

Sources of Biases in Microwave Radiative Transfer Modelling

Peter Bauer, Sabatino Di Michele, ECMWF William Bell, Stephen English, The Met Office Christian Mätzler, University of Bern Ralf Bennartz, University of Wisconsin, Madison

AND A THIRD FRANKE SECTION AND A LEASE AND AND A LEASE AND A LEASE

μ~ Spectrum

AND A THIRD SECTION AND A STATE OF A STATE O

Combined cloud-radiative transfer modelling

AND A THIRD SHARE SHOW AND A THE SHOW

Microwave H_{TB}: Single profile over ocean

Microwave H_{TB}: Single profile over land

Components of µ~ RT Modelling

CECMWF

ECMWF/NWP-SAF Workshop on bias estimation and correction in data assimilation 8-11 November 2005, Reading, UK

AND A THIRD SECTION AND A STATE AND AND A THE SAME

Atmospheric absorption

Inter-model evaluation

ECMWF

AMSU-A		RTTOV-8	117 indep	endent set
Channel	NeDT	Mean bias	St. dev.	Max diff
#	degK	degK	degK	degK
1	0.20	0.00	0.01	0.04
2	0.24	-0.01	0.02	0.12
3	0.19	-0.02	0.03	0.18
4	0.13	0.01	0.01	0.07
5	0.13	0.02	0.01	0.08
6	0.11	0.01	0.01	0.06
7	0.12	0.00	0.01	0.03
8	0.13	0.00	0.00	0.01
9	0.15	-0.01	0.01	0.07
10	0.19	0.19	0.16	0.39
11	0.20	0.00	0.04	0.27
12	0.31	-0.02	0.07	0.44
13	0.42	-0.05	0.09	0.58
14	0.70	-0.04	0.06	0.41
15	0.10	0.07	0.10	0.34
	- 17 N	100/1 m		

117 Profiles, RTTOV vs. LBL model

117 Profiles, RTTOV vs. LBL model

AMSU-B		RTTOV-8 117 independent set			
Channel #	NeDT degK	Mean bias degK	St. dev. degK	Max diff degK	
1	0.32	0.07	0.10	0.33	
2	0.71	-0.02	0.08	0.73	
3	1.05	-0.01	0.07	0.74	
4	0.69	-0.01	0.04	0.44	
5	0.57	0.00	0.05	0.40	

Inter-model	>>	LBL-parameterized
model differen	ces	model differences

All vs.CIMSS MWLBL model

Model	AMSU-06 std bias	AMSU-10 std bias	AMSU-14 std bias	AMSU-18 std bias
RTTOV-7/8	0.04 -0.06	0.15 0.25	1.36 0.90	0.35 -0.39
OPTRAN	0.09 0.00	0.05 -0.04	0.73 -1.97	0.10 0.00
AER_OSS	0.06 0.13	0.04 0.03	0.09 0.14	0.14 -0.16
MIT	0.01 0.00	0.04 -0.04	0.08 -0.09	0.19 -0.40
RAYTHEON	0.42 -0.57	0.17 0.24	0.20 0.60	0.50 -0.07
AER_LBL	0.06 0.13	0.05 0.03	0.09 0.16	0.14 -0.15
MSCMWLBL	0.03 0.05	0.03 0.04	0.20 0.51	0.32 -0.36
ATM	0.19 0.46	0.07 0.08	0.11 0.23	0.24 -0.28

Evaluation with measurements

ECMWF

ECMWF/NWP-SAF Workshop on bias estimation and correction in data assimilation 8-11 November 2005, Reading, UK Reading, UK 1 November 2005,

le 2.8. Evolution of Propagation 1 coefficients.	O ₂ and H ₂ O line and Model of Liebe (1977-1	continuum paramete 1993). The O ₂ parai	ers in the Millimeter-v meters include line-mi
Year of publ.	O2 parameters	H ₂ O lines	H ₂ O continuum
1977	М	О	0
1978	М	-	-
1981	R	О	-
1984	-	О	М
1987	-	О	М
1989	R	О	-
1992	М	-	-
1993	R	0	0

