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Experimental 2D-Var assimilation of ARM cloud and precipitation observations

Abstract

A two-dimensional variational method (2D-Var) based on 12-hour integrations of the single column version
of the ECMWF model for adjusting initial temperature and specific humidity profiles is used to identify
the issues related to the assimilation of either high temporal frequency or time-accumulated observations
that are directly affected by clouds and precipitation. 2D-Var experiments have been run using cloud-radar
reflectivity profiles, microwave-radiometer brightness temperatures, accumulated rain-gauge measurements
and total column water vapour retrievals from the Global Positioning System. All observations have been
obtained from the Atmospheric Radiation Measurement Program.

In cloudy situations, it is possible to assimilate time-averaged profiles of cloud-radar reflectivities when
background reflectivities are generally greater than the observations. When background reflectivities are
lower than observed, the falling of the extra precipitation produced by 2D-Var hampers the convergence of
the cost-function minimization. The assimilation of brightness temperatures seems more straightforward
even at a half-hourly frequency.

As regards the application of 2D-Var to accumulated rain-gauge measurements, the minimization is biased
towards observations that are available at the beginning of the 12-hour assimilation window, due to the
reduction of precipitation sensitivities in time. However, using three-dimensional adjoint sensitivity com-
putations, it is shown that this problem should not be as critical in four-dimensional variational assimilation
(4D-Var). It is also demonstrated that the combination of precipitation data with information about the
moisture field produces more realistic 2D-Var increments than with rain-gauges solely.

Finally, the implications for the future assimilation of cloud and precipitation affected observations in direct
4D-Var are presented.

1 Introduction

Over the last decade, an increasing efftort has been expended to develop new methods to utilize meteoro-
logically useful information contained in observations of cloud and/or precipitation. Such measurements are
already widely available with a large geographical coverage from various spaceborne instruments such as the
Special Sensor Microwave/Imager (SSM/I), or platforms such as the Tropical Rainfall Measuring Mission
(TRMM), or the AQUA satellite. Future missions, including the Global Precipitation Mission (GPM; 2010)
and CloudSAT (2005), are expected to provide an even better spatial and temporal coverage and an even larger
amount of information. Observations from the ground are also available from the national operational networks
of precipitation radars and rain gauges, but also from several experimental sites equipped with microwave ra-
diometers, cloud lidars and radars, such as those of the Atmospheric Radiation Measurement (ARM) Program
(Stokes and Schwartz 1994).

At the same time, so-called observation operators have been designed to make the link between the atmospheric
variables that are forecasted in numerical models (typically temperature, moisture, wind, surface pressure and
possibly hydrometeors) and the observed quantities (radar reflectivity or brightness temperatures for instance).

Many approaches have been proposed to take this type of information into account in numerical weather predic-
tion systems, such as nudging (Macpherson 2001), diabatic initialization (Ducrocq et al. 2002) and variational
methods. So far, the variational treatment of cloud or precipitation-affected observations have been tested with
different levels of success in various frameworks ranging from a simple one-dimensional context (1D-Var) to
a complex four-dimensional environment (4D-Var). Previous works on the variational assimilation of surface
rainfall retrievals from satellite include Hou et al. (2001), Hou et al. (2004) Peng and Zou (2002) , Marécal
and Mahfouf (2002) and Marécal and Mahfouf (2003). Moreau et al. (2004) demonstrated the possibility
of using multi-channel microwave brightness temperatures (TBs) from TRMM directly, in a 1D-Var context.
The ‘1D-Var + 4D-Var’ technique developed by Marécal and Mahfouf (2002) will be soon used operationally
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to assimilate SSM/I TBs at the European Centre for Medium-range Weather Forecasts (ECMWF) (Moreau et
al. 2003). In this two-step approach, a 1D-Var retrieval is first run on observed microwave TBs to produce a
pseudo-observation of Total Column Water Vapour (TCWV), which is then assimilated in ECMWF’s 4D-Var
system.

The purpose of the present work is to investigate the feasibility of the direct assimilation of cloud and precipi-
tation observations in a two-dimensional variational context (2D-Var), that is dealing not only with the vertical
dimension as in 1D-Var but also with the time dimension. In particular, our main goal is to identify the issues
related to the assimilation of such observations which are either used with a ‘high’ temporal resolution (e.g.
30 mn) or accumulated or averaged in time. In fact, the proposed 2D-Var framework should be seen as an
intermediate stage between the simple 1D-Var approach and the much more complex (and thus more difficult
to interpret) 4D-Var method. Assimilation tests to be presented here have been performed using microwave
brightness temperatures (TBs), cloud-radar reflectivities, rain-gauge measurements and total precipitable water
retrievals, obtained from the ARM archive.

Section 2 provides a description of each component of the 2D-Var assimilation method. The observations
used in 2D-Var and their associated error statistics are detailed in section 3. The results of the assimilation
experiments are presented in section 4 and the main issues they raise are discussed in section 5. Section 6
draws conclusions for the future direct assimilation of observations affected by cloud and precipitation in 4D-
Var.

