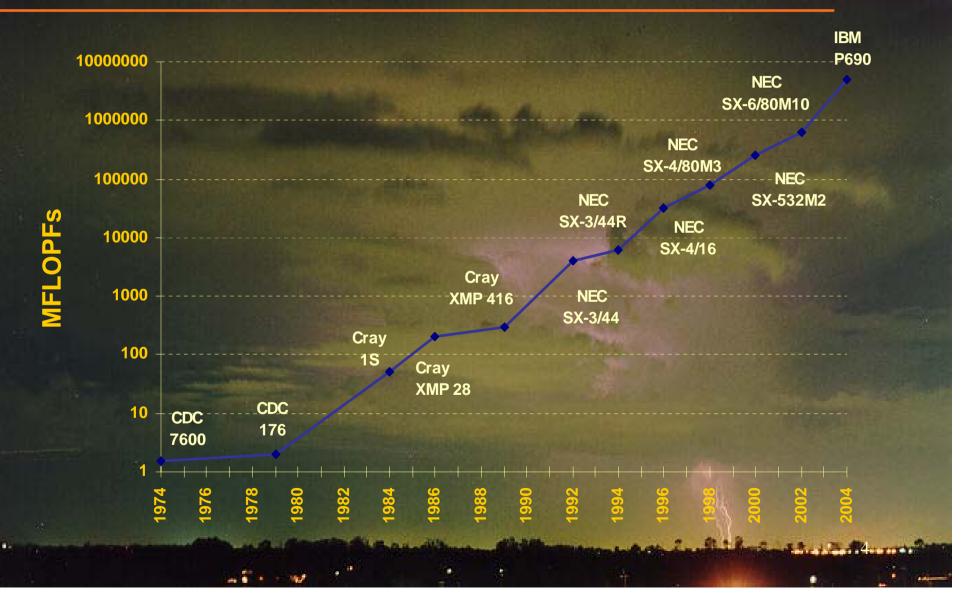
MSC HPC Infrastructure Update

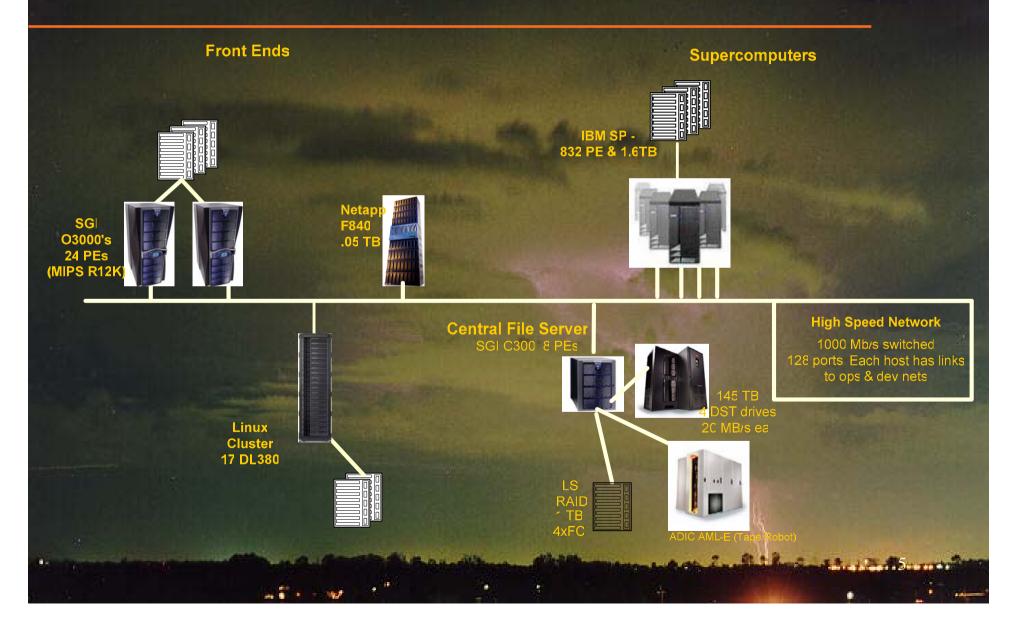
Alain St-Denis Canadian Meteorological Centre Meteorological Service of Canada

