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ABSTRACT

Minimizing forecast error requires accurately specifyingthe initial state from which the forecast is made by optimally
using available observing resources to obtain the most accurate possible analysis. The Kalman filter accomplishes this
for linear systems and experience shows that the extended Kalman filter also performs well in nonlinear systems. Un-
fortunately, the Kalman filter and the extended Kalman filterrequire computation of the time dependent error covariance
matrix which presents a daunting computational burden. However, the dynamically relevant dimension of the forecast
error system is generally far smaller than the full state dimension of the forecast model which suggests the use of reduced
order error models to obtain near optimal state estimators.A method is described and illustrated for implementing a
Kalman filter on a reduced order approximation of the forecast error system. This reduced order system is obtained by
balanced truncation of the Hankel operator representationof the full error system and is used to construct a reduced
order Kalman filter for the purpose of state identification ina time-dependent quasi-geostrophic storm track model. The
accuracy of the state identification by the reduced order Kalman filter is assessed and comparison made to the state
estimate obtained by the full Kalman filter and to the estimate obtained using an approximation to 4D-Var. The accu-
racy assessment is facilitated by formulating the state estimation methods as observer systems. Practical application of
approximating to the reduced order Kalman filter making use of 4D-Var algorithms is examined.

1 Introduction

An important component of forecast error is error in the analysis of the initial state from which the forecast
is made. Analysis error can be reduced by taking more observations, by taking more accurate observations,
by taking observations at locations chosen to better constrain the forecast, and by extracting more information
from the observations that are available. The last of these, obtaining the maximum amount of information
from observations, is attractive because it makes existing observations more valuable and because, at least for
linear systems, there is a solution to the problem of extracting the maximum information from a given set of
observations: under appropriate assumptions the problem of extracting the maximum amount of information
from a set of observations of a linear system in order to minimize the uncertainty in the state estimate is
solved by the Kalman filter (KF) (Kalman, 1960; Ghil and Malanotte-Rizzoli, 1991; Wunch, 1996; Ide et al,
1997; Lermusiaux and Robinson, 1999). Moreover, application of the Kalman filter to the local tangent error
equations of a nonlinear system provides a first order approximation to theoptimal data assimilation method
which is valid in the limit of sufficiently small errors. This nonlinear extension ofthe KF is referred to as the
extended Kalman filter (EKF) (Ghil et al, 1981; Miller et al, 1994; Ide & Ghil,1997, Ghil, 1997).

Unfortunately, the Kalman filter and the extended Kalman filter require statisticaldescription of the forecast
error in the form of the error covariance and obtaining the required error covariance involves integrating a
system with dimension equal to the square of the dimension of the forecast system. Direct integration of a
system of such high dimension is not feasible. Attempts to circumvent this difficulty (see review of Ghil,
1997) have involved various approximations to the error covariance (Bishop et al, 2001; Tippett et al, 2000)
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and approximate integration methods (Evensen, 1994; Dee,1995; Fukumori and Malanotte-Rizzoli, 1995;
Cohn and Todling, 1996; Verlaan and Heemink, 1997; Houtekamer and Mitchell, 1998).

While the formal dimension of the forecast error system obtained by linearizing the forecast model about a
base trajectory is the same as that of the forecast system itself, there are reasons to believe that the effective
dimension is far lower. The trajectory of the system state in a high dimensional dynamical system typically lies
on a small dimensional subspace of the entire phase space. In chaotic systems all initial conditions approach
this attractor which can be embedded in a space of dimension at most 2d+1, whered is the attractor dimension
(Takens, 1981). An estimate of the attractor dimension can be made from the number of positive Lyapunov ex-
ponents (the Kaplan-Yorke dimension; Kaplan & Yorke, 1979) but anyway the attractor dimension is bounded
above by the number of Lyapunov exponents associated with positive volume growth along the system trajec-
tory in phase space (Illyashenko, 1983). While this is useful conceptually for bounding the dimension of the
embedding space, identifying the subspace itself is more difficult in the case of nonlinear and time dependent
systems. However, in the case of stochastically forced linear normal systems the analogous subspace to which
the solution is primarily confined can be easily found by eigenanalysis of the covariance matrix of the system
forced white in space and time. The resulting EOF spectrum typically falls off rapidly in physical models. The
eigenvectors may be identified with the modes of the normal operator and the corresponding eigenvalues are
the variance accounted for by the modes (North, 1984; Farrell and Ioannou, 1996, (henceforth FI96)). The fact
that a restricted number of EOF’s account for nearly all of the variancein normal systems shows that the effec-
tive dynamical dimension of these systems is small compared with the dimension of their phase space. This
notion of quantifying the effective dimension of normal linear systems can beextended to bound the effective
dimension of non-normal systems (Farrell and Ioannou, 2001a (henceforth FI01)).

In the case of the tangent linear forecast error system the spectrum ofoptimal perturbations of the error propa-
gator over the forecast interval typically comprise a few hundred growing structures (Buizza and Palmer, 1995)
and Lyapunov spectra for error growth have shown similar numbers of positive exponents (Palmer et al, 1998)
which suggests from the above considerations that the effective dimension of the error system is O(103).

