	Terrascale Technologies, Inc.
Copyright ©Terrascale Technologies Inc. 2004	<i>Unleashing Clustered Computing</i> @ <i>ECMWF-Workshop 2004</i> Gautham Sastri / Kolja Kuse
1	TECHNOLOGIES

Company snapshot

- Founded in Nov/2002 by Gautham Sastri and Iain Findleton
 - Headquarters in Montreal, Canada
 - Offices in New York, Albuquerque, Munich & Reading (UK)
 - 20 employees worldwide
 - Exceptional team, with former employees of:
 - * Sun, SGI, NEC, Cray, Sandia Nat'l Labs, etc.
- Well funded:
 - Entrepia Ventures (a division of the 5th largest investment bank in Japan)
 - Innovatech Montreal (a division of the Quebec pension fund)
- > Has existing clients (Government, Oil & Gas, Health Sciences)
 - First customer ship in October 2003
- Several OEM relationships in place
- "Best Database Solution" award at LinuxWorld 2004

Trends in data processing architectures

Certain truths that are self-evident

- Most computers are parallel computers
- > CPUs are commodities (\$450 for a 3.3 GHz CPU)
- > Networks are commodities (\$50 for a GigE port)
- Disk drives are commodities (\$200 for a 250GB HDD)
- > Scalable applications are *not commodities*
- > The value is in the integration (via software) of CPUs, networks and I/O to deliver scalable application bandwidth

Trends on the bleeding edge (1)

>Clusters are now running the biggest workloads that exist...

Copyright ©Terrascale Technologies Inc. 2004

Trends on the bleeding edge (2)

➤and cheap clusters are the ones gaining the most market share.

Some facts about I/O scaling

... while <u>sustained</u> application efficiency in relation to growing cluster size is plummeting . . .

TERRASCALE

TECHNOLOGIES

The true effect of Moore's Law (3)

"forever" cannot be delayed anymore...

Everything is getting faster . . . but applications are not scaling beyond a certain point any more . . .

Today, "parallel" systems are not parallel in all respects

Examples of "parallel" Systems (1)

TECHNOLOGIES

Examples of "parallel" Systems (2) Copyright ©Terrascale Technologies Inc. 2004 **Client Nodes** Server Nodes H H H > Inter-node communication between client nodes and/or between server nodes prevents scaling Typically found in clustered database implementations 15 TERRASCALE

TECHNOLOGIES

An ideal parallel system looks like this:

>Typically found in non-scalable SMP implementations

Terrascale's core technology: SASS

- Shared Access Scheduling System is a set of algorithms that provides cache coherence across thousands of application nodes regardless of geography. Key characteristics of SASS are:
 - Extremely low latency
 - "On demand" cache validation eliminates unnecessary network traffic and/or broadcast storms
 - Extremely scalable
 - Enables clusters to behave like shared memory systems
- Sample applications
 - Massively parallel file systems
 - Massively parallel databases
 - Massively scalable RAID arrays
- > TerraGrid is only our first product based on SASS

New Reality:

Why is SASS applicable to parallelize a file system?

Because networks have become very fast in bandwidth <u>with</u> latencies much lower, than we can find them in storage components

New Reality:

Why is SASS affordable?

Because these fast Networks have become extremely inexpensive, if you look at GigE and Infiniband for example . . . Leaving some margin for intelligent software . . .

What is TerraGrid?

- > TerraGrid is an *intelligent* software implementation of the iSCSI protocol stack that:
 - Is a block-level I/O platform that can scale linearly to 100s of Gbytes/sec of throughput and tens of Petabytes of capacity
 - Provides cache-coherence within the fabric
 - Fully harnesses the power of Linux file systems and utilities
- > TerraGrid enables:
 - Open-source "standalone" Linux file systems to be deployed as massively scalable global parallel file systems
 - The acceleration of database engines to unprecedented levels of price/performance
 - The replacement of non-scalable proprietary/expensive RAID controllers with scalable, highly available I/O fabrics
 - OEMs and VARs to "roll their own" clustered NAS solutions
- FerraGrid is NOT a file system or a clustered NAS box instead, TerraGrid enables existing file systems and NAS solutions to achieve enhanced scaling and functionality with a global view on all data within a given "network"

How TerraGrid works:

Unified, highly available global/parallel namespace

TerraGrid "Initiator": Client Side

Copyright ©Terrascale Technologies Inc. 2004

-Each client runs SW RAID0 to transmit all requests to multiple I/O servers -High availability delivered transparently from the server side -All I/O requests (block level, file level, file system level) are parallelized across I/O servers

-Each server presents a file or set of files as block containers to the initiator pool -Block container files reside on standard Linux file system (ext2, ext3, xfs) -Multiple servers can fail without clients losing access to data

Introducing TerraGrid/HA

Fault Tolerance with TerraGrid/HA

The Problem With Existing HA Schemes

Traditional "monolithic" RAID controllers cost approximately \$100,000 per Gbyte/sec of bandwidth (excluding disks). Typically, a maximum of 4-8 2Gbit FC connects to host are supported as well as 4-8 2 Gbit FC connects to disks. The fastest RAID controllers currently available deliver 1000-1400 Mbytes/sec.

When additional capacity and/or bandwidth is required, it becomes necessary to install a FC switch. This adds cost, complexity and introduces I/O latencies.