2 2D-Var assimilation method

The proposed 2D-Var approach involves the vertical dimension and the time dimension. It makes use of the
single column version (SCM) of the ECMWF full model (see below) to depict the time evolution of the atmo-
spheric state at a selected geographical location. The objective of 2D-Var is to find the optimal initial state of
the SCM that minimizes in a least-square sense the distance between the SCM trajectory in time and a set of
asynchronous observations available over a certain time window (12 hours here), given a background constraint.
Figure 1 illustrates the main features of this 2D-Var approach. In the present study, two control variables are
considered: temperature, T , and specific humidity, q, that are given in the form of vertical profiles. A so-called
observation operator, H , is required to make the possibly nonlinear link between model and observations. It is
composed of the SCM, denoted M, which forecasts the time evolution of the model variables, and of an opera-
tor, O, that converts the model variables into observed counterparts, translating T and q to microwave TBs, for
example. M and O are detailed in the following subsection.

2.1 Observation operator

2.1.1 Single column model

The single column model version of the ECMWF model has proved to be a very useful tool for developing and
testing the physical parameterizations and the vertical discretization of the equations. The idea behind the SCM
approach as opposed to three-dimensional modelling of the global circulation is to eliminate the interaction
between the large-scale dynamical processes and the column physics by externally specifying the large-scale
dynamical terms. This requires the forcings due to horizontal advection tendencies of T , q, cloud properties,
u and v, to the pressure gradient force, and to the vertical velocity. These inputs can be specified from either
observations, numerical weather prediction outputs or using an idealized setup. In this study, the forcings have
been specified from outputs of the ECMWF operational forecast model. Other options include (1) predicted or
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FIGURE 1: Schematic diagram of the 2D-Var assimilation method used in this study. Green dots represent individual
observations. Notations are explained throughout section 2.

prescribed surface fluxes which corresponds to the activation or deactivation of the surface scheme respectively;
(2) relaxation of selected state variables; and (3) specification of vertical advection tendencies instead of vertical
velocity. In all experiments presented here, the surface scheme is activated, no relaxation is used, and vertical
advection tendencies are specified. The SCM’s discretization is written as forward in time and upwind in space,
which has the advantages of stability, absence of computational mode, simplicity and convergence to the semi-
Lagrangian scheme used in the 3D ECMWF model for small timesteps. The correspondence between the 60
model levels used in this study and pressure levels is described in Table 1.

The physical package used in the current ECMWF SCM corresponds to cycle 23R4. In this study however,
the SCM has been run with the new simplified parametrizations of moist physical processes that were recently
developed for the purpose of variational data assimilation by Tompkins and Janisková (2004) for large-scale
condensation and precipitation and by Lopez and Moreau (2005) for convection. These parametrizations are
used here because of their improved linearity and approximation of the nonlinear schemes used in the opera-
tional forecasts (Tiedtke 1989, 1993). It is emphasized that, in this particular framework, cloud condensate and
precipitation amounts are not treated as prognostic variables.

The ECMWF SCM has been extensively used for the investigation of surface, planetary boundary layer, con-
vection and cloud processes and their parameterization (e.g. Bechtold et al. 2005; Gregory 2001; Betts and
Jakob 2002). The appeal of the SCM derives from its main shortcoming, namely the simplicity of removing
the feedback of the subgrid-scale physical processes on the large-scale dynamics. It is also an efficient way of
investigating new concepts.
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2.1.2 Microwave radiative transfer model

A microwave radiative transfer model (RTM) is required to convert the model’s state (temperature, moisture,
cloud condensate profiles) into TBs at the frequencies of the ground-based radiometer observations (23.8 and
31.4 GHz). The calculations performed in this study rely on the assumption that no heavy precipitation is
present or, in other words, that scattering can be neglected. Extinction by cloud particles, which is parametrized
as in Bauer (2002), is a function of the amount of cloud liquid water and ice, of their respective permittivities
and of the frequency. Therefore it does not depend on any assumed particle size distribution, which is justified
for frequencies lower than 85 GHz (Bauer 2002).

2.1.3 Radar reflectivity model

The radar backscattering cross-section at 35 GHz is related to the amount of cloud and precipitating water/ice
present along the radar beam. The forward modelling of this radar backscattering is performed by comput-
ing the hydrometeor optical properties. In the present version of the observational operator, all particles are
assumed spherical and the Mie solution is adopted. Extinction and scattering cross-sections are calculated as
functions of temperature, and integrated by assuming a Marshall-Palmer distribution for the precipitation par-
ticles and a modified-gamma distribution for the cloud particles. The radar reflectivity factor is then computed
as the integral of the backscattering cross-section over the size distribution. The path-integrated attenuation is
accounted for. All reflectivity and attenuation values are stored in a look-up table and classified according to
the values of temperature and liquid and ice water contents, which are standard outputs of ECMWF’s SCM. A
bilinear interpolation is then applied to extract the reflectivity and the attenuation values corresponding to the
given temperature and hydrometeor contents. The special treatment of the melting layer developed by Bauer
(2001) is also included. This reflectivity/attenuation model was verified against that of Thurai et al. (2001) and
exhibited a good consistency among the reflectivity values.