Outline

HPC Infrastructure Overview


Supercomputer Configuration

Scientific Direction


IT Infrastructure Overview

MSC's Supercomputing History

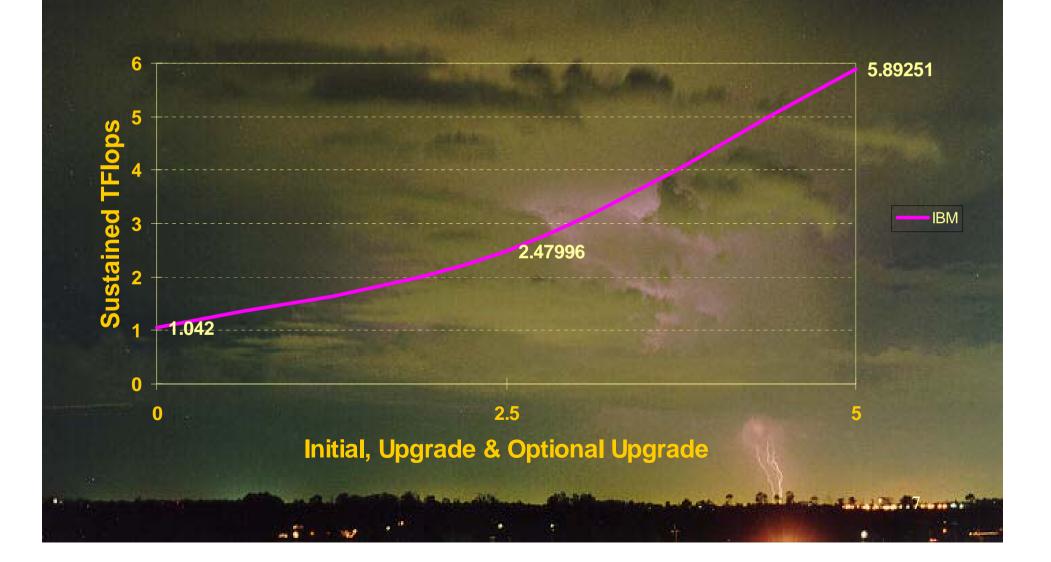
CMC Supercomputer Infrastructure

Supercomputer: IBM

IBM

17

- 128 nodes


- 944 PE

– 2.19 TB Memory

– 15 TB Disks

- 4.825 Tflops (peak)

IBM Committed Sustained Performance in MSC TFlops

Front-End Servers

Twin Servers: Production & R&D systems

Production Server & R&D:

SGI 3000: 20 R14000 600MHz CPUs, 20GB RAM

Together both systems have ~13TB disk

Production Server: 80% Batch

Front-Ends: Linux Cluster

Configuration: 17 nodes with a 3TB (raw) SAN Each node: 2 processors, P3 - 1.26GHz / P4 - 2.4GHz 2 GB memory 1 FC HBA 1 GE **Compute nodes batch-only** Linux Clusters are growing like weed...

SGI Origin 300 with 8 processors & 8 GB memory

1 TB of FC disk drives

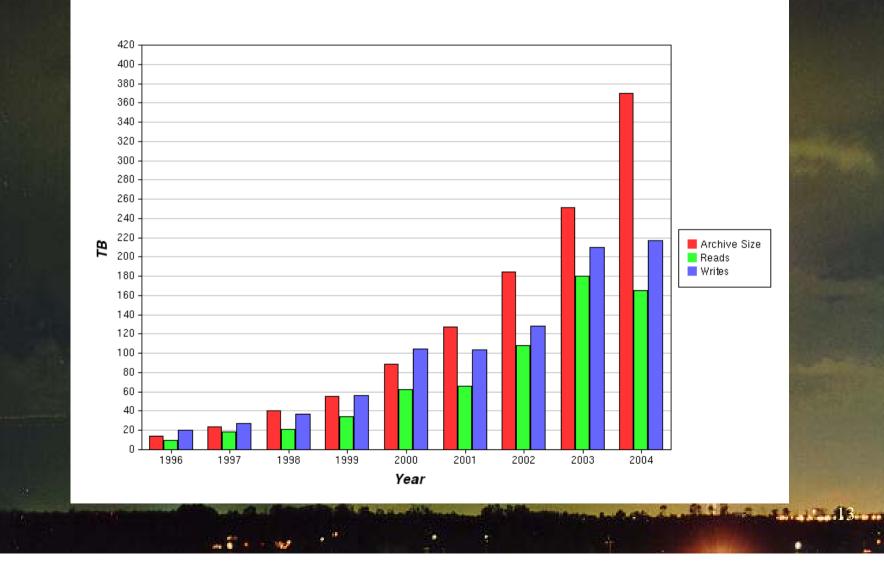
144 TB Grau AML/E robot with 4 AMPEX DST-312

• 70 TB Scalar 10K with 10 LTO tape drives

 HSM is FileServ (ADIC) + home grown backup management software

Main NWP archive (operational run data, R&D)

Main climate research archive


Main backup for all systems including the climate archive.

