

ECMWF HPC Workshop 10/26/2004

IBM's High Performance Computing Strategy

Dr Don Grice Distinguished Engineer, HPC Solutions

HPC Key to an Innovation Economy

Digital Media:

Increasing productivity for digital content creation and online gaming

Petroleum:

accelerating rate of oil exploration and production

Industrial Sector:

accelerating CAE for Electronics, Automotive, and Aerospace

Life Sciences:

pharmaceuticals and biotechs accelerating drug discovery and diagnostics

Financial Services:

optimizing IT infrastructure, risk analysis, portfolio management, and compliance

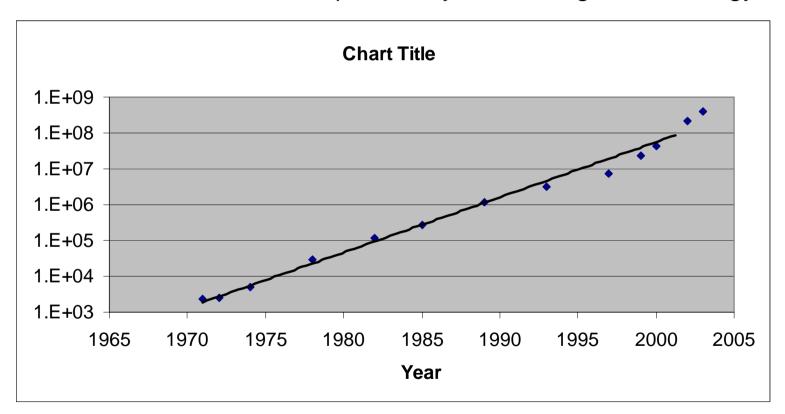
Government & Higher Ed.:

making scientific research more affordable

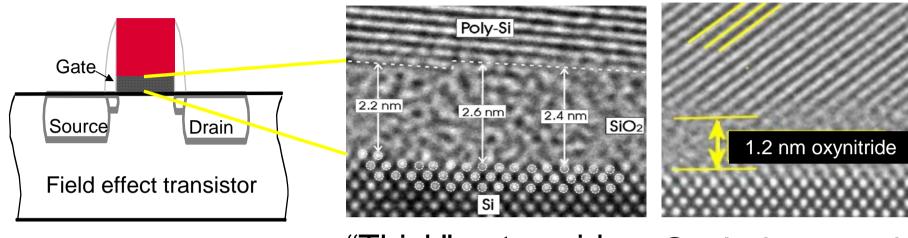
IBM's High Performance Computing Strategy

Solving Problems More Quickly at Lower Cost

- Aggressively evolve the POWER-based Deep Computing product line
- Develop advanced systems based on loosely coupled clusters
- Deliver supercomputing capability with new access models and financial flexibility
- Research and overcome obstacles to parallelism and other revolutionary approaches to supercomputing

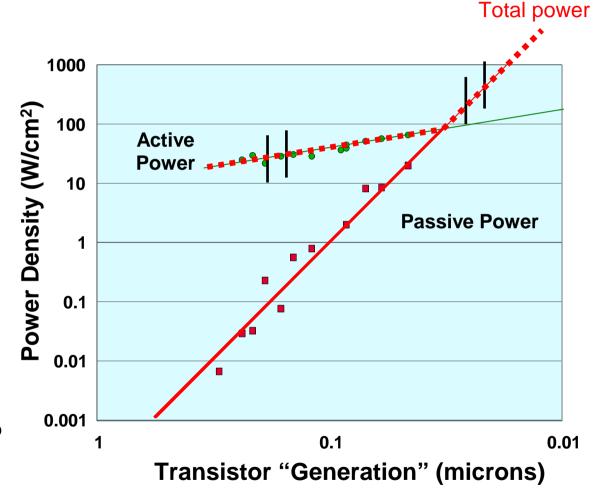

Technology Scaling; A Legacy Strategy

Moore's Law is a VERY simplistic subset of Semiconductor Scaling


The Basic's of Moore's Law

The number of Devices on a chip of fixed size doubles every 12 to 18 months – This is accomplished by the scaling of technology

