Supercomputing Upgrade at the Australian Bureau of Meteorology

Ilia Bermous Bureau of Meteorology Research Centre Melbourne, Australia

Acknowledgements:

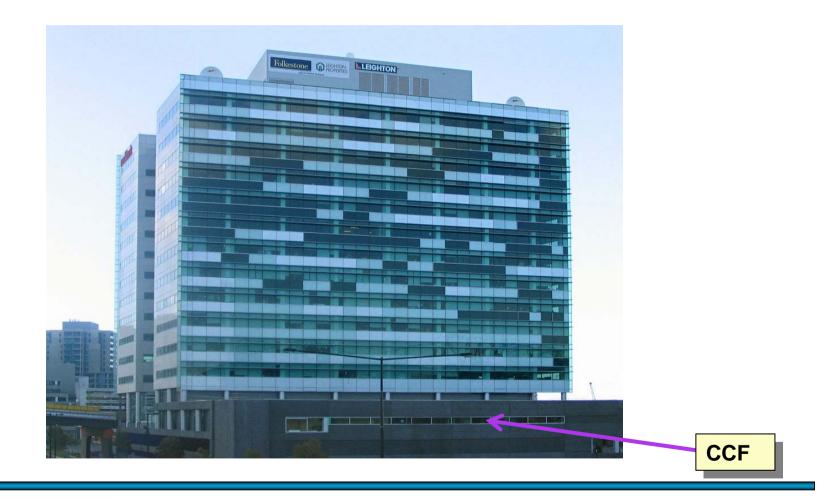
Bill Bourke, Mike Naughton, Peter Steinle

BMRC colleagues

Phil Tannenbaum & HPCCC colleagues

NEC/A applications support staff

I.Bermous@bom.gov.au



Recent BoM/CSIRO HPCCC Systems History 1997-2007

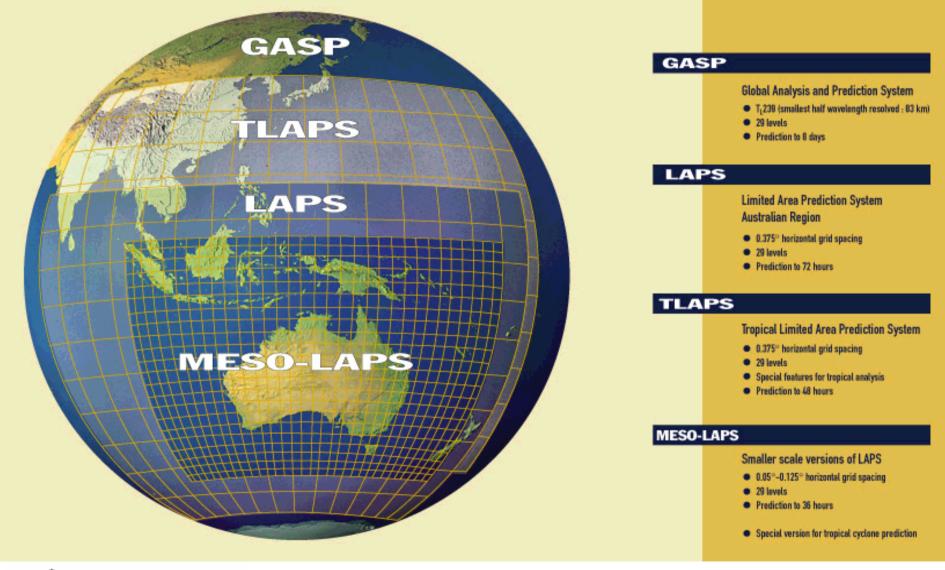
NEC SX-4/16 NEC SX-4/32 NEC SX-4/32 & SX-5/16 NEC SX-5/32M2	1997 1998-2000 2000-2001 2001-2004	50:50 BoM/CSIRO Shared
NEC SX-6/144M18 NEC SX-6/224M28	2004 4Q2004-2007	BoM/CSIRO Separate partitions CSIRO 5 nodes