The problem of reducing the order of a linear dynamical system can be cast mathematically as that of finding a
finite dimensional representation of the dynamical system so that the Eckart-Schmidt-Mirsky (ESM) theorem
(Stewart and Sun, 1990) can be applied to obtain an approximate truncatedsystem with quantifiable error. The
ESM theorem states that the optimalk order truncation of anndimensional matrix in the euclidean or Frobenius
norm is the matrix formed by truncating the singular value decomposition of the matrix to its first k singular
vectors and singular values. A method for exploiting the ESM theorem to obtaina reduced order approximation
to a dynamical system was developed in the context of controlling lumped parameter engineering systems and
is called balanced truncation (Moore, 1981; Glover, 1984; Zhou and Doyle, 1998). Balanced truncation was
applied to the set of ordinary differential equations approximating the partial differential equations governing
perturbation growth in time independent atmospheric flows by FI01.

We first review the method of balanced truncation and apply it to a storm trackmodel (cf Farrell and Ioannou,
2001b). We then review some salient aspects of optimal state estimation and discuss the structure of the gain
matrix in the presence of model error and the asymptotic behavior of the assimilation error as the number
of observations increases. We finally construct a reduced order Kalman filter based on balanced truncation
and apply it to a time dependent Lyapunov unstable quasi-geostrophic model of a forecast tangent linear error
system.
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2 The storm track model

2.1 Formulating the model

Consider an idealized model of the midlatitude storm track consisting of a Boussinesq atmosphere with con-
stant stratification and constant shear in thermal wind balance on aβ -plane channel with periodic boundary
conditions in the zonal,x, direction; solid walls located at two latitudes in the meridional,y, direction and a
solid lid at heightz= H, simulating the tropopause. The observed zonal localization of a midlatitude storm
track is simulated in the model by terminating the channel with a linear damping modellingthe storm track
exit region. The stability properties of such a storm track model are discussed in FI96.

Zonal and meridional lengths are nondimensionalized byL = 1200 km; vertical scales byH = f L/N = 10 km;
velocity byU0 = 50 m/s; and time byT = L/U0, so that a time unit is approximately 6.7 h. The Brunt-Vaisala
frequency isN = 10−2 s−1, and the Coriolis parameter isf = 10−4 s−1. The corresponding non-dimensional
value of the planetary vorticity gradient isβ = 0.46.

The non-dimensional linearized equation which governs evolution of streamfunction perturbations is:

∂∇2ψ
∂ t

= − U(z) ∇2Dψ −
(

β − d2U(z)
dz2

)

Dψ − r(x) ∇2ψ , (1)

in which the perturbation is assumed to be in the formψ(x,z, t) eily , wherel is the meridional wavenumber;
∇2ψ is the perturbation potential vorticity, with∇2 ≡ ∂ 2/∂x2 + ∂ 2/∂z2 − l2; andD≡ ∂/∂x. The perturbation
potential vorticity damping rater(x) is taken to vary smoothly in the zonal direction with form:

r(x) =
µ
2

[

2− tanh

(

x−π/4
δ

)

+ tanh

(

x−7π/2
δ

)]

, (2)

in which parameters controlling the maximum damping rate and the width of the dampingregion have been
chosen to beµ = 5 andδ = 1.5, respectively. The mean velocity profile isU(z) = 0.2+ z. The zonal extent
of the re-entrant channel is 0< x < 4π; latitudinal walls are located aty = 0 andy = 1, and the ground and
tropopause boundaries are located atz= 0 andz= 1, respectively. In the following we consider perturbations
with l = 1. A cross section of the idealized storm track at a given latitude is shown in Fig 1. Conservation of
potential temperature at the ground and tropopause provides the boundary conditions:

∂ 2ψ
∂ t∂z

= − U(0) D
∂ψ
∂z

+ U ′(0) D ψ − r(x)
∂ψ
∂z

− Γg (D2− l2)ψ at z = 0 , (3)

∂ 2φ
∂ t∂z

= − U(1) D
∂ψ
∂z

+ U ′(1) D ψ − r(x)
∂ψ
∂z

at z = 1 , (4)

whereU ′(0) andU ′(1) denote the velocity shear atz= 0 andz= 1 respectively. The coefficient of Ekman

dampingΓg ≡ N
U0

√

ν
2 f is given the valueΓg = 0.0632 corresponding to a vertical eddy momentum diffusion

coefficientν = 20m2/s in the boundary layer .

The waves evolve with nearly zero damping in the middle third of the channel (alength of 2πL ≈ 7500 Km)
which models the core of the storm track. Because in this model absolute instabilities do not exist with
everywhere westerly flow, the storm track is asymptotically stable for all meridional wavenumbers because all
perturbations are eventually absorbed on entering the highly dissipative sponge (FI96).

Two scenarios are investigated. In the first a transiently growing disturbance excited near the western boundary
of the storm track is modelled using the reduced order system, the purpose being to illustrate the accuracy of the
reduced order model approximation of the autonomous dynamics. In the second, time dependence is added to
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Figure 1: The cross section of the storm tack. Also shown are the sponge layers.

produce a Lyapunov unstable model of a tangent linear forecast error system, the time mean operator remaining
stable, with the purpose of evaluating the accuracy of the Kalman filter obtained by the reduced order model in
an unstable time dependent system. Such an unstable time dependent system provides an even more stringent
test of the state estimator than does the time independent stable and unstable model error systems studied by
Todling & Ghil (1994), Ghil & Todling (1996) and Cohn and Todling (1996).

The perturbation dynamics of the time mean storm track are governed by:

dψ
dt

= Aψ , (5)

where:
A =

(

∇2)−1 (

− (0.2+z) D ∇2 − β D − r(x) ∇2) , (6)

in which the Helmholtz operator,∇2, has been made invertible by incorporating the boundary conditions1.