Why Scaling Breaks Down; We're down to atoms


"Thick" gate oxide Scaled gate oxide

- Consider the gate oxide in a CMOS transistor (the smallest dimensions today)
 - Assume only 1 atom high "defects" on each surrounding silicon layer
 - For a modern "scaled" oxide, 6 atoms thick, 33% variability is induced.
 - ▶ The bad news
 - Single atom defects can cause local current leakage 10-100x higher than average
 - ► The really bad news
 - Such "non-statistical behaviors" are appearing elsewhere in technology

Consider the Issue of Chip Power

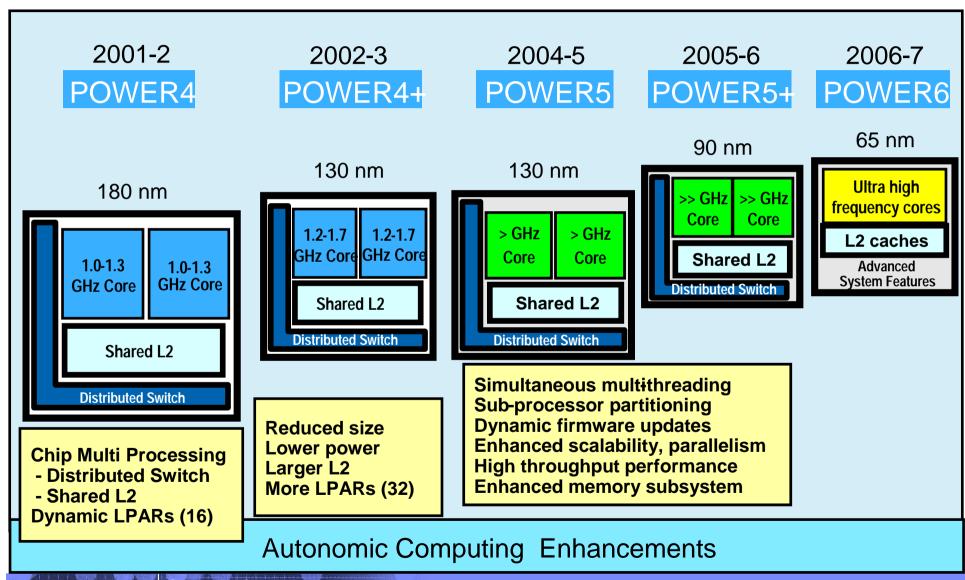
- Fundamental Changes
 - "Stopping" the chip no longer reduces chip power.
 - One must develop means to literally "unplug" unused circuits.
 - Software must become much more sophisticated to cope with selective shutdowns of processor assets.
 - Scaling produces profoundly different results when attempting to "push" chip speeds

What Constitutes Future Processor *Technology*?

- Circa 2004-2044
 - Materials, Devices, Scalable and Integrable Cores (IP), System Architecture,
 System Integration, and System Software
 - The word "Technology" now encompasses far more than just semiconductors going into the future
 - Integration, the creation of systems rather than just "chips", will become the means by which past trajectories for computing performance are maintained

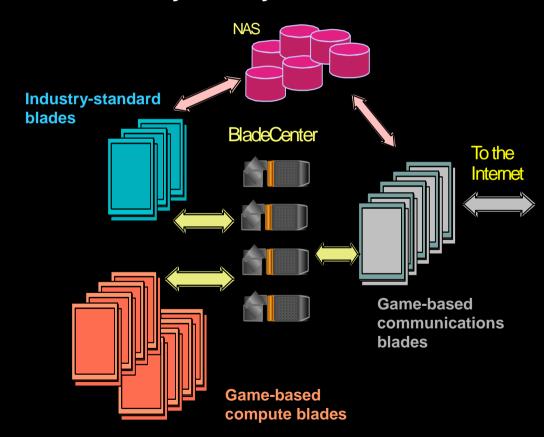
Innovation via Holistic Design, from Atoms to Software

