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ABSTRACT

The purpose of this paper is to provide a comprehensive presentation and interpretation of the Ensemble Kalman Filter
(EnKF) and its numerical implementation. The EnKF has a large user group and numerous publications have discussed
applications and theoretical aspects of it. This paper reviews the important results from these studies and also presents
new ideas and alternative interpretations which further explain the success of the EnKF. In addition to providing the theo-
retical framework needed for using the EnKF, there is also a focus on the algorithmic formulation and optimal numerical
implementation. A program listing is given for some of the key subroutines. The paper also touches upon specific issues
such as the use of nonlinear measurements,in situ profiles of temperature and salinity, and data which are available with
high frequency in time. An ensemble based optimal interpolation (EnOI) scheme is presented as a cost effective approach
which may serve as an alternative to the EnKF in some applications. A fairly extensive discussion is devoted to the use of
time correlated model errors and the estimation of model bias.

1 Introduction

The Ensemble Kalman Filter has been examined and applied in a number of studies since it was first intro-
duced byEvensen(1994a). It has gained popularity because of it’s simple conceptual formulation and relative
ease of implementation, e.g., it requires no derivation of a tangent linear operator or adjoint equations and no
integrations backward in time. Further, the computational requirements are affordable and comparable with
other popular sophisticated assimilation methods such as the representer method byBennett(1992); Bennett
et al. (1993); Bennett and Chua(1994); Bennett et al.(1996) and the 4DVAR method which has been much
studied by the meteorological community (see e.g.Talagrand and Courtier, 1987; Courtier and Talagrand,
1987; Courtier et al., 1994; Courtier, 1997).

This paper gives a comprehensive presentation of the Ensemble Kalman Filter (EnKF), and it may serve as an
EnKF reference document. For a user of the EnKF it provides citations to hopefully all previous publications
where the EnKF has been examined or used. It also provides a detailed presentation of the method both in terms
of theoretical aspects and the practical implementation. For experienced EnKF users it will provide a better
understanding of the EnKF through the presentation of a new and alternative interpretation and implementation
of the analysis scheme.

In the next section, an overview is given of previous works involving the EnKF. Further, in Section3, an
overview of the theoretical formulation of the EnKF will be given. Thereafter the focus will be on implemen-
tation issues starting with the generation of the initial ensemble in Section4.1 and the stochastic integration
of the ensemble members in Section4.2. The major discussion in this paper relates to the EnKF analysis
scheme which is given in Section4.3. Section5 discusses particular aspects of the numerical implementa-
tion. AppendixA presents an approach for examining the consistency of the EnKF based on comparisons of

∗This paper is based on a publication in Ocean Dynamics and citations should point to the original publication:Evensen G.,
The Ensemble Kalman Filter: Theoretical Formulation and Practical Implementation,Ocean Dynamics53, [to appear in no 4], (2003)
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innovations and predicted error statistics. In AppendixB an optimal interpolation algorithm is presented. It
uses a stationary ensemble but is otherwise similar to the EnKF, and it can thus be denoted Ensemble Optimal
Interpolation (EnOI). In AppendixC we have given an algorithm which is currently used for assimilation of
observations of subsurface quantities. In AppendixD the Ensemble Kalman Smoother (EnKS) is presented in
terms of the terminology developed in this paper. It is illustrated how the smoother solution can be very effi-
ciently computed as a reanalysis following the use of the EnKF. In AppendixE we have reviewed and detailed
the presentation of the algorithm used for the generation of pseudo random fields. Finally in AppendixF an
example is given illustrating the the EnKF and EnKS with a simple stochastic scalar model. This illustrates the
use of time correlated model errors and how the model errors can be estimated. The use of the EnKF and EnKS
for estimation of model bias is given in AppendixG.

2 Chronology of ensemble assimilation developments

This section attempts to provide a complete overview of the developments and applications related to the EnKF.
In addition it also points to other recently proposed ensemble based methods and some smoother applications.

2.1 Applications of the EnKF

Applications involving the EnKF are numerous and includes the initial work byEvensen(1994a) and an addi-
tional example inEvensen(1994b) which showed that the EnKF resolved the closure problems reported from
applications of the Extended Kalman Filter (EKF).

An application with assimilation of altimeter data for the Agulhas region was discussed inEvensen and van
Leeuwen(1996) and later in a comparison with the Ensemble Smoother (ES) byvan Leeuwen and Evensen
(1996).

An example with the Lorenz equations was presented byEvensen(1997) where it was shown that the EnKF
could track the phase transitions and find a consistent solution with realistic error estimates even for such a
chaotic and nonlinear model.

Burgers et al.(1998) reviewed and clarified some points related to the perturbation of measurements in the
analysis scheme, and also gave a nice interpretation supporting the use of the ensemble mean as the best
estimate.

Houtekamer and Mitchell(1998) introduced a variant of the EnKF where two ensembles of model states are
integrated forward in time, and statistics from one ensemble is used to update the other. The use of two
ensembles was motivated by claiming that this would reduce possible inbreeding in the analysis. This has,
however, lead to some dispute discussed in the comment byvan Leeuwen(1999b) and the reply byHoutekamer
and Mitchell(1999).

Miller et al. (1999) included the EnKF in a comparison with nonlinear filters and the Extended Kalman Filter,
and concluded that it performed well, but could be beaten by a nonlinear and more expensive filter in difficult
cases where the ensemble mean is not a good estimator.

Madsen and Cãnizares(1999) compared the EnKF and the reduced rank square root implementation of the
Extended Kalman filter with a 2–D storm surge model. This is a weakly nonlinear problem and good agreement
was found between the EnKF and the extended Kalman filter implementation.

Echevin et al.(2000) studied the EnKF with a coastal version of the Princeton Ocean Model and focussed in
particular on the horizontal and vertical structure of multivariate covariance functions from sea surface height.
It was concluded that the EnKF could capture anisotropic covariance functions resulting from the impact of
coastlines and coastal dynamics, and had a particular advantage over simpler methodologies in such areas.
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Evensen and van Leeuwen(2000) rederived the EnKF as a suboptimal solver for the general Bayesian problem
of finding the posterior distribution given densities for the model prediction and the observations. From this
formulation the general filter could be derived and the EnKF could be shown to be a suboptimal solver of the
general filter where the prior densities are assumed to be Gaussian distributed.

Hamill and Snyder(2000) constructed a hybrid assimilation scheme by combining 3DVAR and the EnKF. The
estimate is computed using the 3DVAR algorithm but the background covariance is a weighted average of the
time evolving EnKF error covariance and the constant 3DVAR error covariance. A conclusion was that with
increasing ensemble size the best results were found with larger weight on the EnKF error covariance.

Hamill et al. (2000) report from working groups in a workshop on ensemble methods.

Keppenne(2000) implemented the EnKF with a two layer shallow water model and examined the method in
twin experiments assimilating synthetic altimetry data. He focused on the numerical implementation on parallel
computers with distributed memory and found the approach efficient for such systems. He also examined the
impact of ensemble size and concluded that realistic solutions could be found using a modest ensemble size.

Mitchell and Houtekamer(2000) introduced an adaptive formulation of the EnKF where the model error pa-
rameterization was updated by incorporating information from the innovations during the integration.

Park and Kaneko(2000) presented an experiment where the EnKF was used to assimilate acoustic tomography
data into a barotropic ocean model.

van Loon et al.(2000) used the EnKF for assimilation of ozone data into an atmospheric transport chemistry
model.

Grønnevik and Evensen(2001) examined the EnKF for use in fish stock assessment, and also compared it with
the Ensemble Smoother (ES) byvan Leeuwen and Evensen(1996) and the more recent Ensemble Kalman
Smoother (EnKS) byEvensen and van Leeuwen(2000).

Heemink et al.(2001) have been examining different approaches which combine ideas from RRSQRT filtering
and the EnKF to derive computationally more efficient methods.

Houtekamer and Mitchell(2001) have continued the examination of the two-ensemble approach and introduced
a technique for computing the global EnKF analysis in the case with many observations, and also a method for
filtering of eventual long range spurious correlations caused by a limited ensemble size. As will be seen below
the current paper presents a much more efficient way to compute the global analysis and also argues against
filtering of covariances.

