
Joint Research Centre

User perspectives:

European Commission - Joint Research Centre

Ad de Roo, Jutta Thielen

JRC as user

- JRC started flood forecasting research activities as feasibility study EFFS within FP5
- operational tests were performed during Oder (almost) flood event in 2001 and during Elbe & Danube floods 2002
- This led to:

JRC Mandate

- Guidelines of the Secretariat- General (SEC(2002)907/2 and COM (2002)481 final):
 - Communication from the [European] Commission about 'The Community response to the flooding in Austria, Germany and several Applicant countries'
 - Support to development of a European Flood Alert System
 - Impact assessment studies on flood risk for transnational water basins
- Following this mandate:
 - JRC will develop and test EFAS to pre-operational stage by 2006
 - DG JRC resources
 - DG ENTR IDA resources (IDA= Interservice Data Access)
 - Special funds from the European Parliament through DG ENV
 - After that, the Commission and its MS will discuss and decide the follow up

Floods and other Weather Driven Natural Hazards

DWD

ECMWF

to NWA

Management Unit

The LISFLOOD model and EFAS

- LISFLOOD is a hydrological modelling system to simulate medium and large river basins, while:
 - Maintaining a high spatial resolution (EFAS1km grid & 5km for overview)
 - Maintaining as much as possible a physical basis for describing the hydrological processes (diffusion & kinematic wave equations, soil water transport equations)

LISFLOOD takes into account:

- Detailed river cross sections
- Reservoirs
- Lakes
- Polders / flood retention areas

LISFLOOD is capable of using various data sources, such as:

- readily available European 1km datasets, such as DEM's, land use and soil data
- Point data from gauging stations
- new satellite derived products (Meteosat 2nd generation, Envisat)
- numerical weather forecast data from NMS's and ECMWF
- surface rainfall radar data
- Realtime observed waterlevel & river discharge data for updating

EFAS – setup

- 5km resolution European model:
 - Deterministic forecasts:
 - DWD LM+GM
 - ECMWF
 - ++
 - Ensemble forecasts:
 - ECWMF EPS
- 1km models:
 - Meuse, Oder, Elbe, Danube ++
 - Deterministic forecasts:
 - DWD LM+GM
 - ECMWF
 - ++
- run twice daily
- near-realtime Synop station data used
- ongoing:
 - test running with radar data
 - realtime H+Q data

Use of ensemble forecasts for end users

• Ensembles forecast, although not fully understood yet, proved to be a useful additional product, for which there is a operational need

- Main problems with ensembles from the view of end-users are:
 - translate the results into (easy) understandable products for the endusers;
 - Training of end-users to improve the understanding of probabilistic forecasts