New Location at 700 Collins Street

Phases of Current Contract with NEC

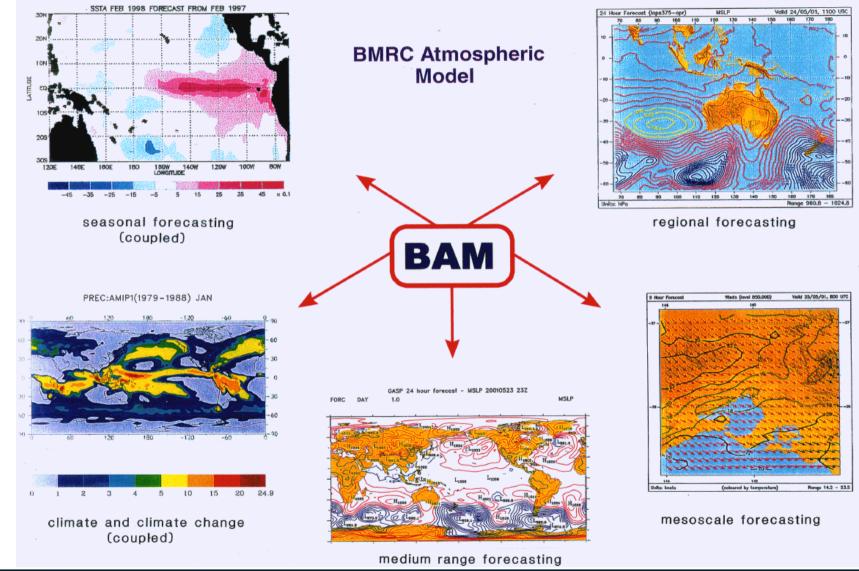
	April 2004	Oct 2004 – 2007
Nodes	18(13 BoM)	28(23 BoM)
CPUs	144	224
Peak Performance	1,152 GFLOPS	1,792 GFLOPS
Main Memory Unit	1,152 GB	1,792 GB
Disk Capacity		
Total	16 TB	26 TB
GFS	14 TB	22 TB