The dynamical operator is approximated spectrally in the zonal direction andwith finite differences in the
vertical. With 40 zonal harmonics and 10 levels in the vertical the resulting dynamical system hasN = 400
degrees of freedom.

2.2 Reducing the model order by balanced truncation

Although this storm track model is of small enough dimension for direct numerical solution, we are interested
in using it to explore the accuracy of approximate solutions obtained using reduced order models that could be
implemented in far larger systems such as arise in numerical forecast.

Before proceeding with the order reduction we must first choose the norm that will be used to measure the
accuracy of the approximation. The accuracy is measured by the norm ofthe euclidean length of the errors
incurred in a chosen variable. This norm is the square root of the euclidean inner product in this variable. If an-
other norm is selected to measure the accuracy of the approximation then the most direct method of accounting

1For waves with a constant meridional wavenumberl , the operator∇2 is invertible even for homogeneous boundary conditions.
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for this choice is to transform the variable used to represent the state of thesystem so that the euclidean inner
product in the transformed variable corresponds to the new norm. The reduced order approximate system re-
sulting from balanced transformation will in general depend on the norm chosen. As discussed in FI01, optimal
order reduction of dissipative stable normal systems is immediate: it is Galerkin projection of the dynamics
onto the least damped modes. Difficulties in the reduction process arise whenthe system is non-normal in the
variable corresponding to the chosen norm. Then Galerkin projection on the least damped modes is suboptimal
and the reduction must proceed by including in the retained subspace the distinct subspaces of the preferred
excitations and preferred responses of the system. Throughout this paper we have chosen streamfunction as the
error variable, the rms of which is to be minimized in the construction of the model order reduction. However,
we find that the results do not change qualitatively if the energy norm is chosen instead.

The preferred structures of response of the non-normal storm tracksystem are revealed by stochastically forc-
ing the system with spatially and temporally uncorrelated unitary forcing and calculating the eigenfunctions
of the resulting mean covariance matrixP =< ψψ† > (the brackets denote an ensemble average, and † the
hermitian transpose of a vector or a matrix). The covariance matrix under such forcing is given by:

P =
∫ ∞

0
eAt eA†

dt , (7)

and this integral is readily calculated by solving the Lyapunov equation (FI96):

A P + P A† = − I , (8)

which P satisfies, as can be easily verified. The hermitian and positive definite matrixP characterizes the
response of the system and its orthogonal eigenvectors, ordered in decreasing magnitude of their eigenvalue,
are the empirical orthogonal functions (EOF’s) of the system under spatially and temporally uncorrelated
forcing.

The preferred structures of excitation of the system are determined fromthe stochastic optimal matrix:

Q =
∫ ∞

0
eA†t eA dt , (9)

the orthogonal eigenvectors of which when ordered in decreasing magnitude of their eigenvalue rank the forc-
ing structures according to their effectiveness in producing the statisticallymaintained variance (for a deter-
ministic interpretation ofQ see FI01). The eigenvectors ofQ are called the stochastic optimals (SO’s) and
because of the non-normality of the system are distinct from the EOF’s. The stochastic optimal matrixQ
satisfies the back Lyapunov equation:

A† Q + Q A = − I . (10)

Lyapunov equations (8) and (10) have unique positive definite solutionsP andQ if A is stable. The covariance
matrix P and stochastic optimal matrixQ need to be determined or approximated in order to proceed with
order reduction by balanced truncation.

A successful order reduction must accurately approximate the dynamics of the system which can be expressed
as the mapping of all past (square integrable) forcings to all future responses of the system. This linear mapping
of inputs to outputs is called the Hankel operator. Application of the ESM theorem to the Hankel operator
provides the optimal low order truncation of the dynamics. Remarkably, because of the separation between
past forcings and future responses in the Hankel operator representation of the dynamics this operator has finite
rank equal to the order of the system; its singular values, denoted byh, are the square root of the eigenvalues
of the product of the covariance and stochastic matrix,PQ. The balanced truncation transforms the internal
coordinates of the system so that the transformed covariance matrixP and stochastic optimal matrixQ become
identical and diagonal (while preserving the inner product of the physical variables). The dynamical system is
then truncated in these transformed balanced coordinates. The balancedtruncation retains a leading subset of
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empirical orthogonal functions (EOF’s) and stochastic optimals (SO) of thedynamical system and preserves
the norm. Balanced truncation preserves the stability of the full system and provides an approximation with
known error bounds which is found in practice to be nearly optimal (Moore, 1981; Glover, 1984; FI01). The
procedure used to implement the balanced truncation is now briefly reviewed.

Consider a generalk order truncation of theN dimensional system (5):

dψ̃k

dt
= Akψ̃k , (11)

whereAk is the reducedk×k dynamical matrix, withk< N, andψ̃k the associated reduced orderk-dimensional
state vector which is related to the full state vector by the transformationψ̃ = Xψ̃k. Similarly, the reduced
state vectorψ̃k is related to the full state vector by:̃ψk = Y†ψ̃ (the dagger denotes the hermitian transpose of
a matrix), which implies thatY†X = I k, whereI k is thek-order identity matrix. MatricesY andX determine
the transformation from the full system to the reduced system. The matrixAk, governing the dynamics in (11),
is:

Ak = Y† A X . (12)

Details of the construction on the biorthogonal matricesX andY are given in Farrell & Ioannou (2001b).

