Terrascale Technologies, Inc.

Unleashing Clustered Computing

@
ECMWF-Workshop 2004

Gautham Sastri / Kolja Kuse

TERRASCALE

Company snapshot

> Founded in Nov/2002 by Gautham Sastri and Iain Findleton

- Headquarters in Montreal, Canada
- Offices in New York, Albuquerque, Munich \& Reading (UK)
- 20 employees worldwide
- Exceptional team, with former employees of:
* Sun, SGI, NEC, Cray, Sandia Nat’l Labs, etc.
> Well funded:
- Entrepia Ventures (a division of the $5^{\text {th }}$ largest investment bank in Japan)
- Innovatech Montreal (a division of the Quebec pension fund)
> Has existing clients (Government, Oil \& Gas, Health Sciences)
- First customer ship in October 2003
- Several OEM relationships in place
> "Best Database Solution" award at LinuxWorld 2004

Trends in data processing architectures

Certain truths that are self-evident

> Most computers are parallel computers
> CPUs are commodities (\$450 for a 3.3 GHz CPU)
> Networks are commodities (\$50 for a GigE port)
> Disk drives are commodities (\$200 for a 250GB HDD)
> Scalable applications are not commodities
> The value is in the integration (via software) of CPUs, networks and I/O to deliver scalable application bandwidth

Trends on the bleeding edge (1)

>Clusters are now running the biggest workloads that exist...

Trends on the bleeding edge (2)

> and cheap clusters are the ones gaining the most market share.

Some facts about I/O scaling

The true effect of Moore's Law (1)

Processors are getting faster and even faster...

$$
\text { Copyright ©Terrascale Technologies Inc. } 2004
$$

The true effect of Moore's Law (2)

$$
\text { Copyright ©Terrascale Technologies Inc. } 2004
$$

... while sustained application efficiency in relation to growing cluster size is plummeting . . .

The true effect of Moore's Law (3)
... this is also due to dramatic lack of I/ O-capabilities.
Rel.
Performance

Gordon Moore says:

WO EXPOUENTIAIIS FORENER...

"forever" cannot be delayed anymore...

Everything is getting faster . . . but applications are not scaling
beyond a certain point any more . . .

More Reality:

Today, "parallel" systems are not parallel in all respects

TERRASCALE

Examples of "parallel" Systems (1)

$>$ Centralized controller is the point of serialization that prevents scaling
-Typically found in file system implementations such as Lustre, GFS, GPFS, etc.

TECHNOLOGIES

Examples of "parallel" Systems (2)

$>$ Inter-node communication between client nodes and/or between server nodes prevents scaling
-Typically found in clustered database implementations

An ideal parallel system looks like this:

Non-blocking communication network for parallel applications

$>$ No points of serialization, no $N^{*} N$ communications problems
$>$ Typically found in non-scalable SMP implementations

Terrascale's core technology: SASS

> Shared Access Scheduling System is a set of algorithms that provides cache coherence across thousands of application nodes regardless of geography. Key characteristics of SASS are:

- Extremely low latency
" "On demand" cache validation - eliminates unnecessary network traffic and/or broadcast storms
- Extremely scalable
- Enables clusters to behave like shared memory systems
- Sample applications
- Massively parallel file systems
- Massively parallel databases
- Massively scalable RAID arrays
> TerraGrid is only our first product based on SASS

New Reality:

Why is SASS applicable to parallelize a file system?

Because networks have become very fast in bandwidth with latencies much lower, than we can find them in storage components

New Reality:

Why is SASS affordable?

Because these fast Networks have become extremely inexpensive, if you look at GigE and Infiniband for example . . . Leaving some margin for intelligent software . . .

What is TerraGrid?

> TerraGrid is an intelligent software implementation of the iSCSI protocol stack that:

- Is a block-level I/O platform that can scale linearly to 100 s of Gbytes/sec of throughput and tens of Petabytes of capacity
- Provides cache-coherence within the fabric
- Fully harnesses the power of Linux file systems and utilities
> TerraGrid enables:
" Open-source "standalone" Linux fille systems to be deployed as massively scalable global parallel file systems
- The acceleration of database engines to unprecedented levels of price/performance
- The replacement of non-scalable proprietary/expensive RAID controllers with scalable, highly available I/O fabrics
- OEMs and VARs to "roll their own" clustered NAS solutions
- TerraGrid is NOT a file system or a clustered NAS box - instead, TerraGrid enables existing file systems and NAS solutions to achieve enhanced scaling and functionality with a global view on all data within a given "network"

How TerraGrid works:

Unified, highly available global/parallel namespace

TerraGrid "Initiator": Client Side

-Each client runs SW RAIDO to transmit all requests to multiple I/O servers
-High availability delivered transparently from the server side -All I/O requests (block level, file level, file system level) are parallelized across I/O servers

TerraGrid "Target": Server Side

-Each server presents a file or set of files as block containers to the initiator pool -Block container files reside on standard Linux file system (ext2, ext3, xfs)
-Multiple servers can fail without clients losing access to data

Introducing TerraGrid/HA

Fault Tolerance with TerraGrid/HA

I/O servers operating normally

Global spares

Fixed servers re-deployed as spares

The Problem With Existing HA Schemes

Traditional "monolithic" RAID controllers cost approximately $\$ 100,000$ per Gbyte/sec of bandwidth (excluding disks). Typically, a maximum of 4-8 2 Gbit FC connects to host are supported as well as 4-8 2 Gbit FC connects to disks. The fastest RAID controllers currently available deliver 10001400 Mbytes/sec.