2.2 2D-Var solution

The proposed 2D-Var method searches for the model state vector at the initial time, x0 � �
T0 � q0 � , that minimizes

the following functional or cost function

J
�
x0 ��� 1

2

�
x0 � xb

0 � T B � 1 � x0 � xb
0 �� �
	 �

Jb

� 1
2 ∑

t

�
Ht

�
x0 � � yt � T R � 1

t

�
Ht

�
x0 � � yt �� �	 �

Jo

(1)

where subscript t denotes the model timestep and xb
0 is the background model state at the initial time. Ht � OMt

is the nonlinear observation operator that converts the initial model state into observed equivalents at time t
for comparison with the corresponding observations yt . R is the error covariance matrix of the observations
which may be time-dependent (see section 3.2). Matrix B contains the background error covariances for T
and q that are estimated according to Rabier et al. (1998). Note that T and q are assumed to be uncorrelated.
An example of profiles of the background error standard deviations is given in Fig. 2. The result of 2D-Var
is therefore the optimal combination of the background information (Jb) with information coming from the
available observations (Jo), weighted by the inverse of their respective error covariances.

Two approaches have been tested for solving the 2D-Var problem: an iterative minimization method and a
direct solver that uses the Hessian of the cost function.

In the first approach, the minimization of the functional is performed using the quasi-Newton descent algorithm
(M1QN3) developed by Gilbert and Lemaréchal (1989). This requires the calculation of the gradient of the
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Model level number Pressure (hPa)
5 1

10 4
15 12
20 36
25 96
30 202
35 353
40 539
45 728
50 884
55 979
60 1012

TABLE 1: Pressure (in hPa) on every five model levels between levels 5 and 60. Values are given assuming a surface
pressure of 1013.25 hPa.
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FIGURE 2: Vertical profiles of typical values of the standard deviation of the model background errors on temperature
(dashed line) and specific humidity (solid line). Units are in K and g kg �

1 respectively.
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functional defined in Eq. (1) which writes

∇x0
J � B � 1 � x0 � xb

0 � � ∑
t

Ht
T R � 1

t
�
Ht

�
x0 � � yt � (2)

where Ht
T is the transpose (or adjoint) of the Jacobian matrix of the nonlinear observation operator, Ht .

Throughout this study Ht has been computed using finite-differences since the tangent-linear and adjoint ver-
sions of the SCM are not available yet. It should also be noted that a preconditioning based on the left-hand
square root of B is used to ease the minimization process.

In the alternative solving method, the second order derivative or Hessian, J
� �

, of the cost function is first calcu-
lated as

J
� � � B � 1 � ∑

t
Ht

T R � 1
t Ht (3)

and the control vector, xa
0, solution of the minimization problem is then given by

xa
0 � xb

0 � J
� � �

x0 � � 1 ∇x0
J (4)

The advantage of the Hessian method is that it yields the solution without any iteration and is therefore much
cheaper computationally than the minimization with M1QN3. However, Eq. (4) relies on the assumption that
the cost function is not far from being quadratic or in other words that the observation operator H is not too
nonlinear, which may be sometimes far from the truth when moist processes are considered. Results from the
two solving methods will be compared in section 4.1.

In the proposed 2D-Var assimilation, it is important to note that in spite of the temperature and specific humidity
modifications at the beginning of the assimilation window, the SCM forcings applied at a given timestep do not
vary from one iteration of the minimization to the next or when the analyzed SCM trajectory is computed. In
the context of 4D-Var, the variational increments at a given grid point are spread horizontally by the structure
functions (i.e. matrix B), which implies that the changes in the horizontal gradients and therefore in the forcings
due to horizontal advection remain limited. Therefore the error due to the fixed SCM forcings is likely to be
small.

3 Observations

3.1 ARM dataset

All observations used in this study have been obtained from the online archive of the ARM Program (http://www.-
archive.arm.gov/). The ARM Measurements are available for four geographical sites: one in Alaska, two in
the Tropical West Pacific and one in Oklahoma (Southern Great Plains; SGP), for which observations date
back to 1993. Here, we have used observations related to clouds and precipitation that were collected at the
SGP Central Facility by a vertically-pointing microwave radiometer, a zenith-pointing millimeter cloud radar
and surface rain gauges. The corresponding measured quantities are TBs in the 23.8 and 31.4 GHz channels,
35 GHz radar reflectivities and accumulated amounts of surface precipitation. The 23.8 GHz TBs are mainly
sensitive to water vapour path while at the 31.4 GHz frequency they also vary with cloud liquid water path.
TCWV retrievals from the ground-based Global Positioning System (GPS) network SuomiNet (Ware et al.
2000) have also been obtained from the ARM archive and used both either for validation or in the assimilation
process. The TBs and reflectivities were averaged in time to match the model’s timestep of 30 minutes.
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3.2 Instrumental and representativeness errors

In order to complete matrix R involved in the variational cost function (Eq. (1)), one needs to formulate as-
sumptions concerning the magnitude of the instrumental and representativeness errors. As for brightness tem-
peratures, the error standard deviation is set to 1 K which accounts for the instrumental error (about 0.3 K), the
error in the RTM (less than 1 K in non-precipitating conditions), and also the spatial representativeness error.