Pham(2001) reexamined the EnKF in an application with the Lorenz attractor and compared results with those
obtained from different versions of the Singular Evolutive Extended Kalman (SEEK) filter and a particle filter.
Ensembles with very few members were used and this favoured methods like the SEEK where the “ensemble”
of EOFs is selected to best possible represent the model attractor.

Verlaan and Heemink(2001) applied the RRSQRT and EnKF filters in test examples with the purpose of
classifying and defining a measure of the degree of nonlinearity of the model dynamics. Such an estimate may
have an impact on the choice of assimilation method.

Hansen and Smith(2001) proposed a method for producing analysis ensembles based on integrated use of
the 4DVAR method and the EnKF. A probabilistic approach was used and lead to high numerical cost, but an
improved estimate could be found compared to 4DVAR and the EnKF used separately.

Hamill et al. (2001) examined the impact of ensemble size on noise in distant covariances. They evaluated
the impact of using an “inflation factor” as introduced byAnderson and Anderson(1999), and also the use
of a Schur product of the covariance with a correlation function to localize the background covariances as
previously discussed byHoutekamer and Mitchell(2001). The inflation factor is used to replace the forecast
ensemble according to

ψ j = ρ(ψ j −ψ)+ψ, (1)
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with ρ slightly greater than one (typically 1.01). The purpose is to account for a slight under representation of
variance due to the use of a small ensemble.

Bishop et al.(2001) used an implementation of the EnKF in an observation system simulation experiment.
Ensemble predicted error statistics were used to determine the optimal configuration of future targeted obser-
vations. The application typically looked at a case where additional targeted measurements could be deployed
over the next few days and the deployment could be optimized to minimize the forecast errors in a selected
region. The methodology was named Ensemble Transform Kalman Filter and it was further examined by
Majumdar et al.(2001).

Reichle et al.(2002) give a nice discussion of the EnKF in relation to the optimal representer solution. They
find good convergence of the EnKF toward the representer solution with the difference being caused by the
Gaussian assumptions used in the EnKF at analysis steps. These are avoided in the representer method which
solves for the maximum likelihood smoother estimate.

Bertino et al.(2002) applied the EnKF and the Reduced Rank Square Root (RRSQRT) filter with a model
for the Odra estuary. The two methods were compared and used to assimilate real observations to assess the
potential for operational forecasting in the lagoon. This is a relatively linear model and the EnKF and the
RRSQRT filter provided similar results.

Eknes and Evensen(2002) examined the EnKF with a 1–D three component marine ecosystem model with
focus on sensitivity to the characteristics of the assimilated measurements and the ensemble size. It was found
that the EnKF could handle strong nonlinearities and instabilities which occur during the spring bloom.

Allen et al.(2002) takes theEknes and Evensen(2002) work one step further by applying the method with a
1–D version of ERSEM for a site in the Mediterranean Sea. They showed that even with such a complex model
it is possible to find an improved estimate by assimilatingin situdata into the model.

Haugen and Evensen(2002) applied the EnKF to assimilate sea level anomalies and sea surface temperature
data into a version of the Miami Isopycnic Coordinate Ocean Model (MICOM) byBleck et al.(1992) for the
Indian Ocean. The paper provided an analysis of regionally dependent covariance functions in the tropics and
subtropics and also the multivariate impact of assimilating satellite observations.

Mitchell et al.(2002) examined the EnKF with a global atmospheric general circulation model with simulated
data resembling realistic operational observations. They assimilated 80 000 observations a day. The system
was examined with respect to required ensemble size, and the effect of localization (local analysis at a grid
point using only nearby measurements). It was found that severe localization could lead to imbalance, but
with large enough ratio of influence for the measurements, this was not a problem and no digital filtering was
required. In the experiments they also included model errors and demonstrated the importance of this to avoid
filter divergence. This work is a significant step forward and it shows promising results with respect to using
the EnKF with atmospheric forecast models.

Crow and Wood(2003) demonstrated that the EnKF is an effective and a computationally competitive strategy
for the assimilation of remotely sensed brightness temperature measurements into land-surface models.

Brusdal et al.(2003) discussed a similar application asHaugen et al.(2002), but focussed on the North Atlantic.
In addition, this paper included an extensive comparison of the theoretical background of the EnKF, EnKS and
the SEEK filter, and also compared results from these methods.

Natvik and Evensen(2003a,b) presented the first realistic 3–D application of the EnKF with a marine ecosystem
model. These papers proved the feasibility of assimilating SeaWiFS ocean colour data to control the evolution
of a marine ecosystem model. In addition several diagnostic methods were introduced which can be used to
examine the statistical and other properties of the ensemble.

Keppenne and Rienecker(2003) implemented a massively parallel version of the EnKF with the Poseidon
isopycnic coordinate ocean model for the tropical Pacific. They demonstrated the assimilation ofin situ obser-
vations and focussed on the parallelization of the model and analysis scheme for computers with distributed
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memory. They also showed that regionalization of background covariances has negligible impact on the quality
of the analysis.

Several of the most recent publications cited above have proved the feasibility of the ensemble based methods
for real oceanographic problems.

2.2 Other ensemble based filters

The EnKF can also be related to some other sequential filters such as the Singular Evolutive Extended Kalman
(SEEK) filter byPham et al.(1998); Brasseur et al.(1999); Carmillet et al.(2001) (see alsoBrusdal et al., 2003,
for a comparison of the SEEK and the EnKF); the Reduced Rank Square Root (RRSQRT) filter byVerlaan and
Heemink(2001); and the Error Subspace Statistical Estimation (ESSE) byLermusiaux and Robinson(1999a,b);
Lermusiaux(2001) which can be interpreted as an EnKF where the analysis is computed in the space spanned
by the EOFs of the ensemble.

Anderson(2001) proposed a method denoted the “Ensemble Adjustment Kalman Filter” where the analysis is
computed without adding perturbations to the observations. If observations are not perturbed in the EnKF this
still gives the correct mean of the analyzed ensemble but results in a too low variance as explained byBurgers
et al.(1998). This is in the EAKF accounted for by deriving a linear operator which replaces the traditional gain
matrix and results in an updated ensemble which is consistent with theory. A drawback may be the required
inversion of the measurement error covariance when this is nondiagonal. This method becomes a variant of
the square root algorithm used byBishop et al.(2001). It is demonstrated that for small ensembles (10–20
members) the EAKF performs better than the EnKF.

Whitaker and Hamill(2002) proposed another version of the EnKF where the perturbation of observations are
avoided. The scheme provides a better estimate of the analysis variance by avoiding the sampling errors of
the observation perturbations. The scheme was tested for small ensemble sizes (10–20 members) where it had
a clear benefit on the results when compared to the EnKF which has larger sampling errors with such small
ensemble sizes. The scheme is based on a redefinition of the Kalman gain derived from the equation

Pa
e = (I −KH)Pf(I −HTKT)+KRKT

= (I −KH)Pf .
(2)

where the termKRKT = 0 without perturbations of measurements. A solution of this equation is

K = PfHT
[(√

HPfHT +R
)−1
]T

×
[√

HPfHT +R+
√

R
]−1

.

(3)

An explanation of the terms in these equations is given in Section3. This is essentially a Monte Carlo imple-
mentation of the square root filter and was named (EnSRF).

A summary of the square root filters byBishop et al.(2001), Anderson(2001) andWhitaker and Hamill(2002)
has been given byTippett et al.(2003), and see also the general discussion of ensemble methods in a “local
least squares framework” given byAnderson(2003).

2.3 Ensemble smoothers

Some publications have focussed on the extension of the EnKF to a smoother. The first formulation was given
by van Leeuwen and Evensen(1996) who introduced the Ensemble Smoother (ES). This method has later
been examined inEvensen(1997) with the Lorenz attractor; applied with a QG model to find a steady mean
flow by van Leeuwen(1999a) and for the time dependent problem invan Leeuwen(2001); and for fish stock
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assessment byGrønnevik and Evensen(2001). Evensen and van Leeuwen(2000) re-examined the smoother
formulation and derived a new algorithm with better properties named the Ensemble Kalman Smoother (EnKS).
This method has also been examined inGrønnevik and Evensen(2001) andBrusdal et al.(2003).

