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ABSTRACT

Atmospheric CO2 concentrations have been obtained from AIRS radiance data within the ECMWF data assimilation sys-
tem. A subset of channels from the AIRS instrument on board the NASA Aqua platform has been assimilated providing
estimates of tropospheric and stratospheric column-average CO2 mixing ratios. Although global estimates are obtained,
the information content of the tropospheric estimates at mid- and high-latitudes is limited, and results are therefore only
presented for the tropical region. First results for April 2003 show considerable geographical variability compared to the
background with values ranging between 372 and 383 ppmv. These CO2 values are representative for a layer between
the tropopause and about 600 hPa. The monthly mean random error is about 1 %. Careful error analysis has been carried
out to minimize any systematic errors. This study has demonstrated the feasibility of global CO2 estimation using AIRS
data in an NWP data assimilation system. In the future the system will be improved to treat CO2 as a full 3-dimensional
atmospheric variable, including transport.

1 Introduction

The importance of accurate observations of atmospheric CO2 for top-down estimates of carbon sources and
sinks has been recognized for almost a decade. In this period various synthesis inversion studies have been
carried out using surface flask observations of CO2 concentrations to estimate carbon sources and sinks
at the Earth’s surface [Enting et al. (1995); Fan et al. (1998); Rayner et al. (1999); Bousquet et al. (1999a,b);
Kaminski et al. (1999); Peylin et al. (2000); Gurney et al. (2002)]. These flask measurements are highly ac-
curate, but are limited to less than 100 sites globally. This makes the inversion problem highly data limited,
especially in the tropics, where there are few surface flask stations. For some years now there has been a
growing interest in the use of satellite data to improve estimates of the spatial and temporal variability of atmo-
spheric CO2. In particular, the development of a new generation high-spectral resolution sounders that observe
the atmosphere in the infrared and/or the near-infrared triggered several studies on the capabilities of these
instruments to provide information on atmospheric CO2. Rayner and O’Brien (2001) showed that these satel-
lite observations have the potential to improve current CO2 inversions, if the accuracy of their monthly mean
values is better than 2.5 ppmv. Engelen et al. (2001a) performed a simulation study to look at the capabili-
ties of the Atmospheric Infrared Sounder (AIRS), Chédin et al. (2003) did similar simulations for the Infrared
Atmospheric Sounding Interferometer (IASI), and O’Brien and Rayner (2002) studied the near-infrared op-
tion, which might be realised by the Orbiting Carbon Observatory (OCO) mission. However, so far there is
only one study that has been performed with real satellite data; Chédin et al. (2002) used data from the Tiros
Operational Vertical Sounder (TOVS) to infer atmospheric CO2 concentrations in the tropics. Although the
capabilities of the TOVS instrument are limited with respect to CO2 [Engelen and Stephens (2004)], the results
of Chédin et al. (2002) are promising.

Data from the AIRS instrument have been assimilated operationally in the European Centre for Medium-Range
Weather Forecasts (ECMWF) four-dimensional variational (4D-Var) data assimilation system since October
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Figure 1: Nice Figure.

2003 [McNally et al., this volume]. Although the main purpose of this assimilation is to improve the tem-
perature, water vapour, and ozone fields as well as the dynamics, efforts are being made to also extract other
information from the observed radiances. Figure 1 shows the sensitivity of the observed radiances to changes
in several atmospheric variables for the short-wave and long-wave CO2 bands. Strong responses exist for
atmospheric temperature, surface temperature, and water vapour. The figure also shows CO2 sensitivity, al-
though it is much weaker than the other signals. However, the spectral correlation of an specific gas absorption
line distribution will also help to distinguish between the various variables. Therefore, it is feasible to extract
information about CO2 from the observed radiances and a column CO2 estimation has been implemented in
the data assimilation system as described in this paper. Whilst having more realistic CO2 concentrations in
the forecast model could in principal be beneficial for the short-term weather forecast [Engelen et al. (2001b)],
this in itself was not the main purpose of this research. The aim is to produce global CO2 fields from the AIRS
satellite data with accuracy high enough for carbon flux inversions. It is therefore important to have an accurate
characterisation of the CO2 estimates including their errors.