Application: Hierarchical Cluster

Application: Scalable NAS

Typical Database Deployments: *Monolithic*

Non-scalable: Saturation occurs when server runs out of CPU/memory DAS box runs out of bandwidth

No fault-tolerance: Failure of server or storage results in database downtime

>Low performance: Requests are issued serially to storage array. No parallel access to data

Reference Performance: ~20,000 TPM using *TWO* FC RAID arrays

TERRASCALE

Typical Database Deployments: Clustered

Expensive: Multi-ported FC controllers and/or FC switches required for shared storage

>Low performance: Requests from each server are issued serially to the FC HBA. FC operates at only 2 Gbits/sec

>Limited Scalability: Monolithic RAID controllers run out of IOPS very quickly

>Multiple Fabrics: Separate fabrics for I/O and inter-node replication

Scalable TerraGrid Powered Databases

> *Parallel Access:* Multiple requests are issued to multiple I/O servers in parallel

Fast: 10 Gbit Infiniband vs. 2 Gbit FC

>High availability: New RAID-TG algorithm provides low-cost HA with no performance penalty

>Radically altered \$/TPM: Target of ~30,000 TPM on \$40,000 platform

>Low cost: No expensive multi-ported FC storage, use of low-cost commodity components

Bringing it all together: Hybrid Deployment

TerraGrid performance metrics

- File system performance (measured using open-source Linux/ext2)
 - 80 Mbytes/sec, 20,000 IOPS/sec per client over Gigabit Ethernet
 - 300 Mbytes/sec, 75,000 IOPS/sec per client over Infiniband
 - Scales linearly to 100s of clients
- Database performance
 - 30,000 TPM for \$40,000
 - Single database engine with two I/O servers (15 SATA disks/server)
- RAID-TG performance
 - 110 Mbytes/sec, 27,500 IOPS/sec per client over Gigabit Ethernet
 - 400 Mbytes/sec, 100,000 IOPS/sec per client over Infiniband
 - Delivered performance with 24-port Infiniband switch: 4.8 Gbytes/sec, 1,200,000 IOPS/sec
 - Rebuild failed nodes at 100+ Mbytes/sec

TerraGrid benchmarks: Overview

- Application Nodes (Clients)
 - 9 x IBM x335 dual-CPU, 2.0 GHz Xeon, 512MB RAM
 - Onboard Broadcom Gigabit Ethernet NIC
 - Each initator mounted an *ext2* file system on TerraGrid all initiators see unified namespace
- > I/O Servers
 - 9 x IBM x335 dual-CPU, 2.4 GHz Xeon, 512MB RAM
 - Onboard Broadcom Gigabit Ethernet NIC
 - Single, internal U320 10K RPM SCSI HDD
- > Network Switch
 - 32-port Extreme Networks 7i Gigabit Ethernet Switch
- > Benchmark
 - The *iozone* benchmark was used to collect the performance data presented herein
 - All data is based on *single stream* I/O (one file per initiator)

TerraGrid performance scaling (1)

TERRASCALE

TerraGrid performance scaling (2)

TERRASCALE

TECHNOLOGIES

TerraGrid performance scaling (5)

Copyright ©Terrascale Technologies Inc. 2004

> 100% cache hits were achieved using initiator smart buffering logic
> Smart buffers are cache-coherent with other initiators at block-level granularity

tgmon: TerraGrid Performance Monitor

- Working with fabric vendors to produce mutual certifications
 - * Recently did demos at conferences with Voltaire, more vendors to be announced shortly, Linux-World Award "Best Database Product"
- > Terrascale NAS building blocks
 - Terrascale is working with blade & IB vendors to test and certify reference NAS platforms
 - Objective is to enable OEMs/VARs/Clients to build their own scalable NAS solutions while preserving commodity hardware pricing
 - 100Ks of IOPS/sec, Gbytes/sec of throughput
- > Building relationship to HW-vendors
 - Intel- & Opteron-Blade vendors: Verrari, Angstrom MS, Western Scientific
 - * work with Sun and HP in projects
 - * working on strategic OEM relationships

TerraGrid Roadmap

- > Terrascale DB reference platforms
 - Publish performance metrics for various databases (vendor certified) running on different TerraGrid configurations & H/W platforms
- > SC2004 StorCloud Challenge
 - Partnership with Sandia National Laboratories and the ASCI program in Pittsburgh, and some other surprise at SC2004
- > Add more features to file system
 - Snapshots
 - Grid deployments
 - Self-healing
- > Add more base file systems in addition to the ext2
 - Reiser4
 - XFS
 - port the server-side user space deamon to Solaris and other Unix-Servers

At a glance: TerraGrid Benefits

- > Storage networking is consolidated onto existing network fabric
 - * Substantial cost reduction and enhanced functionality
- Linear scaling of capacity and bandwidth
 - * Seamless growth to Petabytes of capacity and 100s of GB/sec of throughput
- > Unified namespace achieved using standard an Open Source Linux file system
 - * Massively parallel block, file and file system access
 - * Deployable on LANs (clusters) and WANs (GRID) and Low Latency Fabrics
- Extreme availability
 - * Multiple server failures will not result in data loss dial in the desired MTBF
 - * Extremely fast rebuild rates
- Multiple deployment models
- > Co-exists with existing SAN and SRM software
- > Non-disruptive deployment model
- Commodity hardware and software pricing
- capability to make ANY existing file system really scale out