When additional capacity and/or bandwidth is required, it becomes necessary to install a FC switch. This adds cost, complexity and introduces I/O latencies.

Application: Hierarchical Cluster

Application: Scalable NAS

TERRASCALE

Typical Database Deployments: Monolithic

$>$ Non-scalable: Saturation occurs when server runs out of CPU/memory DAS box runs out of bandwidth
$>$ No fault-tolerance: Failure of server or storage results in database downtime
-Low performance: Requests are issued serially to storage array. No parallel access to data
>Reference Performance: ~20,000 TPM using TWO FC RAID arrays

Typical Database Deployments: Clustered

Scalable TerraGrid Powered Databases

Low cost Clustered Database Engines (MySQL, Oracle10g, IBM DB2)

Low cost I/O Servers
$>$ Parallel Access: Multiple requests are issued to multiple I/O servers in parallel
>Fast: 10 Gbit Infiniband vs. 2 Gbit FC
$>$ High availability: New RAID-TG algorithm provides low-cost HA with no performance penalty
$>$ Radically altered \$/TPM: Target of $\sim \mathbf{3 0 , 0 0 0}$ TPM on $\$ 40,000$ platform
>Low cost: No expensive multi-ported FC storage, use of low-cost commodity components

Bringing it all together: Hybrid Deployment

Native Linux clients

TerraGrid performance metrics

> File system performance (measured using open-source Linux/ext2)

- $80 \mathrm{Mbytes} / \mathrm{sec}, 20,000$ IOPS/sec per client over Gigabit Ethernet
- $300 \mathrm{Mbytes} / \mathrm{sec}, 75,000 \mathrm{IOPS} / \mathrm{sec}$ per client over Infiniband
- Scales linearly to 100 s of clients
> Database performance
- 30,000 TPM for \$40,000
- Single database engine with two I/O servers (15 SATA disks/server)
> RAID-TG performance
- $110 \mathrm{Mbytes} / \mathrm{sec}, 27,500$ IOPS/sec per client over Gigabit Ethernet
- $400 \mathrm{Mbytes} / \mathrm{sec}, 100,000 \mathrm{IOPS} / \mathrm{sec}$ per client over Infiniband
- Delivered performance with 24-port Infiniband switch: 4.8 Gbytes/sec, 1,200,000 IOPS/sec
- Rebuild failed nodes at $100+$ Mbytes/sec

TerraGrid benchmarks: Overview

> Application Nodes (Clients)

- 9 x IBM x 335 dual-CPU, 2.0 GHz Xeon, 512MB RAM
- Onboard Broadcom Gigabit Ethernet NIC
- Each initator mounted an ext2 file system on TerraGrid - all initiators see unified namespace
, I/O Servers
- 9 x IBM x335 dual-CPU, 2.4 GHz Xeon, 512MB RAM
- Onboard Broadcom Gigabit Ethernet NIC
- Single, internal U320 10K RPM SCSI HDD
> Network Switch
- 32-port Extreme Networks 7i Gigabit Ethernet Switch
> Benchmark
- The iozone benchmark was used to collect the performance data presented herein
- All data is based on single stream I/O (one file per initiator)

TerraGrid performance scaling (1)

TerraGrid performance scaling (2)

IOZone: 256 MB File, 4096 KB Block, 9 Servers

TerraGrid performance scaling (5)

$\mathbf{1 0 0 \%}$ cache hits were achieved using initiator smart buffering logic
$>$ Smart buffers are cache-coherent with other initiators at block-level granularity

tgmon: TerraGrid Performance Monitor

TerraGrid Roadmap

> Working with fabric vendors to produce mutual certifications

* Recently did demos at conferences with Voltaire, more vendors to be announced shortly, Linux-World Award "Best Database Product"
> Terrascale NAS building blocks
* Terrascale is working with blade \& IB vendors to test and certify reference NAS platforms
* Objective is to enable OEMs/VARs/Clients to build their own scalable NAS solutions while preserving commodity hardware pricing
* 100Ks of IOPS/sec, Gbytes/sec of throughput
- Building relationship to HW-vendors
* Intel- \& Opteron-Blade vendors: Verrari, Angstrom MS, Western Scientific
* work with Sun and HP in projects
* working on strategic OEM relationships

TerraGrid Roadmap

> Terrascale DB reference platforms

- Publish performance metrics for various databases (vendor certified) running on different TerraGrid configurations \& H/W platforms
- SC2004 StorCloud Challenge
- Partnership with Sandia National Laboratories and the ASCI program in Pittsburgh, and some other surprise at SC2004
- Add more features to file system
- Snapshots
- Grid deployments
- Self-healing
- Add more base file systems in addition to the ext2
- Reiser4
- XFS
- port the server-side user space deamon to Solaris and other UnixServers

At a glance: TerraGrid Benefits

> Storage networking is consolidated onto existing network fabric

* Substantial cost reduction and enhanced functionality
> Linear scaling of capacity and bandwidth
* Seamless growth to Petabytes of capacity and 100 s of GB/sec of throughput
> Unified namespace achieved using standard an Open Source Linux file system
* Massively parallel block, file and file system access
* Deployable on LANs (clusters) and WANs (GRID) and Low Latency Fabrics
> Extreme availability
* Multiple server failures will not result in data loss - dial in the desired MTBF
* Extremely fast rebuild rates
> Multiple deployment models
> Co-exists with existing SAN and SRM software
> Non-disruptive deployment model
> Commodity hardware and software pricing
> capability to make ANY existing file system really scale out