The main benefit of estimating CO2 mixing ratios within a numerical weather prediction (NWP) data assimi-
lation system is that temperature and humidity, which also affect the observed infrared radiances are well con-
strained by various other measurements and by the forecast model itself. For example, ECMWF assimilates
radiances from three Advanced Microwave Sounding Unit A (AMSU-A) instruments, three Special Sensor
Microwave Imager (SSM/I) instruments, two AMSU-B instruments, five geostationary satellites, two High
Resolution Infrared Radiation Sounder (HIRS) instruments, and many radiosondes and aircraft constraining
both temperature and water vapour on smaller vertical scales. These additional observational constraints on
temperature and water vapour assist the extraction of atmospheric CO2 from the AIRS observations within the
NWP system.

2 Set-up of the CO2 data assimilation system

2.1 CO2 as a column variable

Within the 4D-Var system CO2 is currently estimated as an independent column variable. This means that CO2
is not a tracer variable in the transport model and is estimated only at the observation locations. Background
error correlations between CO2 and the other assimilation variables are neglected. In practice this means that,
while the forecast model variables (e.g., temperature and water vapour) appear in the control vector (δx

�
t0 � )
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as 3-dimensional fields, CO2 appears as a vector of column variables at the observation locations. The link
between the initial state and the states at observation locations and times is absent for CO2. Another important
difference between the CO2 variable and the regular analysis variables (temperature, water vapour, etc.) is that
the background field of the regular variables is based on a forecast that uses the previous analysis as its initial
state. For CO2, each analysis uses a climatological background state of CO2. CO2 information is thus not
carried over from one analysis to the next.

This methodology was used as a first step to implement CO2 in the data assimilation system making use of
the current operational architecture. It makes full use of the accurate temperature and water vapour analysis
fields constrained by all available observations, but there are also some limitations. Firstly, the individual CO2
estimates are not constrained by the model transport during the 12-hour assimilation window. During this
12-hour time span the model transport is usually accurate and can help to advect information from one place
to another. Secondly, by assimilating column CO2 values instead of full profiles a hard constraint is applied to
the analysis in the form of a fixed profile shape. This removes some of the flexibility in the adjustments and
can lead to errors if the used profile shape is far from the truth. This hard constraint also means that all vertical
levels are fully correlated and any adjustments in the stratosphere will therefore also adjust the troposphere.
In case of many stratospheric radiance channels and only few tropospheric radiance channels this leads to a
dominant stratospheric signal in the estimated CO2 column value.

Based on first results (not shown here) indicating that the column variable was indeed dominated by the large
amount of stratospheric AIRS channels, the column variable was split into a tropospheric column and a strato-
spheric column. These two columns act as independent variables without any error correlation in the analysis.
The tropopause height that separates the two columns, is estimated from the background temperature profile
using an algorithm based on lapse rates, and varies with location. This ensured that the tropospheric analysis
results were not dominated by the stratosphere. However, any potentially useful correlations between strato-
spheric CO2 and tropospheric CO2 are disregarded. The tropospheric column can be quite variable in the
vertical. Depending on the tropopause height and the cloud top height, the column varies from shallow to deep
allowing respectively less or more channels to be used in the tropospheric analysis.

As described in McNally and Watts (2003), the cloud detection algorithm searches for channels that are un-
affected by clouds within the error margin of the observations and radiative transfer modelling. Within the
algorithm the channels are ranked in vertical space by assigning them a ”trip” level that represents the height
of an opaque cloud needed to affect the specific channel by more than 1%. The 1% number is somewhat ar-
bitrary, but is only used to rank the channels; it does not represent any error treshold in the remaining channel
radiances. After the cloud detection the lowest trip level of the remaining channels then approximates the
lowest level of the observation sensitivity. If there is a cloud, this corresponds to the cloud top height; if there
is no cloud, it corresponds to the lowest level of the clear column where the observation is still sensitive to
CO2. Areas with consistent high cloud cover will therefore affect the thickness of the tropospheric estimated
CO2 column.