The error standard deviation for reflectivities, σZ � is arbitrarily set either to 2.5 dBZ or to

σZ � ln
�
10 �

10

�
Z2

o
� �

1 � 5 Zb � 2 � 1
2

�
in mm6 m � 3 � (5)

depending on whether the departures in Jo are expressed in dBZ or in mm6 m � 3, respectively (Z
�
dBZ � �

10log10Z
�
mm6 m � 3 � ). Zo and Zb are respectively the observed and simulated background reflectivities. Note

that the inclusion of the model background reflectivity in Eq. (5) is meant to avoid the specification of too small
errors when Zo is very low, which would give too much weight to the Jo term during the minimization. It also
provides a crude way of taking the reflectivity model error into account. σZ is plotted in Fig. 3.a as a function
of Zo and Zb.

In the case of surface precipitation assimilation, it is the square root of the rainfall amount which is used in
the Jo term, since this transformation leads to an error distribution which is closer to Gaussian. Similarly to
what was done for reflectivities, the error standard deviation for the square root of the surface precipitation is
assumed to be given by

σ �
RR �

���
0 � 05 � max

�
RRmin

o � RRo �	� 2 � �
0 � 10 
 max

�
RRmin

b � RRb ��� 2 � 1
2

(6)

where RRo and RRb are respectively the observed and background surface precipitation amounts and where
RRmin

o =5 mm and RRmin
b =0.5 mm. σ �

RR
is shown in Fig. 3.b as a function of RRo and RRb.
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FIGURE 3: Standard deviation of the observation and representativeness error in (a) 35 GHz radar reflectivity and (b)
square root of surface precipitation as a function of the observed (x-axis) and model background (y-axis) values.

Finally, the error standard deviation of the GPS TCWV retrievals has been set to 2 kg m � 2, which is about
30% higher than the error found in the literature (e.g. Tregoning et al. 1998) in order to crudely represent the
forward modelling error.
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3.3 Screening of observations

Given that scattering by heavy precipitation is not accounted for in our simple RTM and assuming that any
wetting of the microwave radiometer sensor by surface precipitation or dew contaminates measurements, TBs
observed under such conditions have been disregarded. Similarly, the reflectivity measured by the cloud radar
tend to saturate in the presence of heavy precipitation, thus observations above 20 dBZ are also rejected. In other
respects, large background � observation departures can be detrimental to the convergence of the minimization
because they can result in a serious violation of the linear hypothesis. This turned out to be particularly true
when trying to assimilate TBs and radar reflectivities. Consequently, all observations for which the absolute
value of background departures are larger than 3 K for TBs and 15 dBZ for reflectivities are systematically
rejected in 2D-Var. Note that a comparable screening procedure is also applied in the operational 4D-Var
system.

4 Experiments

4.1 Results

4.1.1 2D-Var applied to microwave TBs and radar reflectivities

The proposed 2D-Var technique has been applied to assimilate the microwave brightness temperatures from
the ground-based radiometer and reflectivities from the millimeter cloud radar in cloudy but non-precipitating
situations. Earlier tests were performed using half-hourly averaged profiles of radar reflectivities alone. In these
experiments, M1QN3 was not able to minimize the cost function because the discrepancies in reflectivities
between the model background and the observations could be large and highly variable in both space and
time. The use of too many reflectivity observations (24 timesteps � 60 levels) seemed incompatible with a
successful assimilation. The problem was overcome by averaging the reflectivity profiles over the entire 12-
hour assimilation window. This further averaging smooths out model � observation departures and therefore
reduces the constraint imposed through the cost function. The degree to which the minimization problem is
ill-posed can be assessed by studying its condition number (or ellipticity), defined as the ratio of the lowest and
highest eigenvalues of the Hessian matrix of Eq. (3). Typical values of this condition number reach 4000 when
trying to assimilate 30-mn reflectivity profiles but only 250 with a single profile of reflectivity averaged in time.
This indicates that the ellipticity of the cost function is strongly reduced, which makes the minimization more
efficient. The approach chosen here is to combine the information in the vertical provided by time-averaged
reflectivity profiles with the high-temporal frequency information contained in half-hourly microwave TBs.
The use of other statistical moments of reflectivities, such as their temporal variance, might help to constrain
the minimization even further, but this was deemed to be beyond the scope of the present study.

The case presented here is that of a persistent stratiform high-level cloud between 0000 UTC and 1200 UTC 23
January 2001. The mean atmospheric flow was westerly with anticyclonic conditions (MSLP=1023 hPa) and
with no precipitation observed at the surface. Figure 4 displays the time evolution of TCWV and microwave
TBs, and also shows the time-averaged profile of reflectivity before and after the 2D-Var analysis (Hessian
method) and from the observations. All quantities from the model are in better agreement with the measure-
ments after applying the 2D-Var increments of temperature and specific humidity to the model’s initial state.
TBs in both channels are increased to better match the observations on average. Reflectivities are simultane-
ously reduced to get closer to the radar data. Although TCWV is not assimilated as such in this experiment,
it is improved by 0.4 kg m � 2 on average, leading to a better agreement with the retrievals from the radiometer
and the radiosondes. This is due to the dependence of TBs on TCWV, especially at 23.8 GHz.
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FIGURE 4: 2D-Var assimilation of half-hourly microwave TBs available over 12 hours from 0000 UTC 23 January 2001
and of the reflectivity profile averaged over the same period: 12-hour evolution of (a) TCWV, (b) 23.8 GHz TB and (c)
31.4 GHz TB as they would be measured from the ground. The averaged profile of reflectivity is displayed in panel (d).
Background (BG; dotted line), 2D-Var analysis (ANA; solid line) and observations (symbols or dashed line according to
panel legend) are plotted and their respective temporal average is given at the top of panels (a)-(c). MWR: microwave
radiometer, SND: radiosondes. Filled triangles indicate radiometer observations that have been taken into account in the

