Non-hydrostatic Atmospheric GCM Development and its Computational Performance

K.Takahashi, X.Peng, K.Komine, M.Ohdaira, Y.Abe, T.Sugimura, K.Goto, H.Fuchigami, M.Yamada

Earth Simulator Center, JAMSTEC

Contents

- Motivation & Targets
- Developing Strategy
 - Grid System
 - Differential schemes for time/space
- Preliminary Validation Results

 Atmosphere & Ocean
- Simulation for non-hydrostatic phenomena
- High Performance Computation on the ES
- Near Future Work

Climate System

Time/Space scale

Front system

Cloud System

Grid System

New Reduced Grid System

⇒

- Orthogonal coordinates.
 - (same as the lat-lon geometry)
- No polar singularity.
- Relax of CFL condition.
- The same grid structure of N and E component.
- Easy to nest.
- High parallelization.
- But need to take care of conservation law.

Continuity equation

$$\frac{\partial \rho}{\partial t} = -\frac{1}{a \cos \varphi} \left(\frac{\partial (\rho U)}{\partial \lambda} + \frac{\partial (\cos \varphi \rho V)}{\partial \varphi} \right) - \frac{1}{a^2} \frac{\partial (a^2 \rho W^*)}{\partial z^*}$$

Momentum equation

$$\begin{aligned} \frac{\partial(\rho U)}{\partial t} &= -\frac{1}{a\cos\varphi} \left(\frac{\partial(\rho UU)}{\partial\lambda} + \frac{\partial(\cos\varphi\rho UV)}{\partial\varphi} \right) - \frac{1}{a^2} \frac{\partial(a^2\rho UW^*)}{\partial z^*} \\ &- \frac{1}{a\cos\varphi} \frac{\partial P}{\partial\lambda} - \frac{G^{\frac{1}{2}}G^{13}}{G^{\frac{1}{2}}a\cos\varphi} \frac{\partial P}{\partial z^*} + 2\Omega_r \rho V - 2\Omega_\varphi \rho W + \frac{\rho UV\tan\varphi}{a} - \frac{\rho UW}{a} + F_\lambda \\ \frac{\partial(\rho V)}{\partial t} &= -\frac{1}{a\cos\varphi} \left(\frac{\partial(\rho UV)}{\partial\lambda} + \frac{\partial(\cos\varphi\rho VV)}{\partial\varphi} \right) - \frac{1}{a^2} \frac{\partial(a^2\rho VW^*)}{\partial z^*} \\ &- \frac{1}{a} \frac{\partial P}{\partial\varphi} - \frac{G^{\frac{1}{2}}G^{23}}{G^{\frac{1}{2}}a} \frac{\partial P}{\partial z^*} + 2\Omega_\lambda \rho W - 2\Omega_r \rho U - \frac{\rho UU\tan\varphi}{a} - \frac{\rho VW}{a} + F_\varphi \end{aligned}$$

$$\frac{\partial(\rho W)}{\partial t} = -\frac{1}{a\cos\varphi} \left(\frac{\partial(\rho UW)}{\partial\lambda} + \frac{\partial(\cos\varphi\rho VW)}{\partial\varphi} \right) - \frac{1}{a^2} \frac{\partial(a^2\rho WW)}{\partial z^*} - \frac{1}{G^{\frac{1}{2}}} \frac{\partial P}{\partial z^*} - \rho g + 2\Omega_{\varphi}\rho U - 2\Omega_{\lambda}\rho V + \left(\frac{\rho UU}{a} + \frac{\rho VV}{a}\right) + F_r$$