2.4 Nonlinear filters and smoothers

Another extension of the EnKF relates to the derivation of an efficient method for solving the nonlinear filtering
problem, i.e., taking non-Gaussian contributions in the predicted error statistics into account when computing
the analysis. These are discarded in the EnKF (seeEvensen and van Leeuwen, 2000), and a fully nonlinear filter
is expected to improve the results when used with nonlinear dynamical models with multi-modal behaviour
where the predicted error statistics are far from Gaussian. Implementations of nonlinear filters based on either
kernel approximation or particle interpretations have been proposed byMiller et al. (1999), Anderson and
Anderson(1999), Pham(2001), Miller and Ehret (1902) andvan Leeuwen(2003) although more research is
needed before these can claimed to be practical for realistic high dimensional systems.

3 Sequential data assimilation

This section gives a brief introduction to sequential data assimilation methodologies such as the Kalman Filter
(KF) and the Extended Kalman Filter (EKF) and outlines the general theory of the EnKF.

3.1 A variance minimizing analysis

The Kalman Filter is a sequential filter method, which means that the model is integrated forward in time and
whenever measurements are available these are used to reinitialize the model before the integration continues.
We neglect the time index and denote a model forecast and analysis asψ f andψa respectively and the measure-
ments are contained ind. Further, the respective covariances for model forecast, analysis and measurements
are denotedPf , Pa andR. The analysis equation is then

ψ
a = ψ

f +PfHT(HPfHT +R)−1(d−Hψ
f), (4)

with the analysis error covariances given as

Pa = Pf −PfHT(HPfHT +R)−1HPf . (5)

HereH is the measurement operator relating the true model stateψ t to the observationsd allowing for mea-
surement errorsε, i.e.

d = Hψ
t + ε. (6)

The reinitialization,ψa, is determined as a weighted linear combination of the model prediction,ψ f , and
covariances,PfHT, corresponding to each of the measurements ind. The weights are determined by the error
covariance for the model prediction projected onto the measurements, the measurement error covariance, and
the difference between the prediction and measurements (i.e., the innovation).

The error covariances for the measurements,R, need to be prescribed based on our best knowledge about the
accuracy of the measurements and the methodologies used to collect them. The error covariances for the model
prediction is computed by solving an equation for the time evolution of the error covariance matrix of the model
state.

A derivation of these equations can be found in several publications (see e.g.Burgers et al., 1998). Note that
these equations are often expressed using the so called Kalman gain matrix

K = PfHT(HPfHT +R)−1. (7)
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3.2 The Kalman Filter

Given a linear dynamical model written on discrete form as

ψk+1 = Fψk, (8)

the error covariance equation becomes
Pk+1 = FPkF

T +Q, (9)

where the matrixQ is the error covariance matrix for the model errors. The model is assumed to contain errors,
e.g. due to neglected physics and numerical approximations. The Eqs. (8) and (9) are integrated to produce the
forecastsψ f andPf , used in the analysis Eqs. (4) and (5).

3.3 The Extended Kalman Filter

With a nonlinear model
ψk+1 = f (ψk), (10)

the error covariance equation is still (9) but with F being the tangent linear operator (Jacobian) off (ψ). Thus,
in the Extended Kalman Filter (EKF), a linearized and approximate equation is used for the prediction of error
statistics.

3.4 The Ensemble Kalman Filter

The ensemble Kalman filter as proposed byEvensen(1994a) and later clarified byBurgers et al.(1998) is now
introduced. We will adapt a three stage presentation starting with the representation of error statistics using an
ensemble of model states, then an alternative to the traditional error covariance equation is proposed for the
prediction of error statistics, and finally a consistent analysis scheme is presented.

3.4.1 Representation of error statistics.

The error covariance matrices for the forecasted and the analyzed estimate,Pf andPa, are in the Kalman filter
defined in terms of the true state as

Pf = (ψ f −ψ t)(ψ f −ψ t)T, (11)

Pa = (ψa−ψ t)(ψa−ψ t)T, (12)

where the overline denotes an expectation value,ψ is the model state vector at a particular time and the super-
scripts f, a, and t represent forecast, analyzed, and true state, respectively. However, the true state is not known,
and we therefore define the ensemble covariance matrices around the ensemble mean,ψ,

Pf ' Pf
e = (ψ f −ψ f)(ψ f −ψ f)T, (13)

Pa' Pa
e = (ψa−ψa)(ψa−ψa)T, (14)

where now the overline denote an average over the ensemble. Thus, we can use an interpretation where the
ensemble mean is the best estimate and the spreading of the ensemble around the mean is a natural definition
of the error in the ensemble mean.

Since the error covariances as defined in (13) and (14) are defined as ensemble averages, there will clearly
exist infinitively many ensembles with an error covariance equal toPf

e andPa
e. Thus, instead of storing a full

covariance matrix, we can represent the same error statistics using an appropriate ensemble of model states.

227



EVENSEN: THE ENSEMBLE KALMAN FILTER

Given an error covariance matrix, an ensemble of finite size will always provide an approximation to the error
covariance matrix. However, when the size of the ensembleN increases the errors in the Monte Carlo sampling
will decrease proportional to 1/

√
N.

Suppose now that we haveN model states in the ensemble, each of dimensionn. Each of these model states
can be represented as a single point in ann-dimensional state space. All the ensemble members together will
constitute a cloud of points in the state space. Such a cloud of points in the state space can, in the limit whenN
goes to infinity, be described using a probability density function

φ(ψ) =
dN
N

, (15)

wheredN is the number of points in a small unit volume andN is the total number of points. With knowledge
about eitherφ or the ensemble representingφ we can calculate whichever statistical moments (such as mean,
covariances etc.) we want whenever they are needed.

The conclusion so far is that the information contained by a full probability density function can be exactly
represented by an infinite ensemble of model states.

3.4.2 Prediction of error statistics.

The EnKF was designed to resolve two major problems related to the use of the EKF with nonlinear dynamics
in large state spaces. The first problem relates to the use of an approximate closure scheme in the EKF, and the
other to the huge computational requirements associated with the storage and forward integration of the error
covariance matrix.

The EKF applies a closure scheme where third- and higher order moments in the error covariance equation are
discarded. This linearization has been shown to be invalid in a number of applications, e.g.,Evensen(1992)
andMiller et al. (1994). In fact, the equation is no longer the fundamental equation for the error evolution when
the dynamical model is nonlinear. InEvensen(1994a) it was shown that a Monte Carlo method can be used to
solve an equation for the time evolution of the probability density of the model state, as an alternative to using
the approximate error covariance equation in the EKF.

For a nonlinear model where we appreciate that the model is not perfect and contains model errors, we can
write it as a stochastic differential equation (on continuous form) as

dψ = f (ψ)dt+g(ψ)dq. (16)

This equation states that an increment in time will yield an increment inψ, which in addition, is influenced by a
random contribution from the stochastic forcing term,g(ψ)dq, representing the model errors. Thedq describe
a vector Brownian motion process with covarianceQdt. Because the model is nonlinear,g is not an explicit
function of the random variabledqso the Ito interpretation of the stochastic differential equation has to be used
instead of the Stratonovich interpretation (seeJazwinski, 1970).

When additive Gaussian model errors forming a Markov process are used one can derive the Fokker-Planck
equation (also named Kolmogorov’s equation) which describes the time evolution of the probability density
φ(ψ) of the model state,

∂φ

∂ t
+∑

i

∂ ( fiφ)
∂ψi

=
1
2 ∑

i, j

∂ 2φ(gQgT)i j

∂ψi∂ψ j
, (17)

where fi is the component numberi of the model operatorf andgQgT is the covariance matrix for the model
errors.

This equation does not apply any important approximations and can be considered as the fundamental equation
for the time evolution of error statistics. A detailed derivation is given inJazwinski(1970). The equation
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describes the change of the probability density in a local “volume” which is dependent on the divergence term
describing a probability flux into the local “volume” (impact of the dynamical equation) and the diffusion term
which tends to flatten the probability density due to the effect of stochastic model errors. If (17) could be solved
for the probability density function, it would be possible to calculate statistical moments like the mean state
and the error covariance for the model forecast to be used in the analysis scheme.