2.2 Analysis error estimation

It is crucial to have an estimate of the individual analysis errors to properly interpret the analysis results.
Initially, the analysis error (σa) within the 4D-Var system was calculated from the background error (σb), the
observation error covariance (R), and the CO2 Jacobians (H):

σ 2
a ��� σ � 2

b � HT R � 1H ��� 1 (1)

The errors in the temperature, water vapour, and ozone profiles that enter the radiative transfer equation are
taken into account by inflating the observation error covariance (R) based on the sensitivity of the radiative
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transfer to perturbations defined by the respective background covariance matrices. Although this is a simpli-
fication of the real error model, it is sufficient for our purposes. Besides, the CO2 analysis itself is part of a
multivariate minimization problem that takes into account all relevant error sources.

Within a variational assimilation system the equation above requires separate calculations of the Jacobians
H for each observation, which amounts to significant extra computer time. Because the analysis error is in
first approximation a function of the tropospheric temperature lapse rate and the number of assimilated AIRS
channels peaking in the troposphere (determined by the tropopause height and the cloud top height), a non-
linear regression (artificial neural network [e.g., Rumelhart et al. (1986)]) was used to relate the analysis error
to these two variables. The neural network was trained with data from March 2003 and then used to estimate
the analysis errors for all other months.

3 Results

Some first results of the CO2 data assimilation scheme are presented here to illustrate the capabilities
of the system. The tropospheric background values used in the assimilation, shown in Figure 3, were
zonal mean monthly averaged mixing ratios based on surface flask observations from the previous year
[GLOBALVIEW-CO2 (2003)]. These averaged flask observations are based on maritime air samples and a
constant value of 2 ppmv was added to compensate for the annual trend. For the stratospheric background a
constant value of 375 ppmv was used. The background error was set to 30 ppmv and was deliberately taken
large to minimise the contribution of the background to the analysis in these preliminary experiments. Individ-
ual analysis values at the observation locations were gridded onto a 1 x 1 latitude-longitude grid for a whole
month. Within a grid box the data were averaged using a weighted average with the analysis errors as weights.
This 1 x 1 grid was then smoothed with a 15 x 15 moving boxcar average. Each individual grid box needed to
have more than 10 observations within a month to be included in the smoothing averaging. Therefore, some
geographical areas have no data in the final monthly mean fields because of consistent high cloud cover.

3.1 Quality of analysis

The information content of the CO2 estimates is highly variable due to variations in temperature lapse rate and
cloudiness (see also section 2.2) and, therefore, the contribution of the background to the analysis estimate
varies as well. The value of the analysis error relative to the background error shows how much information is
gained from the observations and can be formally represented by the averaging kernel [Rodgers (2000)], which
is for a single scalar analysis variable defined as:

A � 1 	 σ 2
a

σ 2
b

(2)

The averaging kernel varies between 0 and 1, where 0 means that we retrieve the background value back in
the analysis, while 1 means that we have an analysis independent of the used background. With a constant
background error (as currently used) there is no fundamental difference between the averaging kernel and the
analysis error itself, but when the background error varies geographically, the averaging kernel is much easier
to interpret. Also, the absolute values of the averaging kernel largely depend on the value of the background
error. We will therefore only use the relative values of the averaging kernel, because our assumption of a very
large background error causes the averaging kernel to be unrealistically close to one. Figure 2 shows the mean
averaging kernel for April 2003 using all available channels on teh left and using clear field-of-views only
on the right. It is immediately clear that the information content of the analysis is highest in the tropics, but
degrades quickly at higher latitudes. This is caused by the shallower troposphere (lower tropopause) and the
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Figure 2: Averaging kernel averaged for April 2003 on a 1 x 1 grid using all available channels (left) and
using clear field-of-views only (right).