Pressure equation

$$\begin{split} \frac{\partial P}{\partial t} &= \\ &- \left(\frac{1}{a\cos\varphi}\frac{\partial PU}{\partial\lambda} + \frac{1}{a\cos\varphi}\frac{\partial PV\cos\varphi}{\partial\varphi} + \frac{1}{a^2}\frac{\partial a^2 PW^*}{\partial z^*}\right) \\ &- (\gamma - 1)P\left(\frac{1}{a\cos\varphi}\left(\frac{\partial U}{\partial\lambda} + \frac{\partial(\cos\varphi V)}{\partial\varphi}\right) + \frac{1}{a^2}\frac{\partial(a^2W^*)}{\partial z^*}\right) \\ &+ (\gamma - 1)K\frac{1}{a^2G^{\frac{1}{2}}\cos\varphi}\left(\left(+ \frac{\partial}{\partial\lambda}\left(\frac{G^{\frac{1}{2}}}{\cos\varphi}\frac{\partial T}{\partial\lambda}\right) + \frac{\partial}{\partial\lambda}\left(\frac{G^{\frac{1}{2}}G^{13}}{\cos\varphi}\frac{\partial T}{\partial z^*}\right) \right) \\ &+ \frac{\partial}{\partial\varphi}\left(G^{\frac{1}{2}}\cos\varphi\frac{\partial T}{\partial\varphi}\right) + \frac{\partial}{\partial\lambda}\left(G^{\frac{1}{2}}G^{23}\cos\varphi\frac{\partial T}{\partial z^*}\right) \\ &+ \frac{\partial}{\partial z^*}\left(\frac{G^{\frac{1}{2}}G^{13}}{\cos\varphi}\frac{\partial T}{\partial\lambda}\right) + \frac{\partial}{\partial z^*}\left(G^{\frac{1}{2}}G^{23}\cos\varphi\frac{\partial T}{\partial \varphi}\right) + \frac{\partial}{\partial z^*}\left(\frac{a^2\cos^2\varphi + (G^{\frac{1}{2}}G^{23}\cos\varphi)^2 + (G^{\frac{1}{2}}G^{13})^2}{\cos\varphi G^{\frac{1}{2}}}\frac{\partial T}{\partial z^*}\right) \\ &+ (\gamma - 1)\Phi \end{split}$$

Equation of state

$$P = \rho RT$$

Mass conserving numerical scheme

For flux F_{EF} on a circular arc EFshown as red circle is computed by the budget of fluxes f_N by on grid ABCD of N system and flux f_E estimated on a circular arc GHI of E system.

Using this conservative scheme, we have evaluated that time evolution of relative error of the mass has changed within the limit of rounding error.

Numerical sensitivity experiments to shallow water equations Test Case 1 : Advection of Cosine Bell over the Pole

for any horizontal resolution.

Test Case 2 : Global Steady State Nonlinear Zonal Geostropic Flow

The solid body rotation field is maintained.

The 2nd-orderaccuracy is maintained.

Test Case 5 : Zonal Flow over an Isolated Mountain

R. Jakob, J. J. Hack and D. L. Williamson, Solutions to the Shallow Water Test Set Using the Spectral Transform Method., NCAR/TN-388+STR, 1993

ROM 5000 TO 5950 B

Harras

115077

 $\ddot{\mathsf{F}ield} \overset{\scriptscriptstyle{\scriptscriptstyle \otimes}}{at} (\ddot{a}) da \overset{\scriptscriptstyle{\scriptscriptstyle \otimes}}{y} 0, (b) day 5, (c) day 10, and (d) day 15.$

Test Case 6 : Rossby-Haurwitz Wave

Mountain waves experiments

- The height of the top of the code is 40 km and uses 24 vertical layers equally spaced in z^* .
- We set the mountain height h = 1000m and the half-width d = 1250km .
- The Brunt-Vaisala frequency is $N=0.0187 \text{ s}^{-1}$.
- Set uniform zonal mean easterly flow of $u = -40\cos\varphi m s^{-1}$.
- Rayleigh damping layer are set from top to 2/3 height for

The λ -*z* cross section of vertical wind speed *w* (m s-1) along the equator after 12, 24hours.

Temperature (K) at 0km (bottom) levels after 12, 24hours.

Held and Suarez experiment

In order to verify long-term statistical properties of a fully developed general circulation a benchmark calculation proposed by Held and Suarez(1994) were performed.

The zonal mean temperature T[K] (a) Held and Suarez, (b) Results using Yin-Yang grid.

The zonal mean zonal wind U [m sec-1] (a) Held and Suarez, (b) Results on Yin-Yang grid.

Vertical differencing of primitive equations

24 cases, which are whole combinatorial cases of Lorenz types and Charney-Phillips types vertical staggering, were examined to identify those features. Charney-Phillips type distribution, case B2 in Figure 6, shows best, though it is required to dissipate 2 grid oscillations.

CIP-CSLR

- Conservative semi-Lagrangian scheme with rational function (Xiao et al. 2002) based CIP (Cubic-interpolated pseudopartcle, Yabe et al. 1991)
- Predict both the cell-integration and interface, like CIP for basic variable and its spatial gradient, which make it more accurate but increase little computation.
- Be conservative, oscillation-free, positive and no additional limiter needed.
- A high-accuracy scheme over merely one cell.