M: new measurements by Liebe and co-workers

R: revised analysis of earlier measurements by Liebe and co-workers

O: revision based on measurements by others

- : no change from previous version

key

Table 2.10. Calculated minus measured brightness-temperature differences (K) at Wallops Island, VA from England *et al.* (1993).*

frequency, GHz	PWV	average TB, K	MPM89	W76
20.7	low	14.1	+0.38	+0.80
20.7	high	30.0	+0.15	+1.00
22.2	low	18.8	+0.56	-0.49
22.2	high	45.0	-0.76	-4.30
31.4	low	13.5	-0.33	+0.31
31.4	high	20.0	-1.10	+0.22

low PWV: <1 cm; high PWV: 2.1 cm.

Table 2.11. Calculated minus measured brightness-temperature differences (K) at Nauru Island (tropical western Pacific) from Westwater *et al.* (2003). Average PWV = 4.7 cm. The values in parentheses are 99% confidence intervals for the final digit.

frequency, GHz	average TB, K	MPM87	MPM93	R98
23.8	65	+0.80 (67)	+3.90 (70)	+0.69 (67)
31.4	32	-0.16 (32)	+3.37 (36)	+0.86 (33)

Table 2.12. Calculated minus measured 31.4-GHz brightness-temperature differences (K) at three sites, from Marchand *et al.* (2003).

location	average PWV, cm	MPM87	R98	MonoRTM
Nauru	4.0	-0.35	+0.65	-0.51
Oklahoma	1.0	-0.04	+0.42	+0.05
Alaska	0.7	-0.79	-0.34	-0.84

Ground-based intercomparison

Satellite data based intercomparisons

Meissner and Wentz (2003) SSM/I: retrievals tuned with 19-37 GHz observations, verified against 85 GHz to within 1.2 K

Pumphrey and Bühler (2000) MLS/MAS: 183 GHz line shift verified to within 0.2 MHz/torr

Bühler (2005) ASUR: 626 GHz line shift verified to within 0.15 MHz/torr

Rosenkranz and Barnet (2005) HSB: 0.2-0.8 K

Rosenkranz (2003) AMSU-A: -0.23 – 0.42 K

(Mätzler et al. 2005)

AND A TATATION STREET STREET AND A LABOR AND A

ECMWF

Evaluation inside NWP system

ECMWF/NWP-SAF Workshop on bias estimation and correction in data assimilation 8-11 November 2005, Reading, UK

22.235 GHz line-width

ECMWF

ECMWF/NWP-SAF Workshop on bias estimation and correction in data assimilation 8-11 November 2005, Reading, UK

Issues

ECMWF

line intensities agree within 1%

line frequencies accurate to

· line widths/shifts modelling-

measurements agree within

• H₂O continuum controversial,

modelling-measurements

All the above is function of

molecule and frequency!

agree within 10-20 %

within 0.1 kHz

a few %

LBL ECMWF/NWP-SAF Workshop on bias estimation and correction in data assimilation 8-11 November 2005, Reading, UK Line inventory **HITRAN** MONORTM/LBLRTM MPM89/92 Rosenkranz ATM **STRANSAC** ARTS Pressure/temperature dependence Natural broadening (small) Pressure broadening Doppler broadening (at low pressures) Continuum absorption (mainly H₂O) Photoionization (IR) 1 November 2005, Reading, UK Photodissociation (IR) Far wings vs. H₂O clusters (MW windows) Parameterizations **Profile datasets** Representativeness **Predictors** Temperature, pressure, gas concentration

Integrated layer emission

ECMWF

ECMWF/NWP-SAF Workshop on bias estimation and correction in data assimilation 8-11 November 2005, Reading, UK

Zeeman splitting

ECMWF

-20

Eq

Eq

S

Eq

Ν

Eq

s

ECMWF/NWP-SAF Workshop on bias estimation and correction in data assimilation 8-11 November 2005, Reading, UK

-2 -Eq

N

(Schwartz et al. 2005)

Eq

S

Eq

N

Eq

S

Eq

Eq

N

Faraday Rotation

ECMWF

ECMWF/NWP-SAF Workshop on bias estimation and correction in data assimilation 8-11 November 2005, Reading, UK

Rotation of polarization through interaction of polarized light passing through strong magnetic field (in ionosphere). Splitting of wave into 2 circularly polarized rays due to polarization dependent permeability (tensor) causing phase delay.