 

372.00 373.20 374.40 375.60 376.80 378.00 379.20 380.40 381.60 382.80 384.00

-135 -90 -45 0 45 90 135

-135 -90 -45 0 45 90 135

-2
0

-1
0

0
10

20

-20
-10

0
10

20

Tropospheric CO2 BackgroundApril 2003 ppmv
 

372.00 373.20 374.40 375.60 376.80 378.00 379.20 380.40 381.60 382.80 384.00

-135 -90 -45 0 45 90 135

-135 -90 -45 0 45 90 135

-2
0

-1
0

0
10

20

-20
-10

0
10

20

Tropospheric CO2 AnalysisApril 2003 ppmv

Figure 3: Background (left) and analysis (right) CO2 distribution averaged for April 2003.

smaller temperature lapse rate at higher latitudes. Also, tropical convective areas have a much smaller mean
averaging kernel value due to high cloud top levels. However, in these cloudy tropical areas there are still
many occasions where the satellite instrument sees clear areas or areas with low clouds, even in the convective
regions. This is shown by the clear fov plot on the right that shows a homogeneous averaging kernel field
throughout the tropical area. Therefore, it is still possible to calculate monthly mean CO2 concentrations for
most of these areas. Based on Figure 2 we will show only analysis results for the region between 30 S and
30 N. CO2 is estimated outside this region, but the results depend significantly on the assumed background
values.

3.2 Monthly mean CO2 distribution

Figure 3 shows the CO2 analysis results for April 2003. The left panel shows the background values and the
right panel shows the actual analysis results. The background field is not entirely zonal, because the individual
observations are not homogeneously distributerd over the averaging grid and each individual background value
was interpolated in latitude from the GlobalView zonal means. The figure shows that the analysis adds struc-
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ture to the zonal background field. Although the main north-south gradient remains, meridional variability is
produced by the analysis. In the equatorial region the analysis tends to have more CO2 in the convective areas,
especially in the West Pacific. Another feature can be observed over the southern part of North America. A
careful analysis was done using AMSU-A data to see if these features were caused by biases in the temperature
analysis. This seems indeed to be the case for the high values over southern North America in April, where
a cold bias is observed in the temperature analysis field compared to AMSU-A measurements. This could
cause a positive bias in the CO2 field. However, for the other regions such a cold analysis bias is not present.
Also, plots of AIRS first-guess departures (the difference between the observed brightness temperatures and
the model simulated brightness temperatures from the 6-hour forecast) that drive the analysis show the same
patterns as the CO2 analysis field. These patterns are very dissimilar from the AMSU-A first-guess depar-
tures and can therefore not be explained completely by errors in the temperature forecast. To further illustrate
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Figure 4: Monthly mean CO2 increments as a function of observation departures for AIRS channels 193
and 213, AMSU-A channel 7, and AMSU-B channel 4.

the point, we have plotted in Figure 4 the monthly mean CO2 increments (analysis minus background) as a
function of the observations departures for AIRS channels 193 and 213 (both sensitive to mid-tropospheric
CO2), AMSU-A channel 7 (sensitive to mid-tropospheric temperature), and AMSU-B channel 4 (sensitive to
tropospheric water vapour). Any biases in the model temperature and water vapour fields that are aliased in the
CO2 results would show up as correlations in the 2 AMSU plots. While there is a significant correlation in the
two AIRS plots, such correlations are not shown in the AMSU plots. Although these results are not conclusive,
they indicate that the effect of model temperature and water vapour biases on the CO2 analysis is not large.
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Figure 5: CO2 analysis distribution averaged for April 2003 using clear field-of-views only (left) and model
simulation of tropospheric CO2 for the same period from the Max Planck Institute for Biogeochemistry
(right).

The higher CO2 values on the westside of Africa in April could be explained by biomass burning effects.
Similar patterns in the MOPITT carbon monoxide observations can be observed over that area in April 2003
(see http://www.eos.ucar.edu/mopitt/data/index.html). The high values in the western Pacific are probably
more surprising. One explanation could be that anthropogenic emissions from south-east Asia are lifted up
and transported to the western Pacific by the general circulation. During this part of the year there is a circular
wind pattern in the middle troposphere bringing air east from the south-east Asian coast and then south to
the middle of the Pacific. However, more careful analysis of the results should be carried out before drawing
firm conclusions. For example, clouds are detected in our cloud detection scheme within a small error margin.
Therefore, it is in principle possible to have a systematic error in the lower channels due to undetected clouds
resulting in a CO2 bias of a few ppmv. Also, air-mass dependent errors in the radiative transfer (e.g., the
spectroscopy) could cause systematic errors in the CO2 analysis results on regional scales.

