#### Solving the Convection Diffusion Equation on Distributed Systems

N. Missirlis, F. Tzaferis, G. Karagiorgos, A. Theodorakos, A. Kontarinis, A. Konsta

Department of Informatics and Telecommunications University of Athens

http://parallel.di.uoa.gr

# **This presentation**



- Considers the local MSOR
- Determines the optimum parameters.
- Parallel Implementation.
- Considers the Load Balancing Problem
- Results

### The problem



- Assume a  $\sqrt{N} \times \sqrt{N}$  array of processors and assign a processor to each grid point.
- Jacobi is highly parallel but T = O(N) (local communication)
- SOR is difficult to parallelize
  - Needs multicoloring
  - > Adaptive use of  $\omega$  needs global communication and results in

$$T = O(N)$$

same as Jacobi!

#### The solution



- Use local iterative methods (Ehrlich, Botta, Russel)
  - > Use of  $\omega_{ij}$  for each grid point.
  - > Local communication

 $\succ \quad T = O(\sqrt{N})$ 

Related research work

- Local SOR (Kuo et. Al. 1987)
- Local MSOR (Boukas and Missirlis 1997).
- Local SI-MEGS (Missirlis and Tzaferis 2002).

#### Introduction





# Introduction (Convection Diffusion Equation)

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} - f(x, y) \frac{\partial u}{\partial x} - g(x, y) \frac{\partial u}{\partial y} = 0 \quad (1)$$

**Discretization** 

$$u_{ij} = \ell_{ij} u_{i-1,j} + r_{ij} u_{i+1,j} + t_{ij} u_{i,j+1} + b_{ij} u_{i,j-1}$$

$$i = 1, 2, \dots, N \qquad j = 1, 2, \dots, N.$$
(2)



#### Ax = b

#### Jacobi

$$u_{ij}^{(n+1)} = \ell_{ij} u_{i-1,j}^{(n)} + r_{ij} u_{i+1,j}^{(n)} + t_{ij} u_{i,j+1}^{(n)} + b_{ij} u_{i,j-1}^{(n)}$$

**5-point stencil** 

Introduction ...



#### Ordering





natural

red-black

#### **R/B ordering**







#### Local Modified ESOR

$$u_{ij}^{(n+1)} = (1 - \tau_{ij})u_{ij}^{(n)} + \tau_{ij}J_{ij}u_{ij}^{(n)} \quad \text{(i+j even)}$$

$$u_{ij}^{(n+1)} = (1 - \tau'_{ij})u_{ij}^{(n)} + \omega'_{ij}J_{ij}u_{ij}^{(n+1)} + (\tau'_{ij} - \omega'_{ij})J_{ij}u_{ij}^{(n)} \quad \text{(i+j odd)}$$

where

$$J_{ij}u_{ij}^{(n)} = \ell_{ij}u_{i-1,j}^{(n)} + r_{ij}u_{i+1,j}^{(n)} + t_{ij}u_{i,j+1}^{(n)} + b_{ij}u_{i,j-1}^{(n)}$$

#### Local Modified SOR



$$u_{ij}^{(n+1)} = (1 - \omega_{ij})u_{ij}^{(n)} + \omega_{ij}J_{ij}u_{ij}^{(n)}$$
(i+j even)  
$$u_{ij}^{(n+1)} = (1 - \omega'_{ij})u_{ij}^{(n)} + \omega'_{ij}J_{ij}u_{ij}^{(n+1)}$$
(i+j odd)

#### **Optimum Parameters**

The Jacobi operator  $J_{ij}$  has real eigenvalues

$$\omega_{ij} = \widehat{\omega}_{1,i,j} \coloneqq \frac{2}{1 - \overline{\mu}_{ij}\underline{\mu}_{ij} + \sqrt{(1 - \overline{\mu}_{ij}^2)(1 - \underline{\mu}_{ij}^2)}}$$
$$\omega_{ij}' = \widehat{\omega}_{2,i,j} \coloneqq \frac{2}{1 + \overline{\mu}_{ij}\underline{\mu}_{ij} + \sqrt{(1 - \overline{\mu}_{ij}^2)(1 - \underline{\mu}_{ij}^2)}}$$