A measure of the accuracy of the truncation is the maximum difference that can occur between the full system
response,ψ(t), and the reduced order system response,ψ̃(t). This measure is theH∞ norm of the error system:

||A − Ak||∞ = sup
ω

||R(ω)− R̃(ω)||2 , (13)

in which the resolvent of the full system,R(ω), is defined asR(ω) = (iω I − A)−1 and the resolvent of the
full order projection of the reduced system isR̃(ω) = X (iω I k − Ak)

−1. It is to be recalled that theL2 norm
of a matrix, denoted as|| · ||2, is equal to its largest singular value.

Assuming the Hankel singular values have been ordered decreasing in magnitude, it can be shown that the error
in theH∞ norm (13) of the approximation of the full system by anyk order systemAk satisfies the inequality:

hk+1 ≤ ||A − Ak||∞ ≤ 2
N

∑
i=k+1

hi (14)

wherehk+1 is the first neglected Hankel singular value (Zhou and Doyle, 1998). Althoughhk+1 is only a lower
bound on the error, we have found in examples that this lower bound is nearly attained.

2.3 Applying balanced truncation to the mean storm track perturbation model

In order to obtain a balanced truncation of the storm track model governedby operator (6) we first obtain
the covariance matrix,P, and the stochastic optimal matrix,Q, by solving Lyapunov equations (8) and (10)
respectively. The eigenfunction ofP associated with the largest eigenvalue is the first EOF of the perturbation
field, and the eigenfunction ofQ associated with the largest eigenvalue is the first SO of the perturbation
field. The structure of the first EOF, which accounts for 23 % of the streamfunction perturbation variance, is
concentrated in the exit region of the storm track as can be seen in Fig.2 (top left panel). By contrast, the first
SO, which is responsible for generating 19.7 % of the streamfunction perturbation variance, is concentrated
at the entrance region of the storm track and is nearly orthogonal to the first EOF as can be also seen in Fig.
2 (bottom left panel). This near orthogonality between the EOF structures and SO structures remains even at
order 30. Balanced truncation accomplishes an accurate representationof the dynamics by retaining both the
structure of the dominant EOF’s and of the SO’s. It is clear from Fig.2 that truncations based on projections
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Figure 2: For the stable time mean storm track model. Top panels: The streamfunction of the first and the
30th EOF. The first EOF accounts for 23 % of the maintained variance, the 30th EOF accounts for 0.35 %
of the variance. Bottom panels: The structure of the streamfunction of the first and 30th Stochastic Optimal.
The first SO is responsible for producing 19.7 % of the maintained variance; the 30th SO is responsible for
producing 0.48 % of the maintained variance.

on the leading EOF’s will be very suboptimal as the leading EOF’s span well only the exit region of the storm
track, leaving the dynamically important entry region of the storm track, where perturbations start growing,
virtually without support in the span of the retained basis.

Although the error in the frequency response of a balanced truncation (cf (14)) is bounded above by twice the
sum of the neglected Hankel singular values and below by the first neglected Hankel singular value, experience
shows balanced truncation of tangent linear forecast error systems results in truncation errors close to the lower
bound. The Hankel singular values and the eigenvalues ofP and theQ for the storm track model are shown in
Fig. 3.

Note that the decrease with mode number of the eigenvalues ofP and ofQ is more rapid than that of the
Hankel singular values. But this more rapid decrease with mode number of the eigenvalues ofP andQ does
not indicate the order required for an accurate approximation; this is instead determined by the first neglected
Hankel singular value which falls more slowly with mode number.

It is often assumed that a system can be well approximated by Galerkin projection onto a subspace of its EOF’s;
with the effectiveness of the truncation being judged from the magnitude of the eigenvalues of the neglected
EOF’s. While this is valid for normal systems, we see here that for non-normal systems the decrease with
mode number of the eigenvalues of the covariance matrix is misleading and generally optimistic as an estimate
of the order required for an accurate approximation.

A subset of the columns ofX is retained in the balanced truncation. This non-orthogonal basis and its biorthog-
onal, the columns ofY, are constructed so as to capture the structures supporting the dynamics most efficiently,
simultaneously accounting for the preferred responses (EOF’s) and the preferred excitations (SO’s) of the dy-
namics. The first and the tenth structure retained in the dynamics (the first and the tenth column ofX) and their

375



FARRELL & I OANNOU.: APPROXIMATING OPTIMAL STATE ESTIMATION

10
0

10
1

10
2

10
−1

10
0

10
1

10
2

10
3

Mode number

 Hankel SVs      
 Eigenvalues of P
 Eigenvalues of Q

Figure 3: The Hankel singular values (stars) compared to theeigenvalues of the covariance matrixP
(circles), and the eigenvalues of the stochastic optimal matrix Q (crosses). The Hankel singular values are
the square roots of the eigenvalues of the productPQ. Note that the EOF’s (the eigenvalues ofP) and the
SO’s (the eigenvalues ofQ) fall much more rapidly with mode number than do the Hankel singular values.

biorthogonal structures (the first and tenth column ofY) are shown in Fig.4.

The storm track model and its reduced order approximate have very different eigenvalue spectra. The eigen-
value spectrum of the reduced order approximate is such that the frequency response of the approximate system
is as close as possible to that of the original system, which is shown in Fig.5. This results both from a decrease
in the stability of the reduced system compared to that of the full system and from the increase in growth due
to the non-normality in the reduced system.