The EnKF applies a so called Markov Chain Monte Carlo (MCMC) method to solve (17). The probability
density can be represented using a large ensemble of model states. By integrating these model states forward in
time according to the model dynamics described by the stochastic differential Eq. (16), this ensemble prediction
is equivalent to solving the Fokker Planck equation using a MCMC method. This procedure forms the backbone
for the EnKF.

A linear model for a Gauss-Markov process in which the initial condition is assumed to be taken from a normal
distribution will have a probability density which is completely characterized by its mean and covariance for
all times. One can then derive exact equations for the evolution of the mean and the covariance as a simpler
alternative than solving the full Kolmogorov’s equation. Such moments of Kolmogorov’s equation, including
the error covariance Eq. (9), are easy to derive, and several methods are illustrated byJazwinski(1970, examples
4.19–4.21). This is actually what is done in the KF and EKF.

For a nonlinear model, the mean and covariance matrix will not in general characterizeφ(ψ, t). They do,
however, determine the mean path and the dispersion about that path, and it is possible to solve approximate
equations for the moments, which is the procedure characterizing the extended Kalman filter.

An alternative to the approximate stochastic dynamic approach for solving Kolmogorov’s equation and predict-
ing the error statistics is to use Monte Carlo methods. A large cloud of model states (points in state space) can
be used to represent a specific probability density function. By integrating such an ensemble of states forward
in time, it is easy to calculate approximate estimates for moments of the probability density function at different
time levels. In this context the Monte Carlo method might be considered a particle method in the state space.

3.4.3 An analysis scheme.

The KF analysis scheme is using the definitions ofPf andPa as given by Eqs. (11) and (12). We will now give
a derivation of the analysis scheme where the ensemble covariances are used as defined by (13) and (14). This
is convenient since in practical implementations one is doing exactly this, and it will also lead to a consistent
formulation of the EnKF.

As will be shown later it is essential that the observations are treated as random variables having a distribution
with mean equal to the first guess observations and covariance equal toR. Thus, we start by defining an
ensemble of observations

d j = d+ ε j , (18)

where j counts from 1 to the number of model state ensemble membersN. It is ensured that the simulated
random measurement errors have mean equal to zero. Next we define the ensemble covariance matrix of the
measurements as

Re = εεT, (19)

and, of course, in the limit of an infinite ensemble this matrix will converge toward the prescribed error covari-
ance matrixRused in the standard Kalman filter.

The following discussion is valid both using an exactly prescribedR and an ensemble representationRe of
R. The use ofRe introduces an additional approximation which becomes convenient when implementing the
analysis scheme. This can be justified by the fact that the actual observation error covariance matrix is poorly
known and the errors introduced by the ensemble representation can be made less than the initial uncertainty
in the exact form ofR by choosing a large enough ensemble size. Further, the errors introduced by using
an ensemble representation forR, have less impact than the use of an ensemble representation forP. R only
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appears in the computation of the coefficients for the influence functionsPfHT while P appears both in the
computation of the coefficients and it determines the influence functions.

The analysis step for the EnKF consists of the following updates performed on each of the model state ensemble
members

ψ
a
j = ψ

f
j +Pf

eH
T(HPf

eH
T +Re)−1(d j −Hψ

f
j). (20)

With a finite ensemble size, this equation will be an approximation. Further, if the number of measurements
is larger than the number of ensemble members, the matricesHPf

eH
T andRe will be singular, and a pseudo

inversion must be used. Note that Eq. (20) implies that

ψa = ψ f +Pf
eH

T(HPf
eH

T +Re)−1(d−Hψ f), (21)

whered = d is the first guess vector of measurements. Thus, the relation between the analyzed and forecasted
ensemble mean is identical to the relation between the analyzed and forecasted state in the standard Kalman
filter in Eq. (4), apart from the use ofPf,a

e andRe instead ofPf,a andR. Note that the introduction of an ensemble
of observations does not make any difference for the update of the ensemble mean since this does not affect
Eq. (21).

If the mean,ψa, is considered to be the best estimate, then it is an arbitrary choice whether one updates the
mean using the first guess observationsd, or if one updates each of the ensemble members using the perturbed
observations (18). However, it will now be shown that by updating each of the ensemble members using the
perturbed observations one also creates a new ensemble having the correct error statistics for the analysis. The
updated ensemble can then be integrated forward in time till the next observation time.

Moreover, the error covariance,Pa
e, of the analyzed ensemble is reduced in the same way as in the standard

Kalman Filter. We now derive the analyzed error covariance estimate resulting from the analysis scheme given
above, but using the standard Kalman filter form for the analysis equations. First, note that Eqs. (20) and (21)
are used to get

ψ
a
j −ψa = (I −KeH)(ψ f

j −ψ f)+Ke(d j −d), (22)

where we have used the definition of the Kalman gain,

Ke = Pf
eH

T(HPf
eH

T +Re)−1. (23)

The derivation is then as follows,

Pa
e = (ψa−ψa)(ψa−ψa)T

= (I −KeH)Pf
e(I −HTKT

e)+KeReK
T
e

= Pf
e−KeHPf

e−Pf
eH

TKT
e

+Ke(HPf
eH

T +Re)KT
e

= (I −KeH)Pf
e.

(24)

The last expression in this equation is the traditional result for the minimum variance error covariance found in
the KF analysis scheme. This implies that the EnKF in the limit of an infinite ensemble size will give exactly
the same result in the computation of the analysis as the KF and EKF. Note that this derivation clearly states
that the observationsd must be treated as random variables to get the measurement error covariance matrixRe

into the expression. It has been assumed that the distributions used to generate the model state ensemble and
the observation ensemble are independent.

3.4.4 Summary.

We now have a complete system of equations which constitutes the ensemble Kalman filter (EnKF), and the
resemblance with the standard Kalman filter is maintained. This is also true for the forecast step. Each ensemble

230



EVENSEN: THE ENSEMBLE KALMAN FILTER

member evolves in time according to the model dynamics. The ensemble covariance matrix of the errors in the
model equations, given by

Qe = dqkdqk
T, (25)

converges toQ in the limit of infinite ensemble size. The ensemble mean then evolves according to the equation

ψk+1 = f (ψk)

= f (ψk)+n.l.,
(26)

where n.l. represents the terms which may arise iff is non-linear. One of the advantages of the EnKF is that
the effect of these terms is retained since each ensemble member is integrated independently by the model.

The error covariance of the ensemble evolves according to

Pk+1
e = FPk

eF
T +Qe+n.l., (27)

whereF is the tangent linear operator evaluated at the current time step. This is again an equation of the same
form as is used in the standard Kalman filter, except of the extra terms n.l. that may appear iff is non-linear.
Implicitly, the EnKF retains these terms also for the error covariance evolution.

For a linear dynamical model the sampledPe converges toP for infinite ensemble sizes and, independent from
the model,Re converges toRandQe converges toQ. Thus, in this limit, both algorithms, the KF and the EnKF,
are equivalent.

For nonlinear dynamics the so called extended Kalman filter may be used and is given by the evolution Eqs. (26)
and (27) with the n.l. terms neglected. Ensemble based filters include the full effect of these terms and there
are no linearizations or closure assumptions applied. In addition, there is no need for a tangent linear operator,
such asF , or its adjoint, and this makes these methods very easy to implement for practical applications.

This leads to an interpretation of the EnKF as a purely statistical Monte Carlo method where the ensemble of
model states evolves in state space with the mean as the best estimate and the spreading of the ensemble as the
error variance. At measurement times each observation is represented by another ensemble, where the mean is
the actual measurement and the variance of the ensemble represents the measurement errors.

4 Practical formulation and interpretation

This section discusses the EnKF in more detail with focus on the practical formulation and interpretation. It
is shown that an interpretation in the “ensemble space” provides a better understanding of the actual algorithm
and also allows for very efficient algorithms to be developed.