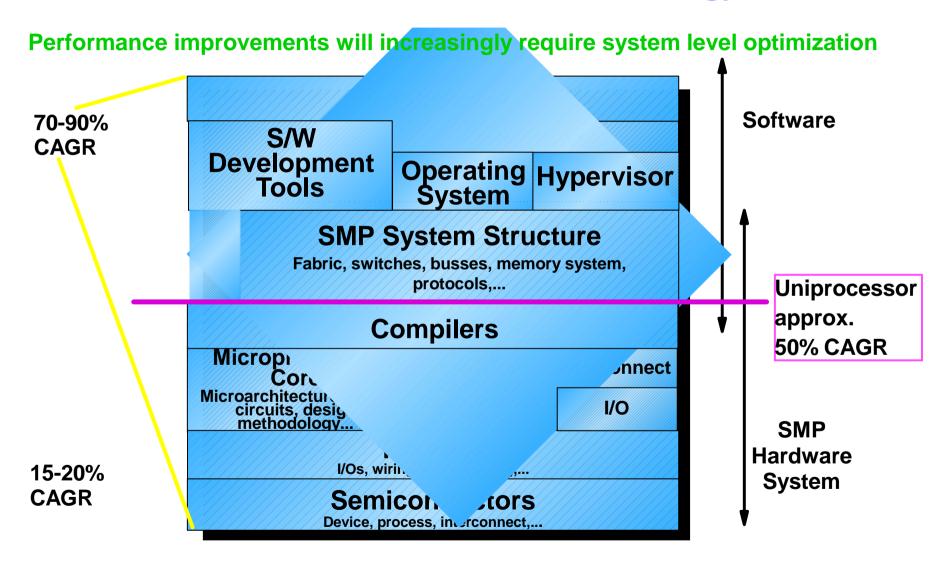
- Only the simultaneous optimization of materials, devices, circuits, cores, chips, system architecture, and system software, provides an effective means to optimize for both performance and power.
- IBM's Power Architecture is taking a major step towards creating an open ecosystem of highly scalable <u>Multi-Core</u> chips having power control and performance characteristics required for future Processor Technology.
 - Asset virtualization
 - Fine grained clock gating
 - Dynamically optimized multi-threading capability
 - Open (accessible) architecture for system optimization/compatibility
 - Scalability enabling IP re-use in a broad range of systems and products


Multi-Core Options

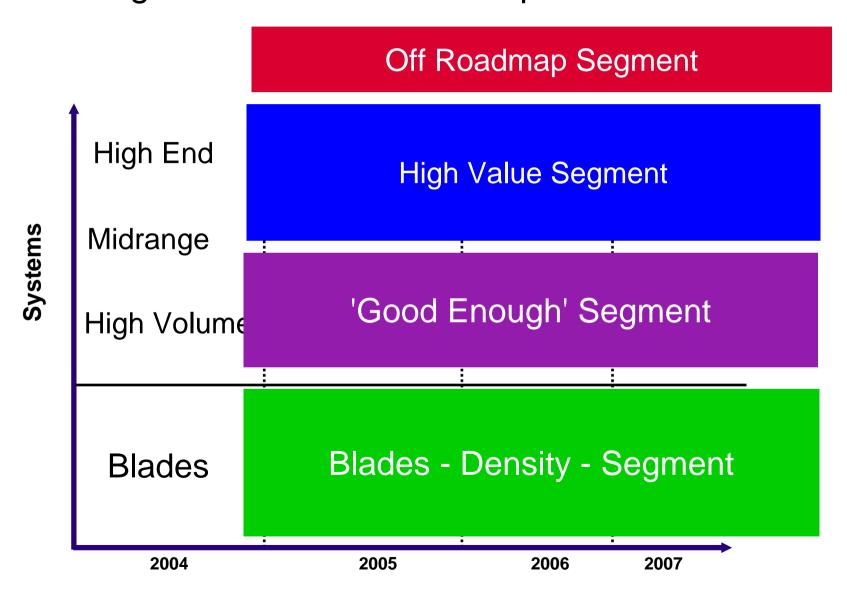
- Homogeneous Symmetric Multi-Core General Purpose CPUs
- Homogeneous Symmetric Multi-Cores with Specialized Instructions
- Heterogeneous Cores with Specialized Accelerators