The accuracy of the approximation is measured by theH∞ norm of the error dynamical system||A −A60||∞,
which, as discussed in the previous section, lies between the lower bound given by the first neglected Hankel
singular value,h61 = 13.8, and the upper bound: 2∑400

i=61hi = 1.8× 103. The largest singular value of the
error system resolvent as a function of frequency is shown in Fig.6, where it can be seen that||A −A60||∞ =
28.5, which shows that the balanced truncation error in this example is only approximately twice its lower
bound. The error is nearly white for the span of frequencies that correspond to the frequencies of the system
eigenmodes. For comparison, the error incurred in an order 60 Galerkinprojection of the dynamics onto the
first 60 EOF’s and the error incurred in an order 60 Galerkin projectiononto the first 60 least damped modes,
are also shown in Fig.6. It can be seen that the EOF projection performs appreciably worse thanthe balanced
truncation, while the modal truncation at this order is useless.

The optimal growth2 as a function of optimizing time attained by the full system and by the following: the
order 60 balanced truncation; the order 60 system obtained by Galerkin projection on the first 60 EOF’s;
the order 60 system obtained by Galerkin projection on the first 60 SO’s; and the order 60 system obtained
by Galerkin projection on the first 60 least damped modes are all shown in Fig. 7. Note that the balanced
truncation performs very well, reproducing the optimal growth nearly perfectly up tot = 5, corresponding to

2 The optimal growth at time,t, is defined as the maximum perturbation growth that can occur over timet. For an autonomous
system, governed byA, the optimal growth att is given by the largest singular value ofeAt or by ||eAt ||2.
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Figure 4: For the stable time mean storm track model. Top leftpanel: the streamfunction of the first basis
vector of the expansion for the balanced truncation of the system. It is given by the first column ofX. Top
right panel: the streamfunction of the tenth basis vector ofthe expansion for the balanced truncation of the
system. It is given by the tenth column ofX. Bottom left panel: the streamfunction of the biorthogonalof
the first basis vector. It is given by the first column ofY. Bottom right panel: the streamfunction of the tenth
basis vector. It is given by the tenth column ofY.
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Figure 5: The maximum singular value of the resolventR(ω) = (iωI −A)−1 of the full systemA as a function
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Figure 6: For the stable time mean storm track model: the maximum singular value of the error systemA −
A60 as a function of frequency. The systemA60 is an order 60 approximation obtained fromA by balanced
truncation. The maximum of this curves is the H∞ error of the order 60 balanced truncation which is found
here to be 28.5. Also indicated with a straight line is the theoretical minimum error of an order 60 truncation,
which equals the first neglected Hankel singular valueΣ61 = 13.8. The balanced truncation is seen to be nearly
optimal.

about 2 days. By comparison the EOF and SO truncations perform appreciably worse and the modal truncation
gives even poorer results.

The structure of the initial perturbation that leads to greatest square streamfunction growth att = 10 in the full
system, together with the resulting structure, is shown in Fig.8; for comparison these structures as obtained
by the truncated system are also shown. The structures are well captured by the order 60 reduced system.

We have demonstrated how to obtain balanced truncation of a stable time independent system but the method
of balanced truncation can be extended to unstable systems (Sznaier et al,2002) and to time dependent systems
in which balancing is performed sequentially over finite time intervals (Van Dooren, 2000).

In forecast applications we seek an accurate reduction of the dynamics of the time dependent tangent linear
operator calculated on the system trajectory over a limited time interval (24 or 48hours). One choice is to
balance on the time mean operator over this interval. Another choice is to balance on the time dependent
version of the tangent linear operator over this or an extended interval about the assimilation time, obtaining
approximation of theP and Q matrices on this interval. Both procedures have been tested using the time
dependent version of our storm track model and found to produce accurate truncations. We examine below
results obtained from a reduced order Kalman filter in which the truncation is made on the time dependent
tangent linear operator over 48 hours centered on the assimilation time.

The time mean tangent linear operator (the mean being calculated over an interval) is generally asymptotically
stable. This is because realistic states of the atmosphere support primarily instabilities with positive group
velocities and do not support absolute instabilities (unstable modes with zero group velocity)(Farrell, 1982; Lin
and Pierrehumbert, 1993; DelSole and Farrell, 1994). The asymptotic instability of the tangent linear system
arises primarily from the continual instigation of transient growth which occurs in non periodic time dependent
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meridional wavenumber l= 1. Shown is the optimal growth for the full system with 400 degree of freedom and the
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systems in the same way that the Mathieu instability arises in time periodic systems. Thismechanism is
discussed in Farrell and Ioannou (1999) and has been verified in the context of a forecast system by Reynolds
and Errico (1999) and Gelaro et al (2000). The stability of the mean operator allows balancing to be performed
on a stable operator although the error system itself is nonautonomous and asymptotically unstable. However,
it is not necessary to balance on the mean operator, and as remarked above comparable results can be obtained
by balancing on the time dependent tangent linear operator over an appropriate interval; experiment suggests
approximately 48 hours.

3 Assimilation as an observer system

Consider assimilating data taken from truth,xt . The forecast erroref = xf −xt obeys the equation:

def

dt
= Aef +Q1/2wm , (15)

in which A is the unstable tangent linear operator,Q is the model error covariance, andwm is assumed to be a
vector of temporally uncorrelated noise processes.