2D-Var cost function.
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Figure 5 shows the time evolution of the radar reflectivity profile before and after 2D-Var, compared to obser-
vations. Qualitatively, the overall pattern agrees rather well with the radar but quantitatively the model tends
to overestimate reflectivity between 4 and 8 km above ground level, as already seen in Fig. 4.d. After 2D-Var
this pattern remains unchanged but the reflectivities are in better agreement with the measurements. The cor-
responding increments of T and q at the beginning of the 2D-Var assimilation window shown in Fig. 6 exhibit
a heating and drying out between model levels 34 and 46 that reduce the amount of scatterers (see Fig. 4.d),
and a substantial moistening below model level 46 that lead to the increase of microwave TBs (see Fig. 4.b,c).
The white isolines in Fig. 5.a and b indicate that although the cloud extends up to a height of 11 km, the main
contribution to the simulated reflectivity comes from the larger amounts of scattering particles that are partly
treated as precipitation in the model between 4 and 9 km.

This case suggests that when the model background and the observations do not differ too much and when the
background reflectivity is lower than observed, 2D-Var can produce reasonably sized T and q increments at
initial time that can improve both the time-averaged reflectivity profile and the time evolution of microwave
TBs. However it will be shown in section 5 that in other situations the convergence of the minimization can be
hampered when the simulated reflectivities need to be increased.
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FIGURE 5: 2D-Var assimilation of half-hourly microwave TBs available over 12 hours from 0000 UTC 23 January
2001 and of the reflectivity profile averaged over the same period: 12-hour evolution of reflectivity (in dBZ) from (a)
background, (b) 2D-Var analysis and (c) observations. White isolines of simulated amounts of cloud condensate (solid;
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1) are also plotted in panels (a) and (b).
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FIGURE 6: 2D-Var assimilation of half-hourly microwave TBs available over 12 hours from 0000 UTC 23 January 2001
and of the reflectivity profile averaged over the same period: increments of (a) specific humidity and (b) temperature at

initial time.

4.1.2 2D-Var applied to rain gauge and GPS water vapour measurements

The 2D-Var method has also been applied to assimilate accumulated rain-gauge measurements collected at
the ARM SGP site, which were also combined with GPS TCWV data in some experiments. Tests have been
performed to assess the impact of the frequency of the precipitation observations in the 12-hour assimilation
window and the influence of the choice of the solving method on the 2D-Var results.

Various experiments will be presented here, as summarized in Table 2.

Experiment name Solving Frequency of accumulated Assimilation of
24 October 2002 method rain-gauge observations half-hourly GPS TCWV retrievals

H R1 Hessian 12h No
H R4 Hessian 3h No
M R1 M1QN3 12h No

H R1 GPS Hessian 12h Yes
H R4 GPS Hessian 3h Yes

TABLE 2: Configurations of 2D-Var assimilation experiments with rain-gauge and GPS TCWV data.

First, the focus is on a non-convective rainy event that took place on 24 October 2002, with the 12-hour as-
similation starting at 1200 UTC. Figure 7 displays a summary of the results of these experiments in terms of
the time evolution of TCWV and accumulated surface precipitation. The corresponding analysis increments of
specific humidity and temperature at initial time are plotted in Fig. 8. Figures 7 and 8 indicate that the Hessian
and M1QN3 solving methods lead to very similar results. This is particularly true of the surface-rain evolution
in Fig. 7.b for which the two curves are literally superimposed. Note that eight iterations were performed with
M1QN3 and that the cost function dropped from 10.3 to 2.6. Figure 7.a and 8.a show that an overall reduc-
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FIGURE 7: 2D-Var assimilation of accumulated rain-gauge measurements and GPS TCWV data available over 12 hours
from 1200 UTC 24 October 2002. Experiments are described in Table 2. Panels (a) and (b) show the 12-hour evolution of
TCWV and accumulated surface precipitation respectively, before (BG; cyan line) and after 2D-Var (experiment names
indicated in legend; black lines). Available observations are shown with symbols as indicated in the legend: microwave

radiometer (MWR), radiosondes (SND), GPS, and rain-gauge (RGG).
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FIGURE 8: 2D-Var assimilation of accumulated rain-gauge measurements and GPS TCWV data available over 12 hours
from 1200 UTC 24 October 2002. Experiments are described in Table 2. Panels (a) and (b) show the increments of

specific humidity and temperature at the initial time, respectively.
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tion of the moisture field is required throughout the troposphere to make the simulated 12-hour accumulated
surface precipitation match the rain-gauge measurement. However, the corresponding drop in TCWV of up
to 5 kg m � 2 (Fig. 7.a) is in total disagreement with any of the consistent GPS, radiosonde and radiometer
observations. Therefore, the improvement on precipitation is obtained through a degradation of the moisture
field. A slight heating of less than 0.2 K implies higher values of saturation specific humidity and therefore also
contributes to the decrease of simulated precipitation.