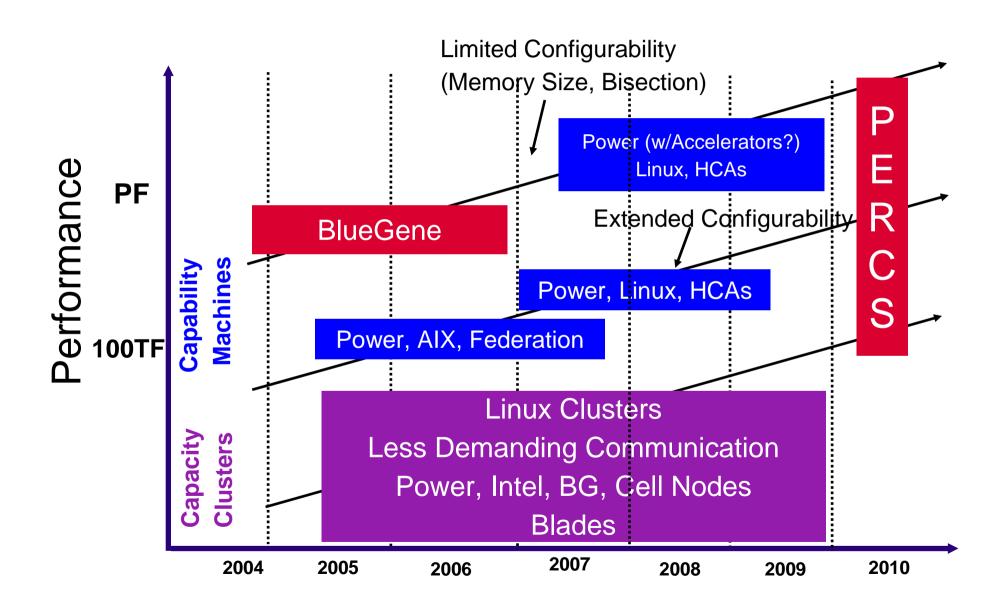
Science Driven Design


Multiple Core Processors and Optimizations

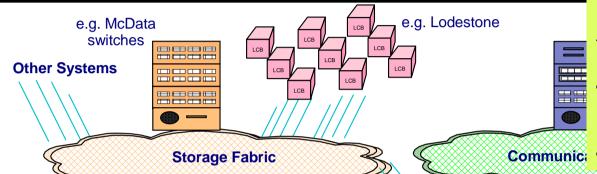

Game Processor Technologies

- The game console market is driving the development of microprocessors with high numeric processing capabilities, high bandwidths, and features to tolerate memory latency
- Research is exploring the use of game-processor technologies to boost performance in areas including:
 - High-performance scientific computing
 - On-line client-server games
 - Video applications including surveillance
 - Secure communications acceleration

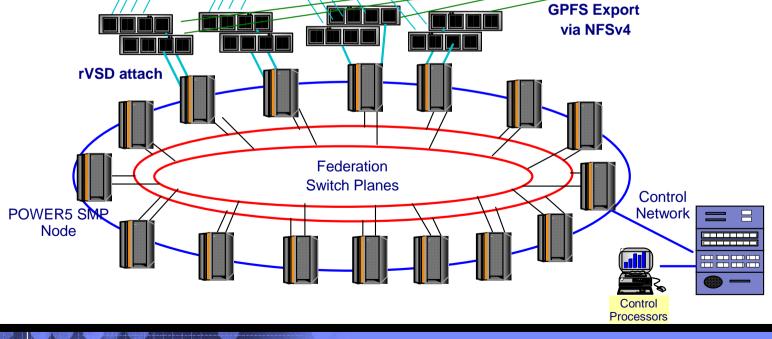



System performance gains of 70-90% CAGR derive from far more than semiconductor technology alone

HPC Cluster System Direction Segmentation Based on Implementation



HPC Cluster Directions



ASCI Purple Architecture

- 100TF Machine
- •~1500 8-way Power5 Nodes
- Federation (HPS)
 (~1500 x 2 multi-plane fat-tree topology, 2x2 GB/s links)
- Communication libraries: < 5 μs latency, 1.8 GB/s uni

Communic •GPFS: 122 GB/s

Interconnect Adapter Types

- Adapter (HCA) Server Attachment Method
 - ► Internal 'Proprietary' Bus Attachment
 - Optimizing Performance for the Server
 - Open/Multi-Vendor Slot Attachment
 - Facilitates Heterogeneous System Solutions
- Interconnect Fabric Type
 - 'Proprietary' Protocol and/or Network
 - Value Add over current Industry Standards
 - Industry Standard Carrier and APIs