Introducen observations,yob, defined in terms of truthxt as:

yob = Hxt + R1/2wo , (16)

whereR is the observational error covariance andwo is ann vector of white noise processes.

Assimilate these observations to obtain an analysis,xa, with analysis errorea = xa− xt satisfying the Luen-
berger observer system:

dea

dt
= Aea +K(yob−Hxa)+Q1/2wm

= (A−KH )ea +KR1/2wo +Q1/2wm . (17)

The gain,K , is chosen to minimize the analysis error variance trace(< eae†
a >). Unlike the forecast error

system, a Luenberger observer system is asymptotically stable. Any gain,K , that stabilizes the tangent linear
operator results in an observer with bounded error, this error being forced by a combination of model error
Q and observational errorR (cf 17). Good gains do not just stabilize the operator but simultaneously reduce
the non-normality of the tangent linear operator so that the minimum of trace(< eae†

a >) is maintained by the
combination of observational and model error.

Just as generalized stability of the tangent linear forecast system reveals the potential for forecast failures due to
transient growth of initialization error or unresolved forcings distributed over the forecast interval, so also does
generalized stability analysis of the observer system reveal how model error and initialization error contribute
to analysis failures.

3.1 The case of an optimal observer

The gainK that minimizes the statistical steady analysis error variance trace(< eae†
a >) is the Kalman gain. For

simplicity of presentation we take as our example an operatorA that is time independent and observations taken
continuously in time. A stationary error system with continuous observations ischosen for heuristic reasons
although in forecast systems the tangent linear operator is time dependent and observations are introduced at
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discrete intervals. However, the statistical properties of optimal state estimationare general and results are
qualitatively similar across observer systems.

The asymptotic Kalman gain resulting from continual assimilation of observationswith observation matrixH
is:

K = PH†R−1 , (18)

with P the stabilizing solution of the algebraic Ricatti equation:

AP+PA†−PH†R−1HP+Q = 0 . (19)

It is a property of the Kalman filter that the matrixP obtained as a solution of the algebraic Ricatti equation is
also the asymptotic error covariance of the observer system (17).

3.2 4D-Var as an observer system

4D-Var data assimilation with assimilation windowT can be viewed as a special case of an observer in which
a climatological background error covarianceB is advanced forT units of time. In our autonomous model
system the error covariance is advanced according to:

P = eATBeA†T , (20)

from which we obtain the gain:
K4D−Var = PH†(HPH† +R)−1 . (21)

This gain produces a stabilized observer if enough observations are made.

The asymptotic error in the observer (17) is obtained by calculating the covariance,P, that solves the equation:
(

A−K4D−VarH
)

P+P
(

A−K4D−VarH
)†

+K4D−VarRK†
4D−Var +Q = 0 . (22)

4 Effect of the number of observations on the performance of the assimilation

Consider convergence of the assimilated state to truth as more observations are taken in the presence of model
error. To fix ideas assume that repeated independent observations are made at each of the grid points of our
model.

If the state of the assimilation system has dimensionN andn observations are taken at each grid point the
observation matrix for thesen observations,Hn, is annN×N matrix:

Hn = IN

⊗

e (23)

whereIN is the identityN2 dimensional matrix,
⊗

denotes the Kronecker product ande is the unit column
e= [1, · · · ,1]T of dimensionn.

Consider an observation error covariance matrixR = rIN
⊗

In, whereIn is then2 dimensional identity matrix
and letKn be the Kalman gain that results from thesen observations. The Kalman gain is:

Kn = PnH†
nR−1 =

1
r

Pn(IN

⊗

e†), (24)

with Pn the stabilizing solution of the algebraic Ricatti equation:

APn +PnA†−PnH†
nR−1HnPn +Q = 0 , (25)
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whereQ is the model error covariance. On substitution of the specific expressionsabove for the observation
matrixHn and the observational error covariance matrixR, (25) assumes the simplified form:

APn +PnA†− n
r

P2
n +Q = 0 , (26)

from which we conclude that the analysis error in the observer system resulting from assimilation ofn obser-
vations at each grid point with each observation having observational error variancer is equal to the analysis
error that results from observing the same system with a single isolated observation with observational error
variancer/n. It remains to determine how the error covariancePn scales withn.

In the absence of model error (Q = 0) the answer is immediate:

Pn =
P
n

, (27)

whereP is the assimilation error covariance associated with a single observation whichsatisfies the algebraic
Ricatti equation:

AP+PA†− 1
r

P2 = 0 . (28)

So in the absence of model error the assimilation square error tends to zeroas more observations are taken at
the expected rate ofn−1.

Consider now the case in which model error exists. In that case we may expandPn in an asymptotic series:

Pn =
po√

n
+

p1

n
+ · · · . (29)

The leading term in this expansion is given by:

po =
√

rQ1/2 , (30)

and consequently the asymptotic error covariance in the presence of model error has the leading behavior:

Pn =

√

r
n

Q1/2. (31)

We conclude that in the presence of model error the assimilation square error of the Kalman filter tends to zero
in our example as more observations are taken at raten−1/2.

It is instructive to compare this to the behavior of analysis error in a 4D-Vardata assimilation as the number of
observations increases. In the absence of model error the 4D-Var analysis square error also tends to zero at rate
n−1, but in the presence of model error if the background covarianceB is not rescaled as more observations
are taken the analysis error asymptotes to a non zero constant value.