	April 2004	Oct 2004 – 2007
Nodes	2	2
CPUs	24	32
Memory	24 GB	32 GB

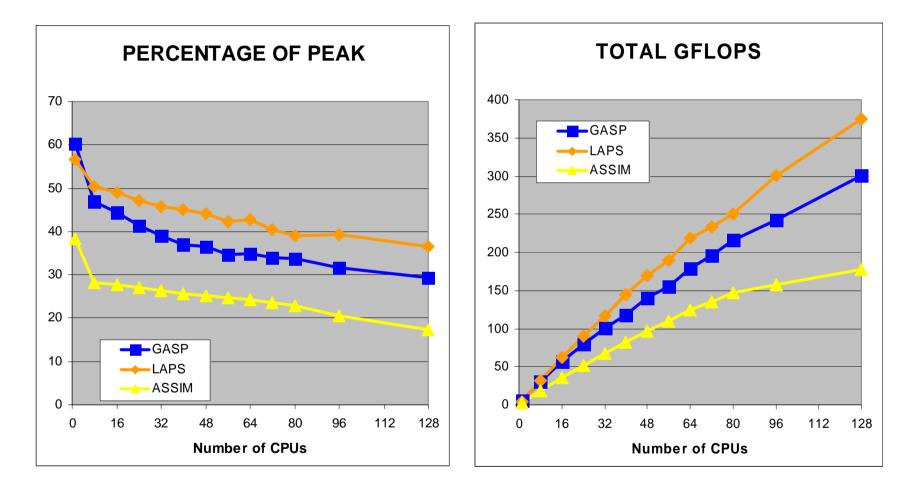


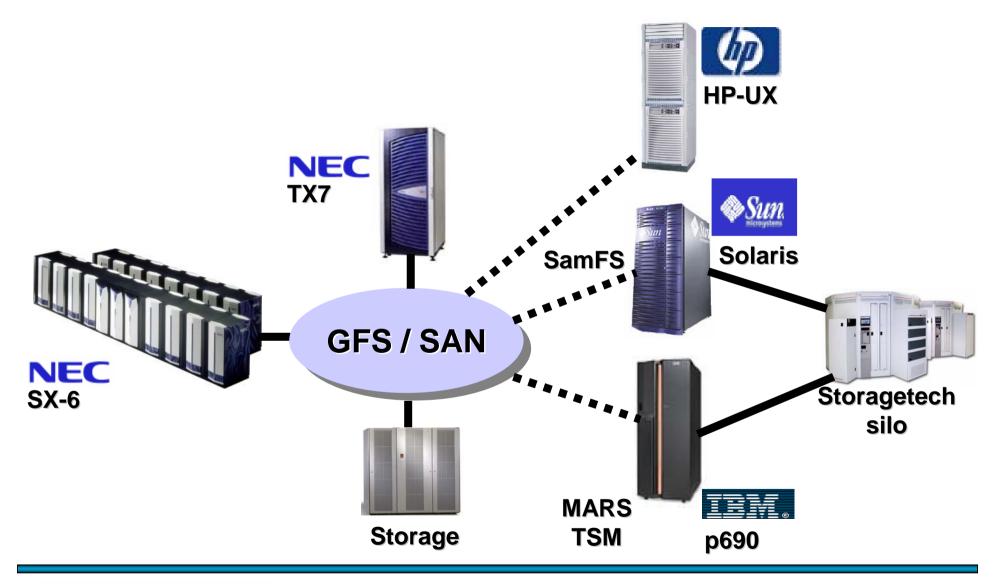
Overall Increase with SX-5 Comparison

- > 11.5 times increase in peak CPU capacity
- 13 times increase in memory
- > 14 times increase in disk capacity
- Similar disk speed increase
- Performance
 - + 5%-30% faster per processor for our major applications
 - some performance degradation for multithreaded runs or multiple single CPU jobs within a node



The Domains of the Operational Suite of **Numerical Weather Analysis and Prediction Systems**


Unified BMRC Atmospheric Model


Performance Scaling to 16 SX-6 Nodes for T479L50

(Benchmark Configuration)

Principal Components of BoM HPC System

GFS Overview

- User data is shared via NEC Global File System (GFS)
- GFS Server and Client on NEC TX7 IA-64 Linux front end server; GFS client on SX-6's
- XFS journaling file system on Linux
- SX-6 nodes access data via
 - NFS for <=64 KB I/O requests</p>
 - GFS for > 64 KB I/O requests
- Availability of GFS clients for HP, IBM, Sun have also been promised in our contract

Critical Features of TX7/GFS Design

- Need TX7's to perform to extremely high reliability thresholds to guarantee system availability for critical operations
- Need duplicated TX7; with fail over to avoid single point of failure

Pros & Cons of GFS

> Pros

- highly convenient file system visible from all SX-6 nodes and TX7
- high performance data transfer (near local disc speed for large files)
- fail-over capability between two TX7 servers
- based on SGI's Open Source XFS for Linux

Pros & Cons of GFS (cont.)

- Small block I/O uses NFS
- No prioritisation of GFS I/O
- No caching of GFS file systems compared with SX-6 file systems
- GFS I/O bottleneck:
 - heavy I/O may cause significant performance degradation for applications using same file system, even on other nodes
 - better to use local file system (110GB per node) or MFF (6GB per node) for heavy I/O; can't migrate these jobs to other nodes if checkpointed

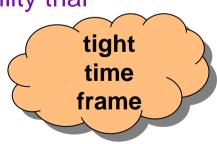
GFS Usage Tips

> Efficiency

- Setting large enough buffer sizes for I/O (F_SETBUF)
- Specify optimal buffering for direct access I/O (F_HSDIR, should really be default)
- Large data transfer steps done by batch jobs executed on TX7

Convenience

- do_tx7 script to do a command in the same directory using rsh on a remote host;
 perform minor scalar operations such as rcp, gzip, etc on TX7 from SX-6 batch jobs
- Likewise use of do_sx6 from TX7 to SX-6


Example of Local File System Impact

- Usage of local file system in operational GASP EPS (T119L19): 32 perturbed members, 4 batch jobs of 8 members executed in background with each member on 1 CPU, running in parallel on 4 nodes
 - >40min with I/O on GFS (time may vary a lot depending on GFS traffic to same device from other jobs)
 - 15-16min with I/O on cached local file system (\$LOCALDIR)
- Time for copying files from GFS to local file system and back is negligible in comparison with doing I/O from programs directly to GFS
- Further investigation is continuing with NEC cooperation, aiming to achieve near local file system performance with I/O direct to GFS

Stages in SX-6 installation

- Sep 2003 Jan 2004: porting applications on two nodes off-site SX-6 system
- Dec 2003 Mar 2004: NEC installation and testing of the full system at 700 Collins Street
- > 26 Mar 2004: user access
- > 19 Apr 19 May 2004: acceptance testing reliability trial
- > 13 May 2004: BoM operations switched to SX-6
- > 31 May 2004: the SX-5s switched off