Interconnect Type Evolution

- P-series
 - ► High End Focus on advancing Standard Networks Following HPS (Federation)
 - IB-DDR/QDR
 - Low Latency (User Space) Ethernet
 - Collective Offload/Acceleration
 - Combination of Internal Attachment Point and Open Slot HCAs
 - Standard Networks
 - IP: Ethernet; 1Gb, 10Gb, 40-100Gb, Lower Latency
 - MPI: Myrinet, Myrinet-10G, (IB and LL-Ethernet as they evolve)
 - Parallel DB and 'commercial': IB4x/12x
 - Work with Industry to extend PCI-Express to DDR (QDR?)
 - To match Internal I/O Bus capability
- Other Series Deep Computing
 - Use Standard Networks and Standard Attachment points
- Research
 - Continue to look at new ways to use networks especially for large Scale-out Solutions

System (64 cabinets, 64x32x32)

BlueGene/L

Key Blue Gene Technology Elements

- ▶ System-on-a-chip
- ▶Integrated interconnection networks
- **▶** Balanced design
- **▶** Power-efficient CPUs
- **▶** Efficient operating system
- **▶** System management

Cabinet (32 Node Boards, 8x8x16)

Node Board (32 chips, 4x2x2) 16 Compute cards

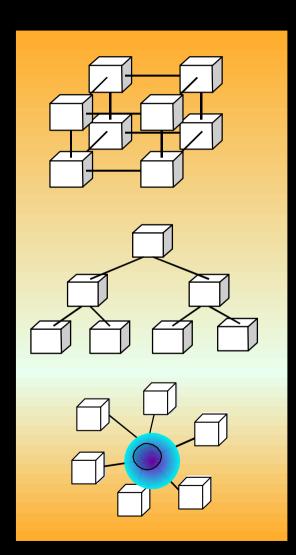
Compute Card (2 chips, 2x1x1)

Chip (2 Processors)

2.9/5.7 TF/s **256 GB DDR**

90/180 GF/s 8 GB DDR

5.6/11.2 GF/s **0.5 GB DDR**


180/360 TF/s

16 TB DDR

2.8/5.6 GF/s 4MB

BlueGene/L Interconnection Networks

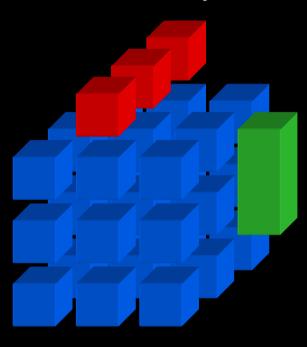
3 Dimensional Torus

- Interconnects all compute nodes (65,536)
- Virtual cut-through hardware routing
- 1.4Gb/s on all 12 node links (2.1 GB/s per node)
- Communications backbone for computations
- 0.7/1.4 TB/s bisection bandwidth, 68TB/s total bandwidth

Global Tree

- One-to-all broadcast functionality
- Reduction operations functionality
- 2.8 Gb/s of bandwidth per link
- Latency of tree traversal 2.5 µs
- ~23TB/s total binary tree bandwidth (64k machine)
- Interconnects all compute and I/O nodes (1024)

Ethernet


- Incorporated into every node ASIC
- Active in the I/O nodes (1:64)
- All external comm. (file I/O, control, user interaction, etc.)

Low Latency Global Barrier and Interrupt

Control Network

BlueGene/L System Software

compute node application volume

I/O node operational surface

service node control surface

- Hierarchical organization
 - Compute nodes dedicated to running user application, and almost nothing else – simple compute node kernel (CNK)
 - I/O nodes run Linux and provide a more complete range of OS services – files, sockets, process launch, debugging, and termination
 - Service node performs system management services (e.g., heart beating, monitoring errors)
 largely transparent to application/system software
- Looks like a 1024-node cluster to outside world
 Job scheduling through LoadLeveler extensions
- File system: GPFS
- Libraries: ESSL, MPI

2010: **H**igh **P**roductivity **C**omputing **S**ystems Research PERCS (Productive, Easy-to-use, Reliable Computer System)

Balanced attack across all system layers

Programming Env.