Limited satellite and radar imagery archive

19,000 tape mounts/month

20 TB (Tera Bytes or 10¹² bytes) growth/month

♦ 370 TB in use.

Supercomputer Configuration

Software Levels

AIX 5.1 ML6
PSSP 3.5
LoadLeveler 3.1
GPFS 2.1

Software Maintenance

Two hours window for maintenance: we use alternate disk installs.
Try to stay up to date, but not obvious.
Still not completely familiar with IBM's

software distribution methods...

GPFS Configuration

 18 VSD Servers, dual FC, 17 FASTt700 controllers.

4 VSD reserved for production i/o (1 file system).

14 remaining servers for development (15 file systems).

Batch Sub-system

Use of gang scheduler only for preemption.
Two main classes: production, development.
Negotiator and Scheduler running on the service nodes.
One schedd.

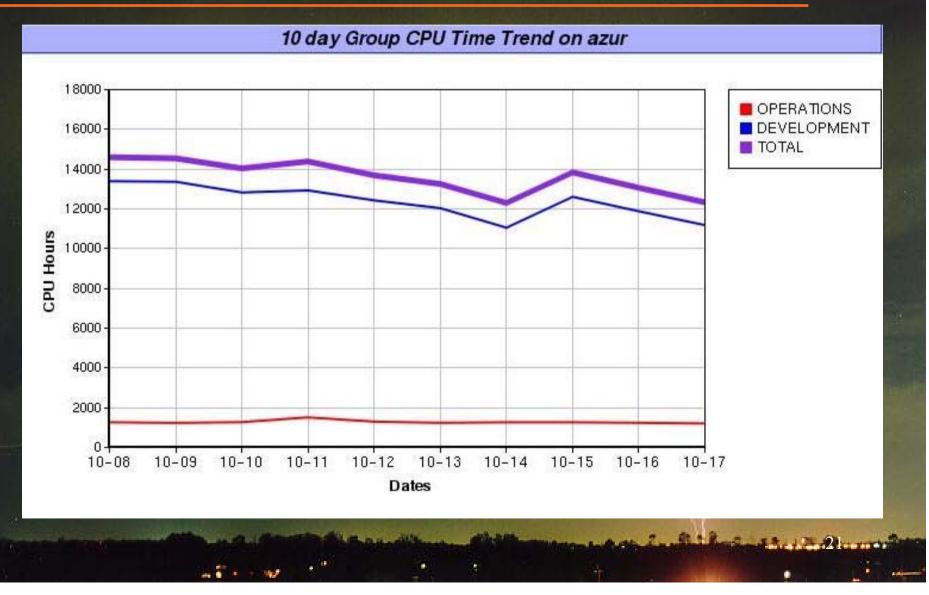
Batch Sub-system

A 6 3 1 100

LoadLeveler Configuration Information

Sec. Sec.	Frame Number																																							
Loadleveler classes	1.01		1			2			1.54		-	3	3	33	0	-	4	-	1	5		25					1	2	7			28			2	29	1	3	30	
Loauleveler classes	137	12		-				2			2			2			I	art	titio	n N	um	bei	r		8	2			28	1	2.	2			2			1	1	1
	123	4 5	6 7	7 8	1	2 3	4 !	56	78	3	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4 1	2	2	3 4	17	23	4
benchmark											۲	•	9	0	۲	0	9	0	۲	0	•	0	9	0	9	0	0	٢	9	0	9	•	•	•		•				
development											۲	0	9	0	۲	•	0	9	۲	0	0	0	9	0	0	٢	0	0	9	0	2.1	-0				•				
production											0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			1	4	5	2				
daemon				9						2					100	-	-			317				1			1				24	-								
single_s				۲						•	5	2	23	20		6.2		1	1ª	10	2		10		-		4	-		17	13	0.		2						
test																2		1	1							2					9	9	9	9						
testp			Γ									1	1		1		24		1	X		1				5				5	9	9	9	9	5			F		
server											1	3	2		100		5			÷.,	3	2	N.C.					1		3	23		2.					Γſ	T	