Implementation of Non-hydrostatic AGCM

		Non-hydrostatic AGCM	Non-hydrostatic OGCM	
Equations System		Fully compressive N-S equations	non-hydrostatic: incompressive N-S equations	
Grid System		Yin-Yang grid system	Yin-Yang grid system	
Discrimination	Space	Arakawa-C grid(horizontal), z*(vertical)	Arakawa-C grid(horizontal), z(vertical)	
	Time	4th order Runge-Kutta	4th order Runge-Kutta	
Advection terms		5th order flux form, CIP-CSLR	5th order flux form	
not Advection terms		4th order flux form	4th order flux form	
Sound wave		HEVI, HIVI	Implicit methods(2-dimensional, 3-dimensional)	
Gravity wave		-		
Microphysics		Qc, Qci, Qr, Qs, Qg	-	
Cumulus Param.		Kain-Fritsch scheme	-	
Turburance		Smagorinsky scheme (static), dynamic Smagorinsky[LES]	Smagorinsky scheme (static), dynamic Smagorinsky[LES]	
			Nnesting systems(1way,2way)	
		ivesting systems (1 way,2 way)	Tide, Multi-grid Methods(Poison eq)	
Parallelization		2-dim. decomposiotion, inter nodes:MPI, intra nodes:micro-task	2-dim. decomposiotion, inter nodes:MPI, intra nodes:micro-task	

Preliminary Validation Condition

resolution	horizontal	11 km, 5.5 km,, 2.6 km (regional: 4.8 km, 2.6 km, 1.3 km, 500 m)			
	vertical	32 layers(height: 30km)			
prediction term		72 hours			
initial t	ime	00, 12UTC			
initial data		observational global data distributed by JMA			
side boundary		result data from global simulations			
upper boundary		Rayleigh damping			
bottom boundary		latest 1 day observational data before the time of simulation			

Urban weather 10 ~ 200m, 200Layers

Preliminary Validation Results

Global, non-Hydrostatic, Cloud micro-physics

Tracking of the Typhoon

Observation

9日21時 \bigcirc /8日 9時 955 pl • 00 L 6日21時 0908100600JST T0310 東 京

平成15年8月 台風第10号に関する気象速報

平成15年8月10日

Tracking of Tyhoon: 7-10th August 2003

Observation

Simulation results

平成15年8月 台風第10号に関する気象速報

平成15年8月10日

Communication cost imbalance on boundary regions

(a) Communication with 1-dimnsional decomposition.

(b) Communication for two-dimensional distribution.

Perimeter of each colored region is corresponding to a mount of communication between processes.

- 2 Dimensional Decomposition: -Communication cost can be reduced.
- -Computational cost imbalance between A and B regions can be avoided.
- -For inter-node parallel processing, MPI library.
- -Microtasking architecture was used for intra-node parallel processing.

Cost Performance of Dynamical Core on the Earth Simulator.

Performance statistics on the Earth Simulator.

Current status of performance.

[km]	resolution grid points	#of nodes	peak ratio [%]	V.Op.Ratio [%]	VLEN
20.9	$1440 \times 480 \times 98 \times 2$	6	58.1	99.53	236.8
10.4	$2880\times960\times96\times2$	24	56.7	99.52	237.4
5.2	$5760 \times 1920 \times 96 \times 2$	96	59.9	99.54	239.2
3.5	$8640\times2880\times96\times2$	216	60.0	99.54	238.9
2.6	$11520\times 3840\times 96\times 2$	512	59.9	99.60	239.7

-Comparing the statistics between of AFES and our code with 10 km resolution for horizontal, our code is 10 times faster as CPU time Computational performance without CIP-CSLR

-2.6 km horizontal resolution has attained to about 60% of the theoretical peak performance 32.8 Tflops of 4096 processors (512 nodes).

Near Future Work

Just now kick off status to reproduce/predict non-hydrostatic phenomena such as typhoon, heavy rain in Baiu season, tornado and so on.

- Much more validation experiments for each of Atmosphere and Ocean components.
- Cost tuning with CIP-CSLR
- Experiments by using regional coupled simulation code with ultra high resolution.
- Preliminary experiments with non-hydrostatic coupled code have stated in autumn of 2004.