Middleware

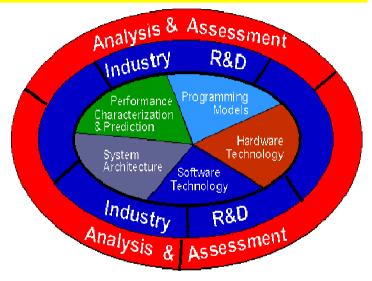
System Architecture

Basic Technology

Main theme: A system that adapts to the application, not the other way around

- Continuous program optimization
- System performance evaluation methodology and infrastructure

- Programming environments
 - Focus on simplifying programming tasks and reducing development cycle
- Scalable OS and middleware
 - Support for on-demand computing
- Compilers
 - Tolerating memory latency
- Development of new systems analysis tools
 - An execution-driven evaluation infrastructure
- Systems architecture
 - Application dependent morphing architectures under software control, addressing the memory wall
- Circuits/power/technology
 - High performance, lower power circuits, system level power analysis, advanced packaging


High Productivity Computing Systems

Provide a new generation of economically viable <u>high productivity</u> computing systems for the national security and industrial user community)

Goals:

- Performance (time-to-solution): speedup critical national security applications by a factor of 10X to 40X
- Programmability (time-for-idea-to-first-solution): reduce cost and time of developing application solutions
- Portability
- Robustness (reliability): includes security in addition to traditional RAS

HPCS Program Focus Areas

Applications:

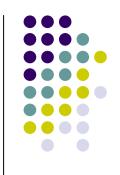
• Intelligence/surveillance, reconnaissance, cryptanalysis, weapons analysis, airborne contaminant modeling and biotechnology

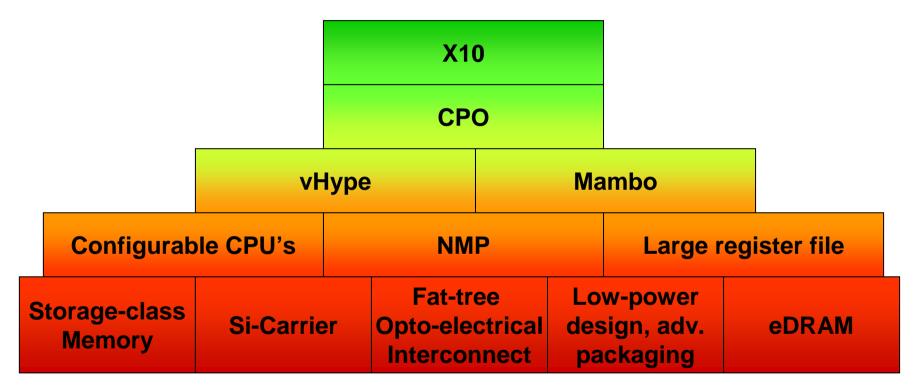
Ref: R. Graybill, DARPA 1/27/03

- High performance on HPC Challenge, e.g.
 - GUPS (security application, network bound)
 - STREAM (data streaming, memory bound)
 - Linpack (traditional HPC, CPU bound)
- High productivity:
 - Ease of programming, administration & general use
 - Robustness
- Actual applications:
 - UMT-2K,

FFT Local RandomAccess Spatial locality **Local View Applications DGEMM STREAM** high low Temporal locality FFT MPI RandomAccess Spatial locality **Applications Global View** HPL **PTRANS** Temporal locality

All delivered within a commerciallyviable, mainstream product


The IBM Team



- IBM Research
- Software Group
- Server and Technology Group
- Universities
 - Systems and architecture
 - MIT, UT Austin, Illinois, RPI
 - Programming environments & languages.
 - UC Berkeley, Purdue, Vanderbilt, U. of Delaware
 - Usability and applications
 - Cornell, U of New Mexico, Pittsburgh, Dartmouth, Los Alamos National Lab

- Cross-stack technologies for 2010, integrated SW-HW
- Goal is to influence IBM's main products and compete successfully for building a peta-scale machine by 2011
- Large team effort, government partnership
- Cost realism, software inertia, and other issues may limit the reach of our effort, and it's important to adjust expectations accordingly

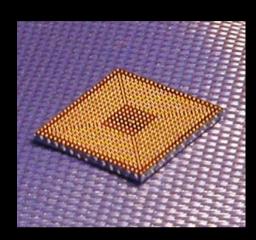
POWER Everywhere



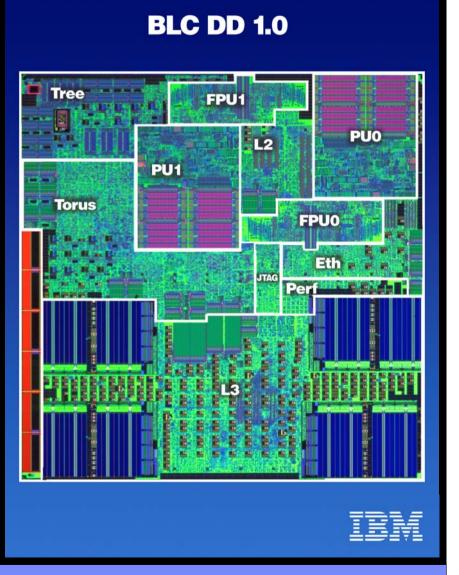
Blue Gene Science

- Advance our understanding of biologically important processes via simulation, in particular the mechanisms behind protein folding
 - Thermodynamic & kinetic studies of model
 peptide systems