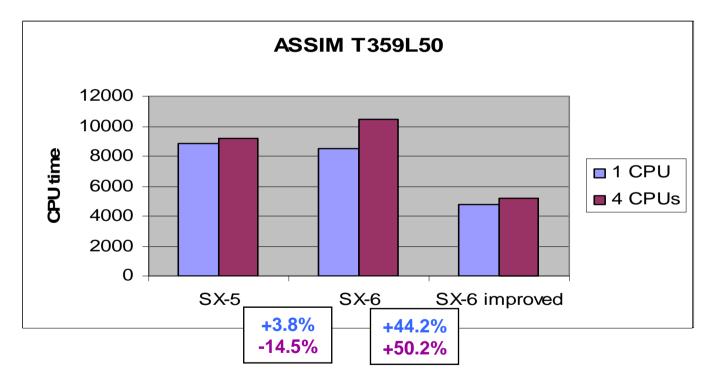
Porting experience from SX-5 to SX-6

- Binary compatible
- GFS worked smoothly
- Single node porting straightforward
- Not enough memory bandwidth

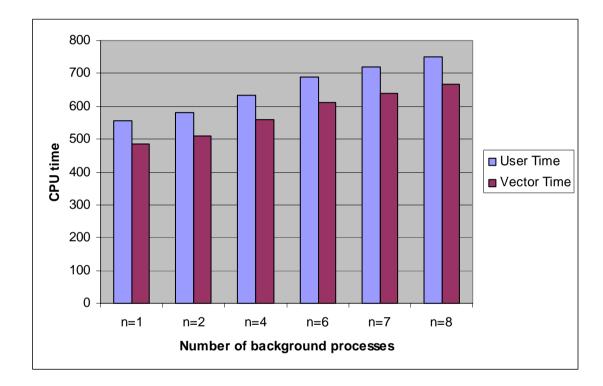
performance degradation in multithreading and/or impact of other applications running on the same node at the same time

cause: memory contention

Node comparison


	SX-5	SX-6
CPUs	16	8
Peak Performance	128 GFLOPS	64 GFLOPS
Main Memory Unit	128 GB	64 GB
Memory Bandwidth per CPU	64 GB/sec	32 GB/sec
I/O Bandwidth	12.8 GB/sec	8 GB/sec

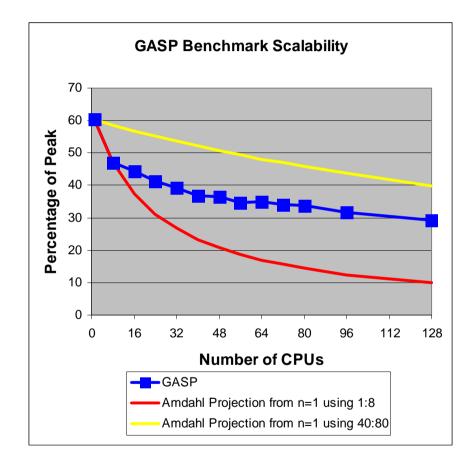
Slow multithread performance in assimilation triggered performance tuning which delivered big improvement (see next slide)


Performance tuning results for GenSI ASSIM

Slow multithreading performance in assimilation code triggered tuning which delivered big improvement

Memory Contention in GASP EPS

1-8 parallel 10 day forecasts each running on 1 CPU on the same dedicated node


- CPU time per forecast increases by 195sec (~35%) overall
- CPU time increases almost linearly by ~26sec per parallel forecast
- CPU time increase is wholly due to vector time increase

CPU times are reproduced with forecasts run

- in batch parallel jobs
- via MPI wrapper

Intra-node versus Inter-node Scalability

- Intra-node scalability is ~96%
 (i.e. 1 CPU to 8 CPUs)
- Inter-node scalability is ~99.6%
 (i.e. 5 nodes to 10 nodes)
- Difference is mainly due to memory bandwidth/memory contention effects

SX-6 usage

Operational runs

- jobs are submitted via SMS (ECMWF Supervisor Monitor Scheduler) scheduler in batch from operational HP server
- high priority

Research

- batch jobs are submitted from TX7 or HP-UX
- users not bound to specific nodes
- very limited interactive access to the SX-6 nodes (only for debugging)
- one node dedicated for performance testing
- tight limits on TX7 usage
 - cross compilation is done on HP-UX and not on TX7
 - not more than 2 window sessions open by a user
 - no processing apart from GFS, NQSII, development scripts & jobs