In order to understand this behavior consider the asymptotic error asn → ∞ in the unstable stochastically
forced scalar system with growth ratea:

de
dt

= ae+q1/2w . (32)

The associated algebraic Ricatti equation is:

2apn−
n
r

p2
n +q = 0 , (33)

with stabilizing solution:

pn = a
r
n

+

√

a2
( r

n

)2
+q

r
n

. (34)
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Figure 9: Error in the scalar optimal observer system and a scalar system with an equivalent 4D-Var observer as
a function of the number of observations. The gain in the optimal observer is the asymptotic Kalman gain. The
growth rate is a= 1/2 d−1, the observational error is10m. The model error variance is q= 58m2 d−1 resulting in
a model induced error of10 m after a day. With q= 0 the error in both the observer system with the Kalman filter
and the 4D-Var falls as n−1/2. With q 6= 0 the error in the 4D-Var observer asymptotes to a constant value while in
the observer with the Kalman filter falls as n−1/4.
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This stabilizing solution is also the error in the observer system after assimilationof n observations. Note that
in the absence of model error and for alln:

pn =
2ar
n

if q = 0 , (35)

and that the Kalman gain is

Kn =
2a
n

[1,1, · · · ,1,1] , (36)

and that the weight given each in the assimilation is:

KnHn = 2a , (37)

indicating that the weight given to observations is proportional to the errorgrowth rate and is independent of
the number of observations.

With model error and asn→ ∞:

pn ≈
√

qr
n

if q 6= 0 , (38)

and the Kalman gain is:

Kn ≈
√

qr
n

[1,1, · · · ,1,1] , (39)

so that the weight given to observations is:

KnHn =
√

nqr , (40)

independent of error growth rate and indicating that as the number of observations tends to infinity in the
presence of model error the model is increasingly discounted and the observations accepted. A comparison of
the error as a function of the number of observation in the scalar system is shown in Fig.9.

Regardless of the model error, the error in the optimal observer vanishes if enough observations are assimilated
a result that holds in higher dimensions, as we have seen.

5 Approach of 4D-Var to the Kalman filter as the assimilation interval in-
creases

In the absence of model error 4D-Var is equivalent to the extended Kalman filter if the assimilation window
is extended to infinity. Present implementations of 4D-Var employ assimilation windows of 12 hours and it
may appear that these implementations must be suboptimal and that the assimilation could be improved by
lengthening the assimilation window.

Consider the asymptotic gain arising from a single observation in the time independent storm track model with
and without model error. The asymptotic gain is shown in Fig.10(top panel). It is evident that in the presence
of model error the gain is not localized: the gain identifies the unstable structures of the forecast model and
provides loadings designed to destroy these structures which have the character of a global mode. As shown
in Fig. 10(bottom panel) in the presence of model error the gain becomes localized to the neighborhood of the
observation because the model error that is distributed in the system produces incoherent responses far from
the observation location that cancel when the ensemble average response of the system is taken so that the gain
in the presence of model error is localized.

Because 4D-Var calculates the gains without model error the gain associated with a 4D-Var assimilation as the
assimilation window is increased extends into the far field. This evolution of the gain associated with an initial
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Figure 10: The asymptotic Kalman gain for observation at thecenter of the channel in the storm track model. Top
panel the gain for the case of no model error. Bottom panel thegain for the case with model error. The model error
q produces an r.m.s. model error of5 m in a day. The r.m.s. observational error is10 m. The asymptotic Kalman
gain has been calculated for the time mean flow. Note that the model error leads to localization of the gain in the
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385



FARRELL & I OANNOU.: APPROXIMATING OPTIMAL STATE ESTIMATION

20 30 40 50 60 70 80 90
10

−1

10
0

10
1

10
2

assimilation interval (h)

r.
m

.s
. e

rr
or

 (
m

)

4D−Var 

Kalman filter 

observation error 

Figure 12: Error in 4D-Var assimilations in the time dependent storm track model with no model error as a func-
tion of assimilation interval. Also shown is the error obtained with sequential application of a Kalman filter. 16
observations are assimilated with r.m.s. observational error of 10 m. As the assimilation interval tends to infinity
the 4D-Var error approaches that of the Kalman filter.

climatological backgroundB in a 4D-Var assimilation is shown in Fig.11. With time the climatological gain
associated with the background error covariance assumes a global structure.

In the absence of model error the gain as the assimilation interval increasesapproaches the structure of the gain
of the Kalman filter and the analysis error of 4D-Var asymptotes to the analysiserror obtained by a Kalman
filter. The convergence of 4D-Var assimilation error to that of the Kalman filter is shown for the time dependent
version of the storm track model in Fig.12.

However, the perfect model assumption is physically unrealistic, and the 4D-Var assimilation scheme produces
gains that have global structure as the assimilation window is increased. We find in our model storm track that
4D-Var performs best with an assimilation window that is large enough to allow the gain to be affected by the
flow but short enough so that far-field loadings do not have time to form. An example of 4D-Var analysis error
as a function of the assimilation interval is shown in Fig.13. In this example the optimal assimilation interval
is 36 hours.

We conclude that neglect of model error in the formulation of 4D-Var makes4D-Var operate best for rather
short assimilation intervals. Model error must be introduced to make 4D-Varan optimal observer. In the sequel
we propose a method for introducing model error into 4D-Var.