#### **Optimum Parameters**

The Jacobi operator  $J_{ij}$  has imaginary eigenvalues

$$\begin{split} \omega_{ij} &= \widehat{\omega}_{1,i,j} \coloneqq \frac{2}{1 - \overline{\mu}_{ij} \underline{\mu}_{ij}} + \sqrt{(1 + \overline{\mu}_{ij}^2)(1 + \underline{\mu}_{ij}^2)} \\ \omega_{ij}' &= \widehat{\omega}_{2,i,j} \coloneqq \frac{2}{1 + \overline{\mu}_{ij} \underline{\mu}_{ij}} + \sqrt{(1 + \overline{\mu}_{ij}^2)(1 + \underline{\mu}_{ij}^2)} \end{split}$$

Optimum values for complex eigenvalues ? Open Problem



#### **Optimum Parameters**

If  $\underline{\mu}_{ij} = 0$  then Local MSOR = Local SOR





### Local Modified SOR



#### Real

$$S\left(\mathfrak{I}_{\hat{\omega}_{1,i,j},\hat{\omega}_{2,i,j}}\right) = \sqrt{(\hat{\omega}_{1,i,j}-1)(\hat{\omega}_{2,i,j}-1)} = \frac{\sqrt{1-\overline{\mu}_{ij}^2} - \sqrt{1-\underline{\mu}_{ij}^2}}{\sqrt{1-\overline{\mu}_{ij}^2} + \sqrt{1-\underline{\mu}_{ij}^2}}$$

#### Imaginary

$$S\left(\Im_{\widehat{\omega}_{1,i,j},\widehat{\omega}_{2,i,j}}\right) = \sqrt{(1-\widehat{\omega}_{1,i,j})(1-\widehat{\omega}_{2,i,j})} = \frac{\sqrt{1+\overline{\mu}_{ij}^2} - \sqrt{1+\underline{\mu}_{ij}^2}}{\sqrt{1+\overline{\mu}_{ij}^2} + \sqrt{1+\underline{\mu}_{ij}^2}}$$

### Local Modified SOR



#### Conclusion

Local MSOR will attain at least the convergence rate of local SOR, whereas its convergence rate will increase as  $\underline{\mu}_{ij}$  increases.

The coefficients used in each problem are:

1. 
$$f(x, y) = \operatorname{Re}(2x-10)^3$$
,  $g(x, y) = \operatorname{Re}(2y-10)^3$   
2.  $f(x, y) = \operatorname{Re}(2x-10)$ ,  $g(x, y) = \operatorname{Re}(2y-10)^3$ 

(i) 
$$\mu_{\rm max} < 0.1$$

(ii) 
$$(\underline{\mu}_{\min}, \underline{\mu}_{\max}) \subset [0.1, 1.2]$$
  
(iii)  $\underline{\mu}_{\min} \ge 1$  LMSOR outperforms all methods





Comparison of local iterative methods for h=1/81, \* indicates no convergence after 5.10<sup>4</sup> iterations.

| # | Method                   | Re = 1   | Re = 10  | $Re = 10^{2}$ | $Re = 10^{3}$ | Re = 10 <sup>4</sup> |
|---|--------------------------|----------|----------|---------------|---------------|----------------------|
|   | (R,I)                    | (0,6400) | (0,6400) | (0,6400)      | (0,6400)      | (0,6400)             |
|   | $\underline{\mu}_{\min}$ | 0.058    | 0.613    | 6.13          | 61.3          | 613                  |
|   | $\underline{\mu}_{\max}$ | 0.118    | 1.2      | 12            | 120           | 1200                 |
| 1 | LSOR Nat                 | 167      | 321      | 2566          | 25394         | *                    |
|   | LSOR R/B                 | 89       | 264      | 2501          | 24289         | *                    |
|   | LMSOR                    | 89       | 278      | 452           | 519           | 733                  |