4.1 The initial ensemble

The initial ensemble should ideally be chosen to properly represent the error statistics of the initial guess for
the model state. However, a modest mis-specification of the initial ensemble does normally not influence the
results very much over time. The rule of thumb seems to be that one needs to create an ensemble of model
states by adding some kind of perturbations to a best guess estimate, and then integrate the ensemble over a
time interval covering a few characteristic time scales of the dynamical system. This will ensure that the system
is in dynamical balance and that proper multivariate correlations have developed.

The perturbations can be created in different ways. The simplest is to sample random numbers (for a scalar
model), random curves (for a 1–D model) or random fields (for a model with 2 or higher dimensions), from a
specified distribution. In AppendixE there is an example of a procedure for generating such random perturba-
tions.
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4.2 The ensemble integration

The ensemble of model states is integrated forward in time according to the stochastic Eq. (16). In a practical
implementation this becomes just a standard integration of the numerical model but subject to a stochastic noise
which resembles the uncertainties in the model. Note that the EnKF allows for a wide range of noise models.
Stochastic terms can be added to all poorly known model parameters and one is not restricted to use Gaussian
distributed noise. Further, it is possible to use time correlated (red) noise by transforming it into white noise as
is explained in the following section. A different noise model will change the form of the stochastic Eq. (16)
and also lead to a different form of the Fokker Planck equation (17). However, the Fokker Planck equation is
never used explicitly in the algorithm and the EnKF would still provide a Monte Carlo method for solving it.

4.2.1 Simulation of model errors.

The following equation can be used for simulating the time evolution of model errors:

qk = αqk−1 +
√

1−α2wk−1. (28)

Here we assume thatwk is a sequence of white noise drawn from a distribution of smooth pseudo random fields
with mean equal to zero and variance equal to one. Such fields can be generated using the algorithm presented
in the AppendixE. The coefficientα ∈ [0,1) determines the time decorrelation of the stochastic forcing, e.g.,
α = 0 generates a sequence which is white in time, whileα = 1 will remove the stochastic forcing and represent
the model errors with a random field which is constant in time.

This equation ensures that the variance of the ensemble ofqk’s is equal to one as long as the variance of the
ensemble ofqk−1’s is one. Thus, this equation will produce a sequence of time correlated pseudo random fields
with mean equal to zero and variance equal to one.

The covariance in time betweenqi andq j , determined by Eq. (28), is

qiq j = α
|i− j|. (29)

Determination of α. The factorα should be related to the time step used and a specified time decorrelation
lengthτ. The Eq. (28), when excluding the stochastic term, resembles a difference approximation to

∂q
∂ t

=−1
τ

q, (30)

which states thatq is damped with a ratioe−1 over a time periodt = τ. A numerical approximation becomes

qk =
(

1− ∆t
τ

)
qk−1, (31)

where∆t is the time step. Thus, we defineα as

α = 1− ∆t
τ

, (32)

whereτ ≥ ∆t.

Physical model. Based on random walk theory (see below), the physical model can be written as

ψk = f (ψk−1)+
√

∆tσρqk, (33)

whereσ is the standard deviation of the model error andρ is a factor to be determined. The choice of the
stochastic term is explained next.
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Variance growth due to the stochastic forcing. To explain the choice of the stochastic term in Eq. (33) we
will use a simple random walk model for illustration, i.e.,

ψk = ψk−1 +
√

∆tσρqk. (34)

This equation can be rewritten as

ψk = ψ0 +
√

∆tσρ

k−1

∑
i=0

qi+1. (35)

The variance can be found by squaring (35) and taking the ensemble average, i.e.,

ψnψT
n = ψ0ψT

0 +∆tσ2
ρ

2

(
n−1

∑
k=0

qk+1

)(
n−1

∑
k=0

qk+1

)T

(36)

= ψ0ψT
0 +∆tσ2

ρ
2

n−1

∑
j=0

n−1

∑
i=0

qi+1qT
j+1 (37)

= ψ0ψT
0 +∆tσ2

ρ
2

n−1

∑
j=0

n−1

∑
i=0

α
|i− j| (38)

= ψ0ψT
0 +∆tσ2

ρ
2

(
−n+2

n−1

∑
i=0

(n− i)α i

)
(39)

= ψ0ψT
0 +∆tσ2

ρ
2n−2α−nα2 +2αn+1

(1−α)2 (40)

where the expression (29) has been used. Note thatn here denote the “number of time steps” and not the
dimension of the model state as in the remainder of this paper. The double sum in Eq. (38) is just summing
elements in a matrix and is replaced by a single sum operating on diagonals of constant values. The summation
in (39) has an explicit solution (Gradshteyn and Ryzhik, 1979, formula 0.113).

If the sequence of model noiseqk is white in time (α = 0), this equation implies an increase in variance equal
to σ2ρ2 when Eq. (34) is iteratedn time steps of length∆t, over one time unit (n∆t = 1). Thus, in this case
ρ = 1 is a natural choice since this leads to the correct increase in ensemble variance given byσ2.

In the case with red model errors the increase in ensemble variance over one time unit will increase up to a
maximum ofσ2ρ2/∆t in the case whenα = 1 (not covered by the formula38).

The two Eqs. (28) and (33) provides the standard framework for introducing stochastic model errors when using
the EnKF. The formula (40) provides the mean for scaling the perturbations in (33) when changingα and/or
the number of time steps per time unit,n, to ensure that the ensemble variance growth over a time unit remains
the same.

Thus, the constraint that

1 = ρ
2∆t

n−2α−nα2 +2αn+1

(1−α)2 , (41)

defines the factor

ρ
2 =

1
∆t

(1−α)2

n−2α−nα2 +2αn+1 , (42)

which ensures that the variance growth over time becomes independent ofα and∆t (as long as the dynamical
model is linear).

4.2.2 Estimation of model errors.

When red model noise is used, correlations will develop between the red noise and the model variables. Thus,
during the analysis it is also possible to consistently update the model noise as well as the model state. This
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was illustrated in an example byReichle et al.(2002). We introduce a new state vector which consists ofψ

augmented withq. The two Eqs. (28) and (33) can then be written as(
qk
ψk

)
=
(

αqk−1
f (ψk−1)+

√
∆tσρqk

)
+
( √

1−α2wk−1
0

)
.

(43)

During the analysis we can now compute covariances between the observed model variable and the model noise
vectorq and update this together with the state vector. This will lead to a correction of the mean ofq as well as
a reduction of the variance in the model noise ensemble. Note that this procedure estimates the actual error in
the model for each ensemble member, given the prescribed model error statistics.

The form of Eq. (28) ensures that, over time,qk will approach a distribution with mean equal to zero and
variance equal to one, as long as we don’t updateqk in the analysis scheme.

For an illustration of the use of time correlated model errors and their estimation we refer to AppendixF.

4.3 The EnKF analysis scheme

This section attempts to explain in some detail how the EnKF analysis can be computed efficiently for practical
applications. In particular it discusses how the filter can be used to compute a global analysis to an affordable
cost, even with a very large number of measurements. It presents a storage scheme which requires only one
copy of the ensemble to be kept in memory, and an efficient algorithm for computation of the expensive final
matrix multiplication. The concept of a local analysis is discussed in Section4.4. A discussion is also given on
the assimilation of nonlinear measurements in Section4.5, a problem which is solved by augmenting the model
state with the model’s measurement equivalents. Moreover, this algorithm also allows for the efficient assimi-
lation of in situmeasurements in a consistent manner where one entirely relies on the ensemble predicted error
statistics (see AppendixC). Finally a discussion is given on the assimilation of non-synoptic measurements in
Section4.6.

4.3.1 Definitions and the analysis equation.

Define the matrix holding the ensemble membersψ i ∈ℜn,

A = (ψ1,ψ2, . . . ,ψN) ∈ℜn×N, (44)

whereN is the number of ensemble members andn is the size of the model state vector.

