spindown
- 3. A change from increase of evaporation during the forecast to a decrease of evaporation. (BL has become more dry in analysis).
- It is difficult to make a precise link between model changes and impact on spin-up
- Model changes and data assimilation changes (including use of satellite data) have contributed
- It is impossible to verify TCWV within 1 kg/m2 using radio sonde data.

Surface skin temperature (radiative surface temperature) as seen "from the top of the atmosphere"

- The use of remote sensing channels that peak in the lower troposphere requires an accurate background field of skin temperature
- Current model skin temperatures have large errors over land, underestimating the diurnal cycle, in arid/semi-arid areas

1-15 Feb 2001

METEOSAT

Clear sky Tb window channel

OBS - model

Trigo and Viterbo, 2002

2m temperature verification (February 2005)

What controls the surface skin temperature?

- Available radiation at the surface
- Partitioning of available energy between sensible and latent heat flux
- Aerodynamic coupling of skin to atmosphere (in TESSEL controlled by land roughness lengths for momentum and heat)
- Coupling of skin (vegetation canopy, litter layer, dry top soil layer) to underlying soil

Coupling to the atmosphere

- Possible solution for low vegetation tiles
 - Bare ground contribution to the sensible heat flux: Introduce a resistance Rs, mimicking the wind shielding effect of the surrounding vegetation.

 Parameters a and b (fixed for each grid point) in Rs are estimated by fitting the modelled daily amplitudes of Tb_BG to Meteosat clear sky observations, for the window channel.

Development and validation

- SCM + (radiative transfer model) applied to points in semi-al areas. Triple collocation of model, point observations and METEOSAT ensures that the improvements to skin temperature do not degrade two-metre temperature
- Preliminary results (Western Sahara, one point). Amplitude of Tb diurnal cycle:

Skin temperature: Coupling to the soil

- Model changes
 - Turbulent orographic form drag (TOFD) parameterisation
 - Tested additional resistance to heat (Rs)
 - Reduce coupling from skin to soil (Λ)
- Future
 - Test the changes above in data assimilation, assess Tsk against GOES/METEOSAT

TESSEL

≹

Vegetation

 T_{air}

Bare

Ground

Improved Scheme

Tair

Bale

Ground

Vegetation

Cycle	T2		Tskin	
	Day	Night	Day	Night
26r3	310	293	320	290
TOFD	309	292	322	289
TOFD+Rs+ Λ	309	290	325	286

Summary Sahara

Tb amplitude: Model - Observations

	1-15 Feb 2001	1-15 Feb 2002
Control	-8.9 K	-8.5 K
Revised	-0.4 K	-0.1 K

•The revised formulation is capable of removing the very large model bias in the diurnal amplitude

•Parameters calibrated in 2001, are used unchanged in 2002, with equal success

History of 2m T-errors over Europe in the ECMWF model (step60/72)

SYNOP (2m) humidity verification over Europe (monthly)

Soil temperature verification over Germany (layer 1)

Daily soil temperature averaged over all German stations in 2005

Soil temperature verification over Germany (layer 2)

Ocean warm layer effect (diurnal cycle)

Fairall et al.

Ocean warm layer model

$$T_{s} - T_{-d} = \frac{Q + R_{s} - R_{-d}}{d\rho_{w}c_{w}\nu/(\nu+1)} - \frac{(\nu+1)ku_{*w}}{d\phi(d/L)}(T_{s} - T_{-d})$$

 $Q = H + \lambda E + R_{LW}$ $v = shape \ param. \ for \ temp. \ profile \ (0.3)$ $d = depth \ scale \ (3m)$ $u_{*_{w}} = friction \ velocity$

Workshop on bias estimation, November 2005

Cheng and Beljaars 2005

Workshop on bias estimation, November 2005

Dec 1992

Diurnal cycle of ocean surface temperature

(b Derived from GOES (Wu et al. 1999)

Concluding remarks

- Temperature errors are small except in stratosphere. Radio sondes give info up to 10 hPa.
- Moisture structure near boundary layer top shows errors related to BL cloud processes.
- Day time land humidity shows dry bias in summer (shallow convection).
- Spin-up is very subtle and moisture observations are not calibrated well enough to distinguish between model and observation biases.
- SYNOP's and radio sondes show systematic differences.
- Land "radiative" surface temperature shows large biases related to unknown coupling coefficients between air, surface skin and soil. These coefficients depend on: location, vegetation, surface condition (e.g. wetness), flow, solar elevation.
- Diurnal cycles in ocean surface temperature may be relevant for data assimilation.