#### Local Modified EGS



The scheme for the Local Modified EGS is:

$$u_{ij}^{(n+1)} = (1 - \tau_{ij})u_{ij}^{(n)} + \tau_{ij}(\ell_{ij}u_{i-1,j}^{(n)} + r_{ij}u_{i+1,j}^{(n)} + t_{ij}u_{i,j+1}^{(n)} + b_{ij}u_{i,j-1}^{(n)})$$
  
red points

$$u_{ij}^{(n+1)} = (1 - \tau'_{ij})u_{ij}^{(n)} + (\ell_{ij}u_{i-1,j}^{(n+1)} + r_{ij}u_{i+1,j}^{(n+1)} + t_{ij}u_{i,j+1}^{(n+1)} + b_{ij}u_{i,j-1}^{(n+1)}) + (\tau'_{ij} - 1)(\ell_{ij}u_{i-1,j}^{(n)} + r_{ij}u_{i+1,j}^{(n)} + t_{ij}u_{i,j+1}^{(n)} + b_{ij}u_{i,j-1}^{(n)}) + b_{ij}u_{i,j-1}^{(n)})$$
  
black points



# **LMEGS – Optimum values**

|    | Case                                   | Optimum $	au_{_{ij}}$                            | Optimum $	au'_{ij}$                                                   | $Sig(\mathfrak{I}_{	au_{ij},	au_{ij}'}ig)$                                              |
|----|----------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| R1 | $\underline{\mu} < \overline{\mu} < 1$ | $\frac{2}{2-\underline{\mu}^2-\overline{\mu}^2}$ | $\frac{2(1-\overline{\mu}^2)}{2-\underline{\mu}^2-\overline{\mu}^2}$  | $\frac{\overline{\mu}^2 - \underline{\mu}^2}{2 - \underline{\mu}^2 - \overline{\mu}^2}$ |
| R2 | $\overline{\mu} > \underline{\mu} > 1$ | $\frac{2}{2-\underline{\mu}^2-\overline{\mu}^2}$ | $\frac{2(1-\underline{\mu}^2)}{2-\underline{\mu}^2-\overline{\mu}^2}$ | $\frac{\overline{\mu}^2 - \underline{\mu}^2}{\underline{\mu}^2 + \overline{\mu}^2 - 2}$ |



# **LMEGS – Optimum values**

| (  | Case                                  | Optimum $	au_{_{ij}}$                            | Optimum $	au'_{ij}$                                                  | $Sig(\mathfrak{I}_{	au_{ij},	au_{ij}'}ig)$                                              |  |  |
|----|---------------------------------------|--------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|--|
| 11 | $\underline{\mu} \neq \overline{\mu}$ | $\frac{2}{2+\underline{\mu}^2+\overline{\mu}^2}$ | $\frac{2(\overline{\mu}^2+1)}{2+\underline{\mu}^2+\overline{\mu}^2}$ | $\frac{\overline{\mu}^2 - \underline{\mu}^2}{2 + \underline{\mu}^2 + \overline{\mu}^2}$ |  |  |



### **Semi-Iterative LMEGS**

Let  $\sigma_{ij} = S(\mathfrak{I}_{\tau_{ij},\tau'_{ij}})$  and the sequence

$$\delta_{ij}^{(1)} = 1 \qquad \delta_{ij}^{(2)} \coloneqq \left(1 - 0.5\sigma_{ij}^2\right)^{-1} \qquad \delta_{ij}^{(k+1)} \coloneqq \left(1 - 0.25\sigma_{ij}^2\delta_{ij}^{(k)}\right)^{-1}$$

Improvement: 
$$u_{ij}^{(k+1)} := \delta_{ij}^{(k)} u_{ij}^{(k+1)} + (1 - \delta_{ij}^{(k)}) u_{ij}^{(k-1)}$$