The joint assimilation of half-hourly GPS TCWV data and rain-gauge measurements provides a beneficial
constraint on the humidity field during the minimization. Indeed the curves for experiments H R1 GPS and
H R4 GPS in Fig. 7 exhibit improvements in both terms of TCWV (increased by about 1 kg m � 2) and surface
precipitation, even though the latter field is not improved as much as it was in experiment H R1, as expected.
This implies that the assimilation of rain-gauge observations in a 4D-Var context should perform better if other
types of nearby observations are available to constrain the minimization. The apparent opposite influences of
rain and moisture observations in the studied case could be due to the fact that 2D-Var does not modify the
dynamical fields such as vertical velocity. The inclusion of increments of vorticity and divergence in 4D-Var
could eliminate this limitation, but this will need to be checked. The vertical profiles of 2D-Var increments
of both T and q look very different when the GPS data are added, with a moistening and heating between the
surface and model level 43, and opposite changes above. As a moistening of the lower half of the troposphere
is needed to adjust the TCWV field to the GPS observations, a heating stronger than in experiment H R1 is
necessary to simultaneously reduce the amount of surface precipitation.

The comparison of the curves of experiments H R1 GPS and H R4 GPS shows that when four 3-hourly accu-
mulated rainfall measurements are assimilated instead of a single 12-hourly one, the magnitude of the 2D-Var
temperature increments increases. This can be explained by the larger contribution of the four precipitation
observations to the Jo term.

The second case that is presented is the convective rainy event that was observed between 0000 UTC and
1200 UTC on 16 June 2002. Figure 9 displays a summary of the results of these experiments in terms of the
time evolution of TCWV and accumulated surface precipitation. With a single observation of 12-hourly accu-
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FIGURE 9: Same as in Fig. 7, but for 16 June 2002.

mulated rain at the end of the assimilation window (H R1), 2D-var produces a slight initial drying that leads
to a reduction of the background precipitation towards the measurement, but the timing of the rainfall is not
significantly modified. Figure 9.a indicates that the simulated TCWV remains generally far too high compared
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to the GPS, radiosonde, and radiometer data. With four 3-hourly rain observations (H R4), a strong initial
moistening of 15 kg m � 2 is necessary to increase simulated precipitation over the first half of the assimilation
window in order to improve the timing of the event. However, after 5 hours, the SCM becomes unrealistically
drier than observed (Fig. 9.a) due to the earlier increase of rain production. As a result of this, the final rain
accumulation after 2D-Var becomes slightly too low. When GPS TCWV data are also assimilated (H R1 GPS
and H R4 GPS), the amount and the timing of the rainfall are both improved, especially with four rain obser-
vations. Interestingly, at the same time, Fig. 9.a shows that the SCM TCWV gets closer to the observations.
This again stresses the importance of combining rain observations with measurements of the moisture field.

5 Discussion

As mentioned in section 4.1.2, some 2D-Var experiments indicated a potential limitation related to the way
precipitation is treated in the model when 2D-Var is applied to vertical profiles of reflectivity. An illustration
of the issue is given in Fig. 10 from a 2D-Var experiment started at 0000 UTC 4 February 2001 using either re-
flectivities only or reflectivities combined with half-hourly TBs. In this example some condensate of stratiform
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FIGURE 10: Panel (a): 2D-Var assimilation of the reflectivity profile averaged between 0000 UTC and 1200 UTC 4
February 2001: averaged profiles of reflectivity from cloud-radar observations (OBS; dashed line), prior to (BG; dotted
line) and after 2D-Var analysis (ANA; solid lines) performing 1, 2 or 3 iterations using the Hessian solving algorithm.

Panel (b): same as in (a), but with half-hourly microwave TBs also assimilated.

origin is seen by the cloud radar between model levels 35 and 49, with no precipitation at the ground and the
freezing level around level 50. Averaged simulated reflectivities prior to 2D-Var are substantially lower than
observed between levels 35 and 45, especially above level 40. After a single minimization using the Hessian
method, the 2D-Var analyzed reflectivities are increased. This change goes in the right direction with respect to
the observations above level 45 but yields far too high reflectivities below, especially when observed TBs are
also assimilated. This is due to the falling of the additional precipitation produced by 2D-Var inside the cloud
to match the observed reflectivities. In panel (a), most of this extra precipitation evaporates throughout the sub-
cloud layer, while most of it reaches the surface in panel (b) due to the low-level moistening required to match
observed TBs (not shown). In both cases, the new simulated reflectivities become far too high below model
level 47. Similar conclusions can be drawn when M1QN3 is used to minimize the cost function (not shown).
The unrealistic increase of simulated reflectivities below model level 47 is strengthened by the assumption that
any precipitation produced in the model at a given level reaches the ground within one time step, which is a
poor assumption for snow. If extra iterations of the Hessian solver are performed, 2D-Var reduces the simulated
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reflectivities to values that become lower than the background ones and no improvement towards the observa-
tions can be reached. It is therefore important to carefully consider how precipitation is treated in the model as
soon as information about the vertical structure of clouds and hydrometeors is to be assimilated. Implementing
a prognostic treatment of snow based on realistic fall velocities, as in Lopez (2003), would probably help to
lessen the problem substantially, but this will need to be tested.

