Tray Crents

Republic Hydrometeorological Service of Serbia

PERFORMANCE ANALYSIS of REGIONAL Eta MODEL

installation, running and optimization on different hardware/software platform

Marijana Crepulja maja@meteo.yu

Aleksandar Miljković aleksandar.miljkovic@coming.co.yu

11th Workshop on the use of High Performance Computing in Meteorology

Outline

- > NWP in Serbia -The Eta model characteristics
- Historical overview and description of present operational system
- Latest efforts in installation and running the Eta model on different platforms
- > Conclusion

Development of NWP in Serbia

- ➢ In 1972 <u>Belgrade University professors Zaviša Janjić and Fedor Mesinger developed the first version of regional NWP model in cooperation with the Federal Hydrometeorological Institute of Yugoslavia(HIBU)</u>
- > NWP model has been used operationally in Belgrade since 1979
- After its unique vertical coordinate was defined by prof.Mesinger in 1984, the model was named the Eta model
- Several model components were developed in National Center for Environmental Prediction (NCEP), Washington and Geophysical Fluid Dynamics Laboratory (GFDL), Princeton

Republic Hydrometeorological Service of Serbia The Eta model characteristics

- Limited area grid point model based on finite differences numerical methods
- The horizontal grid is Arakawa semi-staggered E grid defined in a transformed lat/lon coordinate system
- h points carry surface pressure, cloud water temperature, specific humidity, vertical velocity, turbulent kinetic energy and passive substances
- v points carry u and v components of the horizontal wind

11th Workshop on the use of High Performance Computing in Meteorology

Eta coordinate

$$\eta = \left(\frac{p - p_T}{p_s - p_T}\right) \eta_s$$

11th Workshop on the use of High Performance Computing in Meteorology

Computer resources

Computers / year	NWP Eta model
Micro VAX / 1988	Resolution 1.1°; 36 hour forecast; 16 vert.levels; time step 120s, 759 numerical points
CONVEX -two processors / 1991	Resolution 0.4°; 48 hour forecast; 16 vert.levels; time step 120s, 6385 numerical points
Sgi Indigo2 / 1995	Resolution 52 km; 48 hour forecast; 32 vert.levels; time step 120s, 8773 numerical points
Pentium III CPU 600MHz / 1998	Resolution 52 km; 48 hour forecast; 32 vert.levels; time step 120s; (AVN LBC), 8773 numerical points
BEOWULF cluster 3X3 and 4X4 CPU 1.4MHz / 2001	Resolution 18km; 5 days forecast; 32 vert.levels; time step 45s; (DWD LBC), 70000 numerical points

One hour forecast on different platforms 1988 1991 1995 1998 2001

11th Workshop on the use of High Performance Computing in Meteorology

Agenda

- Our Mission
- Hardware Platform
- OS Consideration
- Porting Adventure
- Achieved Results
- Yet to be done...

Our Mission

- Our goal is to speed up Eta model as much as possible, considering price/performance ratio
- 32bit platform is already exploited to maximum (PGA Compiler, SMP, Clustering)

Hardware Platform

- Itanium 2 is Our Platform of Choice
 - EPIC (Itanium) goes beyond simple GHz
 - Excellent Scalability
 - From 2 to 128 CPUs per box
 - Up to 84 CPUs per rack
 - Support all relevant OS platforms and more
 - SuSE and RedHat Linux
 - Windows
 - HP-UX
 - OpenVMS
 - Promising Platform
 - Dual Core 9M Itanium 2 Already available
 - Dual Core 12M Itanium 2 in 2005

11th Workshop on the use of High Performance Computing in Meteorology

OS Consideration

- HP-UX For Performance
 - HP Fortran Compiler
 - Mature Software Platform
- Linux For Price & Performance
 - Intel Linux Fortran Compiler
 - Proven Development Platform
 - User Friendly Environment
 - Portable Code

Porting Adventure (1 of 3)

- Starting environment
 - Linux IA32
 - PGA Compiler
- Two destination environments
 - HP-UX
 - Linux 64bit Itanium2

Porting Adventure (2 of 3)

- HP Fortran Compiler follows f90 standards (Easy to port)
- GRIB library requires minor modification since it supports HP-UX PA, but not HP-UX Itanium2
- Auto-parallelization and Itanium2 optimization led to significant performance boost
 - Without Itanium2 optimization 19min per iteration (1h)
 - With Itanium2 optimization 3min per iteration! (1h)

Porting Adventure (3 of 3)

- Intel Fortran Compiler Faster but less compatible
- Code modification required for GRIB library and Eta model
- Different optimization options must be provided for different Eta model stages while compiling the model

Achieved Results

- We are at the beginning of porting journey
- Reference platform
 - Two-way rx2600 Itanium2 3M 900MHz
 - RedHat Linux AS
 - 4GB RAM
 - 5min per Iteration (1h of forecast)

Yet to be done...

- General directions
 - Optimize on single node
 - Modifying code and introducing Intel Fortran specific code
 - Introducing new Itanium2 processors
 - More cashe leads to more FPU performance
 - Dual core leads to higher density
 - Optimize for Cluster (MPI)
 - MPI Intel Linux Fortran Compiler Issues?

11th Workshop on the use of High Performance Computing in Meteorology

Special Thanks

- Ljiljana Dekić, RHMSS
- Vladimir Dimitrijević, RHMSS
- Drago Samardžić, Coming