Comparison of LMSOR and SI-LMEGS:  $f(x, y) = g(x, y) = \text{Re} \cdot x^2$ 

| N = 40                   | Re = 1 | Re = 10 | Re = 10 <sup>2</sup> | Re = 10 <sup>3</sup> | Re = 10 <sup>4</sup> |
|--------------------------|--------|---------|----------------------|----------------------|----------------------|
| (R , I)                  | R      | R       | I                    | I                    | Ι                    |
| $\underline{\mu}_{\min}$ | 0.0383 | 0.0380  | 0.0045               | 0.0116               | 0.0226               |
| $\overline{\mu}_{max}$   | 0.9971 | 0.9971  | 0.9971               | 11.5304              | 115.73               |
| SI-LMEGS                 | 87     | 120     | 79                   | 88                   | 1058                 |
| LMSOR                    | 97     | 125     | 83                   | 76                   | 932                  |



| N = 120                  | Re = 1 | Re = 10 | Re = 10 <sup>2</sup> | Re = 10 <sup>3</sup> | Re = 10 <sup>4</sup> |
|--------------------------|--------|---------|----------------------|----------------------|----------------------|
| (R , I)                  | R      | R       | R                    | I                    | Ι                    |
| $\underline{\mu}_{\min}$ | 0.0130 | 0.0130  | 0.0119               | 0.0023               | 0.0025               |
| $\overline{\mu}_{max}$   | 0.9997 | 0.9997  | 0.9997               | 3.9379               | 40.6161              |
| SI-LMEGS                 | 255    | 353     | 226                  | 163                  | 295                  |
| LMSOR                    | 284    | 369     | 240                  | 161                  | 250                  |



#### **Conclusions:**

• If  $\overline{\mu}_{max} < 3$  , SI-LMEGS is better than LMSOR



We divide the N<sup>2</sup>-points mesh into p equal rectangles of size  $N/x_p \times N/y_p$ .



Two phases in each step:

Phase 1: Communication of black boundary points.

Phase 2: Communication of red boundary points.

Computation and communication time for every process:

$$t_{comp}(T_i) = O(N^2/p) \qquad t_{comm}(T_i) = 2\left(\frac{N}{x_p} + \frac{N}{y_p}\right)$$

|        |   |       |       |       |          |     |     |        |       |       |            |       |       |   | 1 |   |       |       |       |   |            |       |       |
|--------|---|-------|-------|-------|----------|-----|-----|--------|-------|-------|------------|-------|-------|---|---|---|-------|-------|-------|---|------------|-------|-------|
|        |   |       |       |       |          | _   |     |        |       |       |            |       |       | _ |   |   |       | _     |       | _ |            | -     |       |
| •      |   | •     |       | •     |          | •   | ×.  | 2      |       | •     |            | •     |       | • |   | ۶ |       | •     |       | • |            | •     |       |
|        | • |       | -     |       | -        |     | •   |        | -     |       | -          |       | -     |   |   |   | -     |       | •     |   |            |       | -     |
|        | - |       | -     |       | -        |     |     | 7      | -     |       | -          |       | -     |   |   |   | -     |       | -     |   |            |       | -     |
| •      |   | •     |       | •     |          | •   |     |        |       | •     |            | •     |       | • |   |   |       | •     |       | • |            | •     |       |
| •      | • |       | •     |       | •        |     |     |        | •     |       | •          |       | •     |   |   |   | •     |       | •     |   | •          |       | •     |
| •      |   | •     |       | •     |          | •   |     |        |       | •     |            | •     |       | • |   | • |       | ullet |       | • |            | ullet |       |
| •      | • |       | •     |       | •        |     | , È | 1      | •     |       | •          | . •   | •     |   |   |   | •     |       | •     |   | •          |       | •     |
| <br>•) |   | •     |       | •     | )<br>••• | •   |     | 9      |       | •     | ) <b>•</b> | •     |       | • |   | • |       | •     |       | • |            | •     |       |
|        | • |       | ullet |       | •        |     | Ĩ   |        | ullet |       | •          |       | •     |   |   |   | •     |       | •     |   | •          |       | •     |
| •      |   | •     |       | •     |          | •   | K   | 9      |       | •     |            | •     |       | • |   | ۶ |       | •     |       | • |            | •     |       |
|        | • |       | •     |       | •        |     | •   |        | •     |       | •          |       | •     |   |   |   | •     |       | •     |   | •          |       | •     |
|        | - |       | -     |       | -        |     | -   |        |       |       |            |       |       |   |   |   |       |       |       |   | -          |       |       |
| -      |   | -     |       | -     |          |     |     |        |       | -     |            | -     |       |   |   |   |       |       |       | • |            | •     |       |
|        | • |       | •     |       |          | . • |     | ╵╴     |       |       |            |       |       |   |   |   |       |       |       |   |            |       | •     |
| <br>•) |   | •     |       | •     | )        | •   |     | •<br>• | )     | •     | )          | •     | )     | • |   | • |       | •     | )     | • | ) <b>_</b> | ))    |       |
|        | • |       | ullet |       | ullet    |     | ę   |        | ullet |       | ullet      |       | ullet |   |   |   | ullet |       | ullet |   | ullet      |       | ullet |
| •      |   | ullet |       | ullet |          | •   |     |        |       | ullet |            | ullet |       | • |   | • |       | ullet |       | • |            | •     |       |
|        | • |       | •     |       | •        |     | Q   |        | •     |       | •          |       | •     |   |   |   | •     |       | •     |   | •          |       | •     |
| •      |   | •     |       | •     |          | •   | K   | 9      |       | •     |            | •     |       | • |   | ۶ |       | •     |       | • |            | •     |       |
|        | • |       | •     |       | •        |     | •   |        | •     |       | •          |       | •     |   |   |   | •     |       | •     |   | •          |       | -     |
| -      |   | -     |       |       |          | -   |     |        |       | -     |            |       |       | - |   |   |       |       |       |   |            |       |       |
|        | - |       | -     |       | •        |     | ₹   |        | •     |       | •          |       | •     |   |   |   | •     |       | •     |   | -          |       | •     |