The ensemble mean is stored in each column ofA which can be defined as

A = A1N, (45)

where 1N ∈ ℜN×N is the matrix where each element is equal to 1/N. We can then define the ensemble pertur-
bation matrix as

A′ = A−A = A(I −1N). (46)

The ensemble covariance matrixPe∈ℜn×n can be defined as

Pe =
A′(A′)T

N−1
. (47)

Given a vector of measurementsd ∈ ℜm, with m being the number of measurements, we can define theN
vectors of perturbed observations as

d j = d+ ε j , j = 1, . . . ,N, (48)
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which can be stored in the columns of a matrix

D = (d1,d2, . . . ,dN) ∈ℜm×N, (49)

while the ensemble of perturbations, with ensemble mean equal to zero, can be stored in the matrix

ϒ = (ε1,ε2, . . . ,εN) ∈ℜm×N, (50)

from which we can construct the ensemble representation of the measurement error covariance matrix

Re =
ϒϒT

N−1
. (51)

The standard analysis equation, expressed in terms of the ensemble covariance matrices, is

Aa = A+PeH
T(HPeH

T +Re)−1(D−HA). (52)

Using the ensemble of innovation vectors defined as

D′ = D−HA (53)

and the definitions of the ensemble error covariance matrices in Eqs. (51) and (47) the analysis can be expressed
as

Aa = A+A′A′THT (HA′A′THT +ϒϒT)−1
D′. (54)

The potential singularity of the inverse computation requires the use of a pseudo inverse and the practical
implementation is discussed next.

4.3.2 Practical formulation and implementation.

The traditional way of solving the analysis Eq. (54) would involve the computation of the eigenvalue decom-
position directly from them×m matrix,

HA′A′THT +ϒϒT = ZΛZT, (55)

which has the inverse (or pseudo inverse if the matrix is singular)

(HA′A′THT +ϒϒT)−1 = ZΛ−1ZT. (56)

The cost of the eigenvalue decomposition is proportional tom2 and becomes un-affordable for largem. Note,
however that the rank ofZΛZT is less than or equal toN. Thus,Λ will haveN or less non-zero eigenvalues and
it may therefore be possible to use a more efficient eigenvalue decomposition algorithm which only computes
and stores the firstN columns ofZ.

It is important to note that if different measurement types are assimilated simultaneously, the observed model
variables need to be made non-dimensional or scaled to have similar variability. This is required to ensure
that the eigenvalues corresponding to each of the measurement types have the same magnitude. The standard
approach for resolving this is to assimilate different measurement types, which normally have uncorrelated
errors, sequentially one data set at the time. The validity of this approach has been shown, e.g. byEvensen and
van Leeuwen(2000). This ensures that the results are not affected by a poor scaling which in worst case may
result in the truncation of all eigenvalues corresponding to measurements of one kind.
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Alternative solution for large m. If the perturbations used for measurements are chosen such that

HA′ϒT ≡ 0, (57)

meaning that the ensemble perturbations and the measurement errors are uncorrelated (equivalent to the com-
mon assumption of uncorrelated forecast and measurement errors), then the following is valid

HA′A′THT +ϒϒT = (HA′+ϒ)(HA′+ϒ)T. (58)

This is an important point since it means that the inverse can be computed to a cost proportional tomN rather
thanm2. This is seen by the following: first compute the singular value decomposition (SVD) of them×N
matrix

HA′+ϒ = UΣVT. (59)

The Eq. (58) then becomes

HA′A′THT +ϒϒT = UΣVTVΣTUT = UΣΣTUT. (60)

Here the productΣΣT will be identical to the upper leftN×N quadrant ofΛ which corresponds to theN non-
zero eigenvalues. Further, theN singular vectors contained inU are also identical to theN first eigenvectors in
Z. Thus, the inverse is again (56). The numerical cost is now proportional tomN which is a huge benefit when
m is large. This procedure allows us to efficiently compute the inversion for a global analysis in most practical
situations.

Update costs. As soon as the inversion just discussed has been completed, the analysis can be computed from

Aa = A+A′(HA′)TUΛ−1UTD′. (61)

The matrixΛ−1 will only have non-zero elements on the diagonal. If we use the pseudo inverse taking into
account e.g., 99% of the variance, only the first fewp≤N, terms will be nonzero since the rank of the inverted
matrix is p≤ N from (58). This can be exploited using the following scheme:

X1 = Λ−1UT ∈ℜN×m mp, (62)

X2 = X1D′ ∈ℜN×N mNp, (63)

X3 = UX2 ∈ℜm×N mNp, (64)

X4 = (HA′)TX3 ∈ℜN×N mNN, (65)

Aa = A+A′X4 ∈ℜn×N nNN, (66)

where the last two columns denote the dimension of the resulting matrix and the number of floating point
operations needed to compute it. Sincep≤ N andm� n for all practical applications, the dominant cost is
now the last computation which isnN2 and which is independent ofm. All the steps including the singular value
decomposition have a cost which is linear in the number of measurements rather than quadratic. A practical
approach for performing this last multiplication will be discussed later.

If we use a full rank matrix,HPeHT + R, whereR is not represented using an ensemble of perturbations, the
computation of the analysis will be significantly more expensive. First, the full matrixHPeHT = (HA′)(HA′)T

must be constructed to a cost ofm2N, followed by the eigenvalue decomposition (55) which requires another
O(m2) floating point operations. In this case, the steps (63) and (64) also comes at a cost ofm2N. Thus,
the introduction of low rank by representing the measurement error covariance matrix with an ensemble of
perturbations, leads to a significant saving by transforming all them2N operations to be linear inm.
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4.3.3 The case withm� N.

The algorithm described above is optimized for the case whenm� N. In the case whenm� N a small
modification is appropriate. First, note that even if the eigenvalue factorization in (55) now becomes less
expensive than the singular value decomposition in (59), the construction of the full matrixHA′(HA′)T is
even more expensive (requiresm2N floating point operations). Thus, it is still beneficial to use the ensemble
representation,ϒ, for the measurement error statistics and to compute the SVD using the algorithm described
above.

It was shown above that the dominant cost is associated with the final computation in (66) which isnN2. This
can now be reduced by a reordering of the multiplications in (61). After X3 is computed the equation is

Aa = A+A′(HA′)TX3, (67)

where the matrix dimensions in the last term can be written as(n×N)(N×m)(m×N). Computing the multipli-
cations from left to right requires 2nmNoperations while computing them from right to left requires(m+n)N2

operations. Thus, for small number of measurements when 2nmN< (m+n)N2 it is more efficient to compute
the influence functionsA′(HA′)T = PeHT first, and then add these to the forecast ensemble using the coefficients
contained inX3.

4.3.4 Remarks on analysis equation.

The Eq. (66) expresses the analysis as a first guess plus a combination of ensemble perturbations, i.e.A′X4.
From the discussion above we could also write the analysis equation as

Aa = A+A′(HA′)TX3 = A+PeH
T(N−1)X3. (68)

This is the standard notation used in Kalman filters where one measures the error covariance matrix to compute
the influence functions, one for each measurement, which are added to the forecast.

Note also that the Eq. (66) can be written as

Aa = A+(A−A)X4 (69)

= A+A(I −1N)X4 (70)

= A(I +X4) (71)

= AX5, (72)

where we have used that 1NX4 ≡ 0. Obviously, the first observation to make is that the analyzed ensemble
becomes a weakly nonlinear combination of the predicted ensemble. The notation “weakly nonlinear combi-
nation” is used since theX5 matrix only depends on the forecast ensemble through the projection ofA onto the
measurements, i.e.,AHT. It then becomes of interest to examineX5 to study the properties of this particular
combination. Each column ofX5 will hold the coefficients defining the corresponding new ensemble member.
For this estimate to be unbiased, the sum of each column ofX5 should be equal to one, which is actually a
good test for the numerical coding leading toX5. Also, one can in most applications expect thatX5 is diagonal
dominant since the diagonal holds the coefficient for the first guess ensemble member, while all off-diagonal
elements introduces corrections imposed by the measurements. By examining the rows of the matrixX5 one
can determine if some ensemble members appear to be more important than others. Note that the off-diagonal
elements inX5 will also have negative values.
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Computation of the mean of the analyzed ensemble can be written as follows:

ψa =
1
N

N

∑
j=1

ψ
a
j , (73)

=
1
N

N

∑
j=1

N

∑
i=1

ψ iXi j , (74)

=
1
N

N

∑
i=1

ψ i

N

∑
j=1

Xi j , (75)

=
1
N

N

∑
i=1

ψ iyi , whereyi =
N

∑
j=1

Xi j . (76)

Thus, the sum,yi , of the elements in each row inX5 defines the coefficients for the combination of forecast
members defining the mean of the analysis. Theyi values therefore also determines which of the ensemble
members contributes most strongly to the analysis.