Although it is possible to have an estimate of CO2 in the convective areas, the layer represented by this estimate
is much shallower than in areas with low clouds or no clouds at all. This could in principle make results
harder to interpret. When only cloud-free fovs are used, the thickness of the column if more uniform. For
comparison, the left panel of Figure 5 shows the CO2 analysis results for April 2003 using clear fovs only. The
CO2 values are slightly lower than the values shown in Figure 3, but the geographical patterns remain very
similar. However, if the thickness of the representative layer as well as the estimated analysis error are taken
into account, using all available data has the advantage of better spatial and temporal cover. This could be a
significant benefit in surface flux inversion studies. For comparison, Figure 5 also shows a model simulation
for the same period with the TM3 model from the Max Planck Institute for Biogeochemistry in Jena (Y. Tiwari,
personal communication, 2004). Although the amplitude of the gradients is smaller in the model simulations
(notice different colour scale), patterns are quite similar. The model tends to generate a more zonal distribution
but the high values over West Africa and the lower values along the East-African coast are similar. the main
difference is probably the high values over the Western Pacific that are missing in the model simulations.

3.3 Error estimate

To provide an indication of the error in the monthly mean CO2 distribution Figure 6 shows the individual
analysis errors averaged under different assumptions. The minimum error is calculated assuming that the
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Figure 6: Lower (left) and upper (right) estimate of the error in the monthly averaged CO2 distribution for April 2003.

errors of all individual estimates are completely uncorrelated using the following equation:

σmin � 

N

∑
i

1
σ 2

i � � 1 � 2
(3)

which implies a  N reduction of the individual errors. The maximum error is calculated assuming that the
errors of all individual estimates are correlated using the following equation:

σ max � 1
N

N

∑
i

σi (4)

Both error estimates clearly depend on the number of observations in the monthly average with cloudy areas
having larger errors. Neither error estimate includes systematic errors, but their range gives a reasonable
estimate of the average random error. For the tropical area the expected monthly-average analysis error is
therefore between 1 and 6 ppmv, which is on the order of 1%.

4 Summary

Global estimates of CO2 concentrations have been obtained from AIRS radiance data. A subset of channels
from the AIRS instrument on board the NASA Aqua platform has been assimilated in the ECMWF data assim-
ilation system providing estimates of tropospheric and stratospheric CO2 mixing ratios. Currently, CO2 is not
included as a tracer in the transport model, but treated as a column variable estimated at the time and location of
each AIRS observation entering the sytem. This setup has enabled first CO2 assimilation experiments, but has
the disadvantage that it lacks the transport constraint and the adjustment flexibility in the vertical. The analysis
errors have been estimated using a artificial neural network that relates the CO2 analysis error to the number of
assimilated channels sensitive to tropospheric CO2 and the tropospheric temperature lapse rate based on earlier
simulations that estimated the analysis error using Bayesian theory.

First results for April 2003 are presented showing considerable geographical variability compared to the back-
ground. Various quality checks were carried out to exclude as many potential error sources as possible. Careful
analysis is needed to guarantee the validity of results considering the small CO2 signal compared to these var-
ious error sources. Although the results presented in this paper have been quality-checked, more error analysis
and validation will be carried out in the near future.
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The current results show CO2 values ranging between 372 ppmv and 383 ppmv in the tropics with an esti-
mated error of about 3 ppmv for the monthly average. These values are representative for a layer between
the tropopause and about 650 hPa if only observations from cloud-free field-of-views are used. The lower
boundary of the representative layer varies between 500 and 700 hPa, when also observations are used where
some channels have been removed by the cloud detection algorithm.

This study has demonstrated the feasibility of global CO2 estimation using AIRS data in an NWP data assim-
ilation system. In the future the system will be improved to treat CO2 as a full 3-dimensional atmospheric
variable, including transport.
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