#### Communication





Speed up: 
$$S_{p} = \frac{T_{1}}{T_{p}} = O\left(\frac{p}{1 + (y_{p} + x_{p})/N}\right)$$
  
Efficiency: 
$$E_{p} = \frac{S_{p}}{p} = O\left(\frac{1}{1 + (y_{p} + x_{p})/N}\right)$$

$$S_p \to O(p)$$
 and  $E_p \to 1$  while  $\frac{p}{N} \to 0$ .















### **The Load Balancing Problem**





#### **The Diffusion Method**







# **Domain Decomposition**



#### **Load Transfer Policy**











|         | 6 processors |           |              |            |        |         |          |  |  |  |  |  |  |
|---------|--------------|-----------|--------------|------------|--------|---------|----------|--|--|--|--|--|--|
|         |              | Without L | B            |            | Wit    | With LB |          |  |  |  |  |  |  |
| size    | Comm.        | Comp.     | Time         | Comm.      | Comp.  | Time    | Gain %   |  |  |  |  |  |  |
|         |              | Sc        | ale Factor(N | √I) = 0,00 | 0001   |         | -        |  |  |  |  |  |  |
| 20x20   | 1,321        | 14,710    | 16,031       | 2,371      | 14,186 | 16,557  | -3,28%   |  |  |  |  |  |  |
| 40x40   | 1,620        | 14,729    | 16,349       | 15,250     | 6,541  | 21,791  | -33,29%  |  |  |  |  |  |  |
| 80x80   | 8,819        | 38,036    | 46,855       | 107,029    | 9,813  | 116,842 | -149,37% |  |  |  |  |  |  |
| 100x100 | 13,097       | 65,018    | 78,115       | 197,644    | 13,188 | 210,832 | -169,9 % |  |  |  |  |  |  |
|         |              | Sc        | cale Factor( | (M) = O,   | 001    |         |          |  |  |  |  |  |  |
| 20x20   | 1,332        | 17,256    | 18,588       | 2,371      | 15,277 | 17,648  | 5,06%    |  |  |  |  |  |  |
| 40x40   | 1,623        | 17,896    | 19,519       | 15,267     | 5,832  | 21,099  | -8,09%   |  |  |  |  |  |  |
| 80x80   | 8,745        | 38,927    | 47,672       | 107,098    | 10,237 | 117,335 | -146,13% |  |  |  |  |  |  |
| 100x100 | 12,586       | 66,280    | 78,866       | 197,027    | 13,420 | 210,447 | -166,84% |  |  |  |  |  |  |
|         |              | S         | icale Factor | r(M) = C   | ), 1   |         |          |  |  |  |  |  |  |
| 20x20   | 1,298        | 21,451    | 22,749       | 2,369      | 14,331 | 16,7    | 26,59%   |  |  |  |  |  |  |
| 40x40   | 1,601        | 48,174    | 49,775       | 15,380     | 27,548 | 42,928  | 13,76%   |  |  |  |  |  |  |
| 80x80   | 8,505        | 126,738   | 135,243      | 107,143    | 54,423 | 161,566 | -19,46%  |  |  |  |  |  |  |
| 100x100 | 12,804       | 174,196   | 187          | 196,895    | 70,574 | 267,469 | -43,03%  |  |  |  |  |  |  |