Note that this problem did not affect the case presented in section 4.1.1 because the simulated reflectivities were
initially higher and not lower than the observations. In that case, several iterations of the Hessian solver did not
bring any significant change to the 2D-Var solution compared to that after a single iteration, as expected in a
completely linear framework.

Another interesting issue has been found by looking at the time evolution of the surface-rainfall Jacobians
throughout the assimilation window. As the Jacobians are obtained by perturbing a given variable (at initial
time) on each model level separately, one can define a norm that is simply set to the maximum absolute value
of the Jacobians over all levels. In Fig. 11, the norm of the Jacobians of the 3-hourly surface precipitation with
respect to the initial profiles of specific humidity and temperature is found to decrease in time regularly (from
experiment H R4 GPS). This indicates that in 2DVAR the magnitude of the Jacobians is not governed by the

Norm of rainfall Jacobian
(mm K-1 or mm (g kg-1)-1)

12 14 16 18 20 22 24
Time (h UTC)

0.0
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dRR/dq
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FIGURE 11: Time evolution of the norm of the Jacobians of 3-hourly accumulated rainfall at the surface with respect to
specific humidity (solid line) and temperature (dotted line) from experiment H R4 GPS (see Table 2). For each time, the

norm of the Jacobians with respect to a given variable is defined as their maximum absolute value in the vertical.

amount of rainfall since the comparison of Fig. 11 with Fig. 7.b shows that the Jacobians are strongest when
the precipitation amount is low. In fact, the closer to the beginning of the assimilation window, the larger the
impact of an initial perturbation of T or q on precipitation. This implies that when 2D-Var is used to assimilate
several rainfall measurements in the same 12-hour window, earlier observations will tend to have more impact
on the analysis than later ones. This can be understood by the fact that an increment in q applied at initial time
while the model state is close to saturation is likely to be ‘rained out’ within the first time steps, thereby making
any subsequent modification of precipitation impossible.

To investigate whether this issue could affect 4D-Var assimilation as well, adjoint sensitivities of 12-hour accu-
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mulated surface rainfall to T and q perturbations with various lead times have been computed using a special
configuration of the ECMWF model (Klinker et al. 1998). Compared to the original design, it is the use of the
adjoint of the new simplified parametrizations of moist processes (Tompkins and Janisková 2004, Lopez and
Moreau 2005) with their inclusion of precipitation perturbations that makes such calculations possible. Our
purpose here is to check whether the three-dimensional sensitivities get lower when the lead time of the pertur-
bation is increased. The computations of the nonlinear trajectory and of the adjoint evolution are performed at
a T95 spectral resolution (200 km) and with 60 vertical levels.

The selected case is tropical cyclone Isabel in its mature stage north of the Lesser Antilles in mid-September
2003. Figure 12 displays the 12-hour accumulated surface precipitation and mean-sea-level pressure (MSLP)
at 0000 UTC 13 September 2003 and at 1200 UTC 14 September 2003 from a forecast with the operational
version of the ECMWF model started at 1200 UTC 12 September 2003. At 1200 UTC 14 September 2003,
Isabel is located inside the black box shown on this map. The forecast aspect for which the sensitivities are to
be computed is the 12-hour accumulated rainfall amount at 1200 UTC 14 September 2003 averaged over the
box (denoted � RR12h

� ) and it is equal to 4 mm. The maximum value over the 24 grid points located inside the
target box reaches 8 mm in 12 hours, a very modest value that can be explained by the rather coarse horizontal
resolution used here, as suggested by tests run with different resolution.
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FIGURE 12: Tropical cyclone Isabel case: 12-hour accumulated surface rainfall (shading; in mm) and MSLP (isolines;
every 2 hPa) at (a) 0000 UTC 13 September 2003 and (b) 1200 UTC 14 September 2003, from a T95 L60 integration

started at 1200 UTC 12 September 2003.

An example of ∂ � RR12h
��� ∂T and ∂ � RR12h

��� ∂q is shown in Fig. 13 for perturbations applied on model
level 50 (see Table 1) and at 0000 UTC 13 September 2003. Note that these sensitivities have been scaled to
a 100 hPa-thick atmospheric layer so that their values at different vertical levels can be easily intercompared.
As expected from the backward adjoint integration, the patterns of sensitivities to T and q are located upwind
relative to the target box and to the prevailing mid-tropospheric easterly flow. ∂ � RR12h

��� ∂q is mainly
positive which indicates that a moistening on model level 50 will result in enhanced surface precipitation one
day later. ∂ � RR12h