If we compute an SVD decomposition of the forecast ensemble, the Eq. (66) can be written as

Aa = AX5, (77)

= UΣVTX5, (78)

= UX6. (79)

Thus, it is possible to visualize the analysis as a combination of orthogonal singular vectors. This procedure may
be useful since it allows us to reject eventual dependent ensemble members and possibly add new orthogonal
members if these are needed. In particular it can be used to examine how linearly independent the ensemble of
model states is.

Some interesting conclusions which can be drawn are:

1. The covariances are only indirectly used to create the matrixHPHT, which only includes covariances
between the observed variables at the locations of the observations. The actual covariances are never
computed when the SVD algorithm in Section4.3.2is used although they are used implicitly.

2. The analysis is not really computed as a combination of covariance functions. It is in fact computed as
a combination of the forecasted ensemble members. Each of these members can be considered as drawn
from an infinite sample of dynamically consistent model states where the correct multivariate correlations
are present in each ensemble member.

3. The covariances are only important for computing the best possible combination, i.e., the matrixX5.
As long as the ensemble basedX5 is a good approximation, the accuracy of the final analysis will be
determined by how well the error space spanned by the ensemble members represents the true error
space of the model.

Clearly, from Eq. (72), the analysis becomes a combination of model states even if Eq. (68) is used for the
actual computation, since these two equations are identical.

For a linear model a linear combination of model solutions is also a solution of the model. Thus, for a linear
model, any choice ofX5 will produce an ensemble of analyzed model states which is also a solution of the
linear model.

If Eq. (68) is used for the computation of the analysis but with filtering applied to the covariance functions,
one actually introduces spurious or nondynamical modes in the analysis. Based on these points it is not wise
to filter covariance functions as has been proposed in a number of studies, e.g. byHoutekamer and Mitchell
(2001).

238



EVENSEN: THE ENSEMBLE KALMAN FILTER

4.4 Local analysis

To avoid the problems associated with a largem, many operational assimilation schemes have made an assump-
tion that only measurements located within a certain distance from a grid point will impact the analysis in this
grid point. This allows for an algorithm where the analysis is computed grid point by grid point. Only a subset
of observations, which are located near the current grid point, is used in the analysis for this particular grid
point. This algorithm is approximative and it does not solve the original problem posed. Further, it is not clear
how serious the approximation is.

Such an approach is not needed for handling a largem in the EnKF if the algorithm just described is used.
However, there are other arguments for computing local analyses grid point by grid point. The analysis in
the EnKF is computed in a space spanned by the ensemble members. This is a subspace which is rather small
compared to the total dimension of the model state. Computing the analysis grid point by grid point implies that
a small model state is solved for in a relatively large ensemble space. Further, the analysis will use a different
combination of ensemble members for each grid point, and this also allows for a larger flexibility in the scheme
to reach different model solutions.

For each horizontal grid point, we can now compute the correspondingX5 using only the selected measurements
contributing to that particular grid point and update the ensemble for that particular grid point. The analysis at
grid point(i, j), i.e.,Aa

(i, j) then becomes

Aa
(i, j) = A(i, j)X5,(i, j) (80)

= A(i, j)X5 +A(i, j)(X5,(i, j)−X5), (81)

whereX5 is the global solution whileX5,(i, j) becomes the solution for a local analysis corresponding to grid
point (i, j) where only the nearest measurements are used in the analysis. Thus, it is possible to compute the
global analysis first, and then add the corrections from the local analysis if these are significant.

The quality of the EnKF analysis is clearly connected to the ensemble size used. We expect that a larger
ensemble is needed for the global analysis than the local analysis to achieve the same quality of the result. I.e.,
in the global analysis a large ensemble is needed to properly explore a the state space and to provide a consistent
result for the global analysis which is as good as the local analysis. We expect this to be application dependent.
Note also that the use of a local analysis scheme is likely to introduce non-dynamical modes, although the
amplitudes of these will be small if a large enough influence radius is used when selecting measurements.

In dynamical models with large state spaces, the local analysis allows for the computation of a realistic analysis
result while still using a relatively small ensemble of model states. This also relates to the discussions on
localization and filtering of long range correlations byMitchell et al.(2002).

4.5 Nonlinear measurement operators

The expressionD′ = D−HA is just the difference between the ensemble of measurements and the ensemble
of observed model states. If the observations are nonlinear functions of the model state this matrix formulation
usingH becomes invalid. The traditional solution is to linearize and iterate. It is possible to augment the model
state with a diagnostic variable which is the model prediction of the measurement. Thus, ifd = h(ψ, . . .)+ ε

then a new model state can be defined for each ensemble member as

ψ̂
T = (ψT,hT(ψ, . . .)). (82)

By defining the new ensemble matrix as

Â = (ψ̂1, ψ̂2, . . . , ψ̂N) ∈ℜn̂×N, (83)
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with n̂ being then plus the number of measurement equivalents added to the original model state, the analysis
can be written

Aa = A+A′Â
′T

Ĥ
T
(

ĤÂ
′
Â
′T

Ĥ
T
+ϒϒT

)−1
D′, (84)

where the now linear innovations (witĥH being a direct and linear measurement functional) becomes

D′ = D− ĤÂ. (85)

From this expression, where the ensemble members have been augmented with the observation equivalent, we
can compute the following using a linear (direct) measurement functional: the innovationD′; the model pre-

dicted error covariance of the observation’s equivalentsHÂ
′
Â
′T

HT; and the covariance between the observations

and all prognostic model variables fromA′Â
′T

Ĥ
T
.

The analysis is a combination of model predicted error covariances between the observation equivalentsh(ψ, . . .)
and all other model variables. Thus, we have a fully multivariate analysis scheme.

4.6 Assimilation of “non-synoptic” measurements

In some cases measurements occur with high frequency in time. An example is along track satellite data. It
is not practical to perform an analysis every time there is a measurement. Further, the normal approach of
assimilating, at one time instant, all data collected within a time interval, is not optimal. Based on the theory
from Evensen and van Leeuwen(2000), it is possible to assimilate the non-synoptic measurements at one
time instant by exploiting the time correlations in the ensemble. Thus, a measurement collected at a previous
time allows for the computation of theHA at that time and thereby also the innovations. By treating these
as augmented model variables the equation (84) can again be used but with theh(ψ, . . .) now denoting the
measurements collected at earlier times.

5 Numerical implementation of the EnKF

The algorithm as explained in the previous sections provides an optimal approach for computing the EnKF
analysis. The following provides a basis explaining the implementation of the EnKF analysis scheme. It as-
sumes access to the BLAS and EISPACK libraries, where highly optimized numerical subroutines are available
for most computer systems and which can be obtained for free from the archive atwww.netlib.no .

5.1 Storing the ensemble on disk

For most practical applications one will not want to keep the whole ensemble in memory during the ensemble
integrations. Rather, an approach where ensemble members are kept in a file residing on disk is convenient.
This allows for the system to read a particular member from file, integrate it forward in time, and then store
it on disk again following the integration. An approach where each member is stored in a record in a direct
Fortran file is most convenient. This allows us to read and write specific records containing individual ensemble
members.

5.2 Analysis implementation

The algorithm for the analysis exploits that we can compute once and store allinnovations, measurement
perturbationsand themeasurements of the ensemble. Thus, we start with the following:
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1. Read the whole ensemble forecast intoA.