|         | 6 processors |              |              |         |             |             |        |  |  |  |  |  |  |
|---------|--------------|--------------|--------------|---------|-------------|-------------|--------|--|--|--|--|--|--|
|         |              | Without L    | В            |         | With LB     |             |        |  |  |  |  |  |  |
| Size    | Comm.        | Comp.        | Time         | Comm    | Comp.       | Time        | Gain%  |  |  |  |  |  |  |
|         |              |              | Scale Facto  | r(M) =  | 1           |             |        |  |  |  |  |  |  |
| 20x20   | 1,292        | 196,913      | 198,205      | 2,390   | 123,584     | 125,974     | 36,44% |  |  |  |  |  |  |
| 40x40   | 1,616        | 405,537      | 407,153      | 15,382  | 235,292     | 250,674     | 38,43% |  |  |  |  |  |  |
| 80x80   | 8,727        | 923,553      | 932,28       | 107,148 | 455,723     | 562,871     | 39,62% |  |  |  |  |  |  |
| 100x100 | 12,615       | 1156,905     | 1169,52      | 197,564 | 590,688     | 788,252     | 32,6 % |  |  |  |  |  |  |
|         |              | S            | cale Factor  | (M) = 1 | 00          |             |        |  |  |  |  |  |  |
| 20x20   | 1,295        | 19497,157    | 19498,452    | 2,371   | 12141,368   | 12143,739   | 37,72% |  |  |  |  |  |  |
| 40x40   | 1,590        | 39715,174    | 39716,764    | 15,303  | 23087,958   | 23103,261   | 41,83% |  |  |  |  |  |  |
| 80x80   | 8,802        | 88575,737    | 88584,539    | 107,160 | 44607,763   | 44714,923   | 49,52% |  |  |  |  |  |  |
| 100x100 | 13,183       | 109198,314   | 109211,497   | 197,090 | 57804,577   | 58001,667   | 46,89% |  |  |  |  |  |  |
|         |              | Sc           | ale Factor(N | Л) = 10 | 000         |             |        |  |  |  |  |  |  |
| 20x20   | 1,303        | 1949521,885  | 1949523,188  | 2,367   | 1213920,807 | 1213923,174 | 37,73% |  |  |  |  |  |  |
| 40x40   | 1,641        | 3970679,057  | 3970680,698  | 15,344  | 2308354,573 | 2308369,917 | 41,86% |  |  |  |  |  |  |
| 80x80   | 8,620        | 8853812,312  | 8853820,932  | 107,554 | 4459812,674 | 4459920,228 | 49,63% |  |  |  |  |  |  |
| 100x100 | 12,834       | 10913401,265 | 10913414,099 | 197,285 | 5779198,351 | 5779395,636 | 47,04% |  |  |  |  |  |  |











# CONCLUSIONS

- Local MSOR is easy to parallelize
- Efficient

$$S_p \to O(p)$$
 and  $E_p \to 1$  while  $\frac{p}{N} \to 0$ .

• It does worth to LB !



#### **Future Work**



- Determination of optimum values for the Local MESOR
- Dynamic LB for Solving the Adjusted Nesting Problem
- Heterogeneous, Asynchronous Load Balancing



# Thank you for your attention

#### Any Questions ?