Legend	Color	Dedicated	#nodes	Name #
Production classe		VSD server	20	c1f0[12]p[17]m, c1f29p3m and c1f30p[123]m
Production daemon class		Interactive	2	c1f0[12]p8m
MSC classes		< 8 CPU	3	c1f0[345]p1m
TEST class (azur-test)	12	Totalview License Server	1	c1f03p2m
MSC class (4 PE dedicated = 1 PE & < 15 min)	3	LL Negociator	1	c1f0[12]p8m
The second se	1000	LL Schedd	1	c1f0[12]p8m


•

Batch Sub-system Issues

We need enforced memory limits!!!
Various issues related to preemption.

System Usage

Π.,

Monitoring

Home grown tools
Passive: log gathering and massaging
Active: scripts pro-actively testing various items
All syslogs redirected to the CWS
How to cope with non-syslog logs? Still thinking...

Heterogeneous solution.

Home grown stuff

LL – SGE gateway
Refurbished HPM toolkit
Double buffered rcp.

On-going Support

The systems must achieve a minimum of 99 % availability.

Remedial maintenance 24/7: 30 minute response time between 8 A.M. and 5 P.M. on weekdays. One hour response outside above periods.

Preventive maintenance or engineering changes: maximum of eight (8) hours a month, in blocks of time not exceeding two (2) or four (4) hours per day (subject to certains conditions).

Software support: Provision of emergency and nonemergency assistance.

SCIENTIFIC DIRECTIONS

Global System

Now:

- Uniform resolution of 100 km (400 X 200 X 28)
- 3D-Var at T108 on model levels, 6-hr cycle
- Use of raw radiances from AMSUA, AMSUB and GOES
- Use of MODIS satellite winds and profiler data.

2005:

- Resolution to 35 km (800 X 600 X 58)
- 4D-Var assimilation, 6-hr time window with 3 outer loops at full model resolution and inner loops at T108 (cpu equivalent of a 5day forecast of full resolution model)
- new datasets: QuikScat

♦ 2006+:

Additional datasets (AIRS, MSG, MTSAT, IASI, GIFTS, COSMIC)

Improved data assimilation

Regional System

Now:

- Variable resolution, uniform region at 15 km (575 X 641 X 58)
- 3D-Var assimilation on model levels at T108, 12-hr spin-up

2004:

- Resolution to 15 km in uniform region (576 X 641 X 58)
- Inclusion of AMSU-B and GOES data in assimilation cycle
 - New datasets: profilers, MODIS winds

2005:

Four model runs a day (instead of two)

2006+:

- LAM 4D-Var data assimilation
 - Limited area model at 10 km resolution (800 X 800 X 60)
 - Assimilation of Radar data

Ensemble Prediction System

Now:

- 16 members global system (300 X 150 X 28)
- Forecasts up to 10 days once a day at 00Z
 - Optimal Interpolation assimilation system, 6-hr cycle, use of derived radiance data (Satems)

End 2004 (currently running in parallel):

- Ensemble Kalman Filter assimilation system, 6-hr cycle, use of raw radiances from AMSUA, AMSUB and GOES
- Forecasts extended to 15 days (instead of 10)

... Ensemble Prediction System

2005:

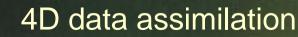
- Increased resolution to 100 km (400 X 200 X 58)
- Increased members to 32
- Additional datasets such as in global deterministic system
- Two forecast runs per day (12Z run added)

2007:

- Prototype regional ensemble
- 10 members LAM (500 X 500 X 58)
- No distinct data assimilation; initial and boundary conditions
 - from global EPS

Mesoscale System

Now:


 \blacklozenge

- Variable resolution, uniform region at 10 km (290 X 371 X 35) Two windows; no data assimilation
- Prototype Limited Area Model at 2.5 km (500 X 500 X 58) over one area

2006:

Five Limited Area Model windows at 2.5 km (500 X 500 X 58)

2007+:

Coupled Models

Today

In R&D: coupled atmosphere, ocean, ice, wave, hydrology, biology & chemistry

In Production: storm surge, wave

2005

Regional system coupled with ocean/ice model over Gulf of St Lawrence in operations.

Future

Global coupled model for both prediction & data assimilation

1 31