6 Reduced order error covariance estimate

We now formulate the observer system in which the error covariance is advanced in the truncated space to
obtain a reduced order Kalman gain. The resulting observer system in reduced coordinates is:

dek

dt
=

(

Ak−K kHk

)

ek +K kR
1/2
k

wo−Q1/2
k

wm . (41)
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Figure 13: R.m.s. error in 4D-Var assimilations in the time dependent storm track model with model error as a
function of assimilation interval. The best 4D-Var performance is achieved in this example for assimilation over the
interval 36 h. Also shown is the error obtained with the Kalman filter. 40 observations are assimilated with r.m.s.
observational error of10 m; the model error variance is q= 12 m2 d−1, so that a model error of5 m accumulates
in one day.

where the reduced analysis isek = Y†ea for k << N and the reducedk×k operator is:

Ak = Y†AX . (42)

Then observations,yob, are assimilated in the reduced space according to:

yob = Hkxk + R1/2wo , (43)

where the reduced order observation matrix is:

Hk = H X . (44)

The error system in the reduced space is used to obtain the Kalman gainK k and to propagate the error covari-
ance,

Pk =< eke
T
k > . (45)

The error covariance of the full system is then approximated from that ofthe reduced covariancePk by:

P = XPkX
† . (46)

This error covariance is used in our 4D-Var model. By introducing this covariance in 4D-Var we evolve the
error covariance and simultaneously also introduce model error. Introduction of this reduced order covariance
in 4D-Var makes the 12 hour 4D-Var perform nearly optimally. Analysis of the performance of this filter is
shown in Fig.14. Using the reduced order covariance obtained without model error leads to degradation of
the 4D-Var assimilation due to unrealistic far field loadings in the gains.
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Figure 14: Error in a simulation of the time dependent storm track model with model error. Panel (a): comparison
of the errors in a12h and24h 4D-Var with the error in the full Kalman filter. Panel (b): comparison of the error in
a 24h 4D-Var with the error in a12h 4D-Var in which the isotropic staticB has been preconditioned with the error
covariance obtained from a reduced rank Kalman filter with balanced truncation. The reduced rank Kalman filter
has been obtained with model error. In the truncated system 40 dof have been retained out of the 400 dof of the
system. The isotropicB introduced to the reduced rank covariance has amplitude equal to the smallest eigenvalue of
the reduced rank covariance. Also shown is the error resulting from the Kalman filter. The12h 4D-Var performance
is nearly optimal. Panel (c): comparison of the error in a24h 4D-Var with the error in a24h 4D-Var in which the
isotropic staticB has been preconditioned with the error covariance obtainedfrom the reduced Kalman filter. The
24h 4D-Var preconditioned with the covariance from the reduced Kalman filter propagates the covariance without
model error longer and its performance is worse than that of the corresponding12h 4D-Var. Panel (d): r.m.s. error
in 4D-Var assimilations in the time dependent storm track model with model error as a function of assimilation
interval. Also shown is the error obtained with sequential application of a Kalman filter and the error from the12h
4D-Var which was preconditioned with the reduced rank covariance. 16 observations are assimilated with r.m.s.
observational error of10 m. The model error variance coefficient is q= 12 m2 d−1, so that a model error of5 m
accumulates after a day.
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7 Conclusions

A data assimilation system combines observations and dynamics expressed through a numerical forecast model
to obtain an estimate of the state of the atmosphere. An optimal data assimilation systemcombines observa-
tions and dynamics to obtain the statistically best state estimate. Statistical optimality requires information
about the observation error and about the error in the numerical forecast. This latter is difficult to obtain be-
cause of the high dimension of the error system so that approximations to the forecast error have to be made
to implement practical applications of optimal state estimation. A promising method for obtaining an approx-
imation to forecast error is to advance the error covariance in a state space of reduced dimension compared
with that of the full forecast error system. The error covariance in the reduced space can then be used in an
approximate optimal state estimation method such as 4D-Var or the extended Kalmanfilter. Such a reduction
is possible because the significantly unstable subspace of the error system is of much lower dimension than the
complete state dimension.

Assimilation systems can be usefully modelled as observer systems in which any gain matrix that stabilizes the
analysis error system is an observer and the gain that results in minimum analysis error is the optimal observer.
This perspective on assimilation provides insight by allowing generalized stability analysis of the observer sys-
tem to be performed revealing for instance the distributed error sources that serve to most effectively degrade
the analysis (Farrell and Ioannou, 2003).

Analysis of the observer system modelling 4D-Var and the Kalman filter reveals that as the number of obser-
vations assimilated increases the analysis error asymptotes to a finite value comparable to observational error
and independent of the number of observations unless the forecast error covariance is systematically adjusted
to account for the increase of observations. One way this adjustment canbe accomplished is by advancing
the forecast error covariance in the dynamically relevant reduced order system that supports the growing error
structures.

The result from using this accurate forecast covariance is that as the number of observationsn increases the
associated Kalman filter obtains assimilation errorO(n−1/4) (with model error present) while the 4D-Var sim-
ulation fails to systematically reduce the estimation error. Assuming that redundancy of observation in the
restricted subspace of significantly growing error structures has or soon will be available it is important to
systematize the error covariance calculation in order to take advantage of these observations.

The gain under the assumption of a perfect model develops far field loading that degrade the assimilation
because the model error is in fact non-vanishing. The error covariance obtained by introducing model error
into the reduced system suppresses these far field loadings. The errorcovariance calculated in the reduced
system provides a method for introducing model error into 4D-Var thus reducing the deleterious effects of the
perfect model assumption and allowing accurate equivalent gains to be realized on short assimilation intervals.
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