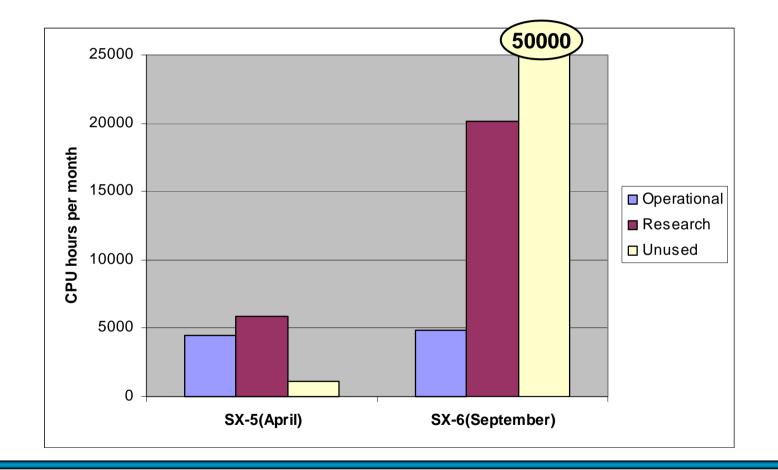
Scheduling

- ERSII and NQSII
- Gang scheduling
- Different queues for research, operational jobs
 - operational jobs spread across nodes to avoid contention between high priority tasks
 - single node and multi-node queues for research
- Max of 7 CPUs per process can be used on single node (to avoid contention with system accounting, etc daemons)
- Multi-node scheduling still in very early stages (not operational; tuning probably still required)

Current Operational SX-6 Use

- Short Range (runs twice a day, L29 for all models)
 - LAPS 0.375° Australian Region data assimilation and 3 day prediction system
 - TLAPS 0.375° Tropical Australasian Region 3 day prediction system
 - LAPS 0.125° Australian Region 2 day prediction system
 - TCLAPS 0.15° 3 day tropical cyclone prediction system
 - MESOLAPS 0.05^o mesoscale 2 day prediction system for Victoria-Tasmania, Sydney domains and South East Queensland

Medium Range (runs twice a day)


- GASP (T239L29, 75km) 2x6hours assimilation analysis and 10 days forecast
 - GASP (T239L33, scatterometer data) 2x6hours assimilation analysis and 10 days forecast run routinely in parallel, will become operational very soon
- GASP EPS (33 members, T119L19, 150km, 10 days forecast)

Seasonal Forecasting

 POAMA (Predictive Ocean Atmosphere Model for Australia, T47L17, 350km) coupled model 8-9months seasonal forecast; run daily to produce time lagged ensemble

BoM HPC System Usage: SX-5 vs SX-6

Data Archiving

System	Platform	Current archiving rate	Current archive volume	Transfer rate
MARS1OP/TSM MARS1RE/TSM	IBM p690 4CPUs IBM p690 4CPUs	5 Gb/day (0.15 Tb/mth)	6Tb	70Mb/sec
SamFS	Sun SF 4800 8 CPUs	300-350Gb/day (9-10 Tb/mth)	185Tb	50Mb/sec

11th Workshop on Use of HPC in Meteorology, 25-29 October 2004

Resolutions in the Future

	Current Resolution	Future 2005-2007(*)	Upgrade Resolution Factor	Upgrade CPU Time Factor
GASP	T239L29, 75km	T359L50, 50km	1.5/1.7	~7
GASP EPS	33 members T119L19, 150km	50 members T159L29, 112km	1.6/1.3/1.5	~6-7
LAPS	0.375°, 29 levels	0.25°, 50 levels	1.5/1.7	~8
LAPS EPS	24 members 0.5º, 29 levels	50 members 0.5º, 50 levels	2.1/1.7	~4
TCLAPS	0.15°, 29 levels	0.10º, 50 levels	1.8/1.7	~9
MESOLAPS	0.05°, 29 levels	0.05º, 50 levels	1.7	~2
POAMA Seasonal Forecasting	T47L17, 375km	T63L50, 280km	1.3/3	~6

(*) subject to demonstrating positive impact

Conclusions

- > NEC SX-6 is in place, delivering major HPC increase to BoM
- Transfer from SX-5 to SX-6 successfully made without major problems
- Operational jobs mostly faster than on SX-5
- TX7/SX6/GFS provides seamless environment for research and development
- System reliability is very high so far (no major problems over 6 months)

Challenges

- System utilisation will need to rise as resolutions increase
- Job scheduling will need refinement as demand increases
- Some performance bottlenecks remain, which will need to be improved to realise future upgrade goals