 Structural and dynamical studies of membrane and membrane/protein systems


Innovation - Holistic Design

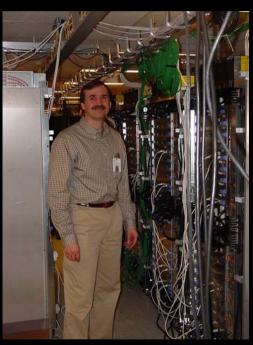
It's the SYSTEM, !#\$!@#\$%!!!!!!


BlueGene/L System-on-a-Chip ASIC

- 130nm
- 11 x 11 mm die size
- 25 × 32 mm CBGA
- 474 pins, 328 signal
- 1.5/2.5 Volt

Integrated functionality

- Two PPC 440 cores
- Two "double FPUs"
- L2 and L3 caches
- Torus network
- Tree network
- JTAG
- Performance counters
- EDRAM



BlueGene/L on TOP500

I.B.M. Decides to Market a Blue Streak of a Computer *NY Times*, 21 June 2004

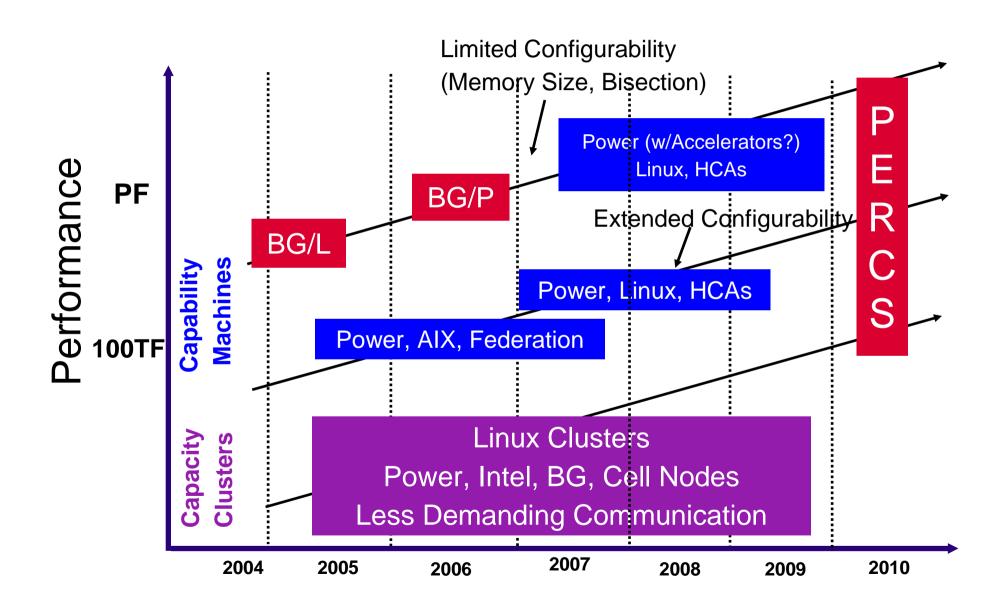
From the June 2004 TOP500 List

- 8192 processors
- 11.68 TF/s (73% of peak)
- 72 kW
- 0.162 GF / W

#8: BlueGene/L Prototype (700 MHz, 512 MB/node)

- 4096 processors
- 8.655 TF/s (75% of peak)
- 46.8 kW
- 0.185 GF / W

The Discontinuity


Then (2002)

- Scaling drove performance
- Scaling drives down cost
- Performance constrained
- Active power dominates
- Line tailoring in manufacturing
- Focus on technology performance

Now (2004)

- Innovation drives performance
- Scaling drives down cost
- Power constrained
- Standby power dominates
- Performance tailoring in design
- Focus on system performance

HPC Cluster Directions