��� ∂T exhibits a more marked bipolar pattern with positive values inside the storm’s
core and negative values around it. These sensitivities to temperature can be understood by realizing that a
warming inside or a cooling outside the storm would both result in an intensification of the tropical cyclone’s
radial circulation and therefore lead to the release of more precipitation. For similar reasons, the sensitivities to
temperature in the upper troposphere are opposite (not shown).
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Figure 14 displays the time evolution of the vertical profiles of maximum absolute value of the rainfall sensi-
tivities (obviously, the strongest sensitivities always occur not far away from the storm). Note that the ‘lead
times’ on the x-axis are negative to denote the backward integration of the adjoint model and that lead time
0 corresponds to the beginning of the surface rainfall accumulation, that is 0000 UTC 14 September 2003.
One should also keep in mind that in practice the sensitivities should be multiplied by typical values of T and
q perturbations on each model level (Fig. 2) in order to obtain the actual resulting change in surface rainfall.
Figure 14 shows that the longer the adjoint integration, the weaker the sensitivities of rainfall to T and q. This
drop of the sensitivities is more pronounced between the surface and model level 52 and beyond 12 hours of
adjoint backward integration. It is also sharper for the sensitivity to temperature than for that to specific hu-
midity. For lead times less than 12 hours, the sensitivities are not as much reduced, especially with respect to
moisture. This suggests that the uneven weighting of rain-gauge observations inside the assimilation window
that is likely to occur in 2D-Var is less of a problem in 4D-Var, provided the length of the assimilation window
does not exceed 12 hours. A likely explanation for these two different behaviours lies in the three-dimensional
nature of the increments and their interaction with the dynamics in the 4D context, while the 2D-Var produces
purely local increments of T and q that are completely independent from the SCM dynamical forcings. There-
fore the 4D-Var assimilation of several co-located accumulated surface rain-gauge measurements within the
12-hour assimilation window should not be affected too much by the problem found in 2D-Var.
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FIGURE 13: Tropical cyclone Isabel case: maps of sensitivities of the 12-hourly accumulated surface rainfall inside the
target box (accumulation started at 0000 UTC 14 September 2003) with respect to (a) T and (b) q on model level 50 at
0000 UTC 13 September 2003. Sensitivities are in mm K �

1 and mm (g kg �
1) �

1 respectively and have been scaled to a
100 hPa-thick layer.

6 Conclusions

The purpose of this study was to identify the issues that are likely to be encountered in the future assimilation of
observations that are directly affected by clouds and hydrometeors. The chosen 2D-Var framework facilitates
the focus on the issues related to the inclusion of the temporal dimension in the minimization when several
instantaneous observations or time-accumulated or time-averaged measurements are to be assimilated.

The first experiments run on ARM cloud-radar reflectivities have shown that the assimilation of half-hourly pro-
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FIGURE 14: Tropical cyclone Isabel case: sensitivities of the 12-hourly accumulated surface rainfall inside the target box
(accumulation started at 0000 UTC 14 September 2003) with respect to (a) T and (b) q up to 36 hours earlier. Lead times

are in hours prior to 1200 UTC 14 September 2003.

files is problematic because of the large model � observation departures on such timescale. Proper convergence
of the minimization can be obtained if a single profile of reflectivities averaged over the assimilation window is
used instead. However, when the background reflectivities are much lower than observed, the required produc-
tion of additional precipitation by the model can result in the non-convergence of the minimization because of
the falling of these extra hydrometeors towards the surface. How acute this problem is depends on the treatment
of precipitation in the model (diagnostic versus prognostic) as well as on the quality of the simulated humidity
field that governs precipitation evaporation below cloud base. The assimilation of half-hourly microwave TBs
from the ground-based radiometer turns out to be much less problematic because they are smoothly varying in
time, even in cloudy conditions with no precipitation at the surface. In the future, combining time-averaged pro-
files of reflectivity with high-frequency (e.g. half-hourly) microwave TBs appears to be a suitable method for
assimilating information on clouds. Furthermore, the assimilation of other statistical moments of reflectivities,
such as their temporal variance, might be beneficial, but this will need to be tested.

Other experiments in precipitating cases have proven that the assimilation of accumulated rain-gauge measure-
ments can lead to reasonable 2D-Var increments provided information on the moisture field (e.g. GPS data or
radiosoundings) is also used to constrain the minimization. This latter condition is expected to be generally
fulfilled in the context of 4D-Var. Similar results are obtained whether the minimization problem is solved by
explicit computation of the Hessian or by using the M1QN3 iterative algorithm. It has been shown that the sen-
sitivities of surface precipitation to the initial temperature and specific humidity profiles quickly decrease with
the lead time of the T and q perturbations in the 2D-Var context. This implies that the respective weights of a set
of asynchronous observations in the minimization is larger for those observations performed at the beginning
of the assimilation window. However, three-dimensional adjoint computations of surface rainfall sensitivity to
T and q have suggested that this problem should not be as critical in the current 12-hour assimilation window
of 4D-Var. Indeed the inclusion of the horizontal dynamics in 4D-Var means that sensitivities can also arise
from non-local perturbations, contrary to 2D-Var in which only local changes of initial T and q are considered.

Based on these results and given the fairly good coverage of real-time rain-gauge observations especially over
Europe and North America, future efforts will be dedicated to investigate the possibility of assimilating (12-
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hour) accumulated precipitation measurements directly into 4D-Var. To reach this goal, their representativeness
will first need to be assessed, possibly using ground-based precipitation radar data to quantify their spatial
variability, and their error statistics will need to be properly specified. Similar studies could focus on the
assimilation of radar reflectivities or precipitation retrievals from existing ground-based precipitation radar
networks, although real-time availability of such data could be more of an issue.
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