- affects polarized light (surface sensitive radiation), also 3rd Stokes vector
- $\beta \approx 17 / v^2$ (β in degrees, v in GHz)
- SMOS, AMSR, Windsat

Rotation angle simulation for 1.4 GHz (Svedlend 1986)

NEW ALT ATTAMPS SEAR MARCHINE STATE

Dielectric Properties of Natural Media

ECMWF

Refractive index $n = \sqrt{\varepsilon \mu} = n' + in'' = f$ (material, frequency, temperature)

Water permittivity models are based on Debye model + fits to observational datasets:

- 2 datasets (3-20, 30-100 GHz)
- no sea-water data above 105 GHz
- 1 dataset for 9.62 GHz for super-cooled water (-18°C)
- fits required for T \in [250-300 K] and v \in [1, 1000 GHz]

Ice permittivity models are mainly based on empirical fits to observational data:

- Real part rather constant
- Imaginary part very uncertain

Snow/ice permittivity:

• From mixing formulae based on air/water/ice and inclusion shape/orientation Vegetation permittivity:

Mainly function of water content but complex organic structure limits applicability
of conventional mixing theory

• Experimental (field) observations available but extrapolation to satellite scale and wide frequency range difficult

Soil permittivity:

• Function of frequency, temperature, and salinity, volumetric water content, volume fraction of bound and free water related to the specific soil surface area, soil bulk material, and shape of the water inclusions

• Experimental (field) observations available but extrapolation to satellite scale and wide frequency range difficult (Mätzler et al. 2005)

Surface emissivity - Oceans

Modelled emissivity - Oceans

AMSU-A FG Departures - Oceans

ECMWF

SSM/I FG-Departure bias in dry/cold environments

ECMWF/NWP-SAF Workshop on bias estimation and correction in data assimilation 8-11 November 2005, Reading, UK

Bias at low T: 37 GHz H pol

AND A THIRD STREET STREET AND A LE X

DECMWF

3rd Stokes Vector at 10.7 GHz: Models vs. Windsat Data

4th Stokes Vector at 19.35 GHz: Models vs. Windsat Data CECMWF

NEAR ATTAINTY THREE STANDARD AND A LAST A

Surface emission - Land

Surface emission - RFI

- "Spectral Index" $T_{B, 6.8 \text{ GHz}} T_{B, 10.7 \text{ GHz}}$
- This index is nominally < 5 K (typically, negative) for the geophysical signal
- Values > 5K indicate RFI
- May be a more sensitive test for RFI than absolute T_B's

Surface emission - RFI

ECMWF

- RFI is observed in the AMSR C-band (6.75– 7.1 GHz) and X-band (10.6–10.7 GHz) data
 - > C-band is unprotected
 - > X-band is protected from 10.68–10.7 GHz
- Classification algorithms can identify and filter strong RFI for AMSR-E geophysical algorithms
 - But, weak RFI cannot reliably be separated from geophysical signals
- C-band RFI mostly in the U. S., Japan, Middle East, some in Europe, Asia, S. America, Africa
- X-band RFI mostly in Japan, England, Italy, some in U. S.
- Situation at C-band has worsened considerably since Seasat and Nimbus-7 SMMR 1978-1987 (6.6 GHz)
- NPOESS/CMIS also operates at C- and Xbands
 - Re-assessment of radiometer design is in progress

(Njoku 2004)

ALL ALL ALL ALL ALL SE AN BREELMAN ALL SALES

Cloud water/ice absorption

ECMWF

1.0 ECMWF/NWP-SAF Workshop on bias estimation and correction in data assimilation 8-11 November 2005, Reading, UK 0.5 A TB [K] 111 0.0 -0.5 50.3 v 52.8 v 53.596 v 54.4 v -1.0 1.01 0.5 TB [K] 0.0 <1 -0.555.5 v 57.29 rc 59.4 rc 150.0±1.25 h -1.0 1.0 0.5 TB [K] 0.0 ⊲ -0 RT-biases < 0.5 K! 183.31±6.6 h 183.31±3 h 183.31±1 h 19.35 h -1.0 1.0 0.5 A TB [K] 0.0 -0.5 19.35 v 22.235 v 37.0 h 37.0 v -1.01.0 0.5 Δ TB [K] 0.0 -0.5 91.655 v 91.655 h 63.283±0.285 rc 60.792±0.358 rc -1.0 1.0 0.5 Δ TB [K] 0.0 -0.660.792±0.358±0.006 rc 60.792±0.358±0.016 rc 60.792±0.358±0.05 rc 60.792±0.358± 0.002 r -1.0L 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20

θ [deg.]

Multiple-scattering RT-Model comparison

θ [deg.]

θ [deg.]

θ [deg.]

NEW MERITAL AND A STAND AND A STANDARD AND A

ECMWF

SSM/I TB FG/AN-Departures, September 2004

ECMWF/NWP-SAF Workshop on bias estimation and correction in data assimilation 8-11 November 2005, Reading, UK

Departure time series NOAA-16 AMSU-A/B (Clear-sky)

Departure time series DMSP F-13/14/15 SSM/I (Clear-sky)

Departure time series DMSP F-13/14/15 SSM/I (RAIN) CECMWF

ECMWF/NWP-SAF Workshop on bias estimation and correction in data assimilation 8-11 November 2005, Reading, UK

Statistics for Rain Affected Microwave Radiances from DMSP-11 / SSM/I Area: Global, 11 Sep - 31 Oct 2005 Operational Suite (0001) Departures: blue = uncorrected, red = blas corrected ±1 SD (dots)

All data (over sea)

Summary

	Contribution/Effect	Frequencies	Comments
Atr	nospheric absorption:	01-22	
	Spectroscopy, LBL	all	H ₂ O continuum
	Parameterized models	all	very accurate re
	Zeeman splitting	O ₂ lines	limited applicabi
	Faraday rotation	1.4	limited applicabi
		20-300 GHz	Clear-sky atmos
Su	rface emission:		
	Sea surface		- 14/1
	Permittivity	all	1 K between 20-
	Polarimetry	10-37	10% for 4 m/s <
	Land surfaces		レイタン
	Soil, vegetation	all	uncertain
	Snow/ice	N - 144	1.9-1-
	Type, age, etc.	All	uncertain
Clo	oud droplet emission:		
	Permittivity	all	well modelled be
		5-500 GHz	for T < 273 K m
Pre	ecipitation emission/scattering:		6
	PSD. Permittivity. Shape	all	uncertain
Ra	diative transfer modelling:	1	
	Clear-skies	all	biases up to 3 K
	Clouds/precipitation		
	multiple scattering	all	biases < 0.5 K
	Laver inhomogeneity	all	biases up to 5 K
	Layor internegeneity		
			- 1 6
			and the second sec

100	
Che and	H ₂ O continuum problematic very accurate relative to LBL models limited applicability (p < 10 hPa), SSMIS, MLS limited applicability, SMOS Clear-sky <i>atmospheric</i> TB's accurate within 1-3%
1	1 K between 20-150 GHz 10% for 4 m/s < SWS < 12 m/s
Z	uncertain
Ż	uncertain
	well modelled between 5-500 GHz and T>273 K for T < 273 K models differ by 20-30%
E.	uncertain
4	biases up to 3 K due to T(z), otherwise accurate
	biases < 0.5 K biases up to 5 K, can be parameterized