2. Compute the matrixHA.

3. Compute the measurement perturbationsϒ.

4. Compute the innovationsD′.

5. ComputeHA and subtract it fromHA to getHA′ (requiresH to be linear).

The following subroutine can then be used without any modification to compute the analysis for all kinds of
model states.

subrou t ine a n a l y s i s (A , D , E , S , ndim , n r e n s , n robs )
! Computes t h e a n a l y s e d ensemble i n t h e EnKF
! W r i t t e n by G . Evensen ( Ge i r . Evensen@nersc . no )
! Th is r o u t i n e uses s u b r o u t i n e s from BLAS and EISPACK
! and c a l l s t h e a d d i t i o n a l m u l t i p l i c a t i o n r o u t i n e mul ta .

use m multa
i m p l i c i t none

! Dimension o f model s t a t e
i n t e g e r , i n t e n t ( i n ) : : ndim

! Number o f ensemble members
i n t e g e r , i n t e n t ( i n ) : : n r e n s

! Number o f o b s e r v a t i o n s
i n t e g e r , i n t e n t ( i n ) : : n robs

! Ensemble m a t r i x
r e a l , i n t e n t ( i nou t ) : : A( ndim , n r e n s )

! Mat r i x h o l d i n g i n n o v a t i o n s
r e a l , i n t e n t ( i n ) : : D( n robs , n r e n s )

! Mat r i x h o l d i n g HA’
r e a l , i n t e n t ( i n ) : : S ( n robs , n r e n s )

! Mat r i x h o l d i n g o b s e r v a t i o n p e r t u r b a t i o n s
r e a l , i n t e n t ( i n ) : : E ( n robs , n r e n s )

! Loca l v a r i a b l e s
r e a l , a l l o c a t a b l e , dimension ( : , : ) : : &

X1 , X2 , U , X4 , Reps

r e a l , a l l o c a t a b l e , dimension ( : ) : : &
s i g , work

r e a l ES ( nrobs , n r e n s ) , X3( n robs , n r e n s ) , V( n r e n s , n r e n s )
r e a l s igsum , s igsum1
i n t e g e r i e r r , n rs igma , i , j , lwork , nrmin , ib lkmax

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! Do n o t h i n g i f on ly one measurement

i f ( n robs = = 1 ) then
p r i n t ∗ , ’ a n a l y s i s : no s u p p o r t f o r n robs =1’
re turn

e n d i f

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! Minimum of n robs and n r e n s

nrmin=min ( n robs , n r e n s )

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! Compute HA’+E

ES=S+E

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
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! Compute SVD of HA’+E −> U and s i g , u s i ng E ispack
a l l o c a t e ( U( n robs , nrmin ) )
a l l o c a t e ( s i g ( nrmin ) )
lwork =2∗max(3∗ n r e n s + nrobs ,5∗ n r e n s )
a l l o c a t e ( work ( lwork ) )

s i g =0.0
c a l l dgesvd ( ’ S ’ , ’ N ’ , n robs , n r e n s , ES , n robs , s i g , &

U , n robs , V , n r e n s , work , lwork , i e r r )
d e a l l o c a t e( work )
i f ( i e r r / = 0 ) then

p r i n t ∗ , ’ i e r r from c a l l dgesvd = ’ , i e r r
s top

e n d i f

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! Conver t t o e i g e n v a l u e s

do i =1 , nrmin
s i g ( i )= s i g ( i )∗∗2

enddo

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! Compute number o f s i g n i f i c a n t e i g e n v a l u e s

s igsum=sum ( s i g ( 1 : nrmin ) )
s igsum1 =0.0
nrs igma =0
do i =1 , nrmin

i f ( s igsum1 / s igsum< 0 . 9 9 9 ) then
nrs igma = nrs igma +1
sigsum1=sigsum1+ s i g ( i )
s i g ( i ) = 1 . 0 / s i g ( i )

e l s e
s i g ( i : nrmin ) = 0 . 0
e x i t

e n d i f
enddo

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! Compute X1

a l l o c a t e ( X1( nrmin , n robs ) )
do j =1 , n robs
do i =1 , nrmin

X1( i , j )= s i g ( i )∗U( j , i )
enddo
enddo
d e a l l o c a t e( s i g )

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! Compute X2=X1∗D

a l l o c a t e ( X2( nrmin , n r e n s ) )
c a l l dgemm ( ’ n ’ , ’ n ’ , nrmin , n r e n s , n robs , 1 . 0 , X1 , &

nrmin , D , n robs , 0 . 0 , X2 , nrmin )
d e a l l o c a t e(X1)

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! Compute X3=U∗X2

c a l l dgemm ( ’ n ’ , ’ n ’ , n robs , n r e n s , nrmin , 1 . 0 , U , &
nrobs , X2 , nrmin , 0 . 0 , X3 , n robs )

d e a l l o c a t e(U)
d e a l l o c a t e(X2)

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! Compute f i n a l a n a l y s i s

i f ( 2∗ ndim∗nrobs > n r e n s∗ ( n robs +ndim ) ) then
! Case wi th n robs ’ l a r g e ’

! Compute X4=(HA’ ) ˆ T ∗ X3
a l l o c a t e (X4( n r e n s , n r e n s ) )
c a l l dgemm ( ’ t ’ , ’ n ’ , n r e n s , n r e n s , n robs , 1 . 0 , &

S , n robs , X3 , n robs , 0 . 0 , X4 , n r e n s )

! Compute X5=X4+ I ( s t o r e d i n X4)
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do i =1 , n r e n s
X4( i , i )=X4( i , i ) + 1 . 0

enddo

! Compute A=A∗X5
ib lkmax=min ( ndim , 2 0 0 )
c a l l mul ta (A , X4 , ndim , n r e n s , ib lkmax )
d e a l l o c a t e(X4)

e l s e
! Case wi th n robs ’ s m a l l ’

! Compute r e p r e s e n t e r s Reps=A’∗S ˆT
a l l o c a t e ( Reps ( ndim , n robs ) )
c a l l dgemm ( ’ n ’ , ’ t ’ , ndim , n robs , n r e n s , 1 . 0 , A, &

ndim , S , n robs , 0 . 0 , Reps , ndim )

! Compute A=A+Reps∗X3
c a l l dgemm ( ’ n ’ , ’ n ’ , ndim , n r e n s , n robs , 1 . 0 , &

Reps , ndim , X3 , n robs , 1 . 0 , A , ndim )
d e a l l o c a t e( Reps )

e n d i f

end subrou t ine a n a l y s i s

5.3 Final update

The most demanding step in the EnKF analysis is the final step when evaluating the analysis ensemble from
Eq. (72), i.e.,

A = AX5, (86)

with
X5 = I +X4 ∈ℜN×N. (87)

Here the largest matrix to be held in memory is the ensemble matrixA∈ℜn×N. Further, the number of floating
point operations (a multiply and add) isnN2 which is likely to be several orders of magnitude more than for the
previous steps in the algorithm.

This matrix multiplication can easily be computed while overwriting row by row ofA using the subroutine
multa listed below, which only requires one copy of the ensemble to be kept in memory. This subroutine
has been found to perform the multiplication very efficiently. It uses optimized BLAS routines and includes
a block representation where only a small part of the model state needs to be held as an additional copy in
memory during the multiplication.

module m multa
con ta i n s
subrou t ine mul ta (A , X , ndim , n r e n s , ib lkmax )
i m p l i c i t none
i n t e g e r , i n t e n t ( i n ) : : ndim
i n t e g e r , i n t e n t ( i n ) : : n r e n s
i n t e g e r , i n t e n t ( i n ) : : ib lkmax
r e a l , i n t e n t ( i n ) : : X( n r e n s , n r e n s )
r e a l , i n t e n t ( i nou t ) : : A( ndim , n r e n s )
r e a l v ( ib lkmax , n r e n s ) ! Automat ic work a r r a y

i n t e g e r i a , i b
do i a = 1 , ndim , ib lkmax

i b = min ( i a + ib lkmax−1,ndim )
v ( 1 : i b− i a + 1 , 1 : n r e n s ) = A( i a : i b , 1 : n r e n s )
c a l l dgemm ( ’ n ’ , ’ n ’ , i b− i a + 1 , n r e n s , n r e n s , &

1 . 0 , v ( 1 , 1 ) , ib lkmax , &
X ( 1 , 1 ) , n r e n s , &
0 . 0 , A( i a , 1 ) , ndim )

enddo
end subrou t ine mul ta
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end module m multa

5.3.1 Remark 1:

Note that this routine does not care about the order of which the elements inA are stored for each ensemble
member. Thus, in the call tomulta , A can be a multi dimensional matrix e.g.,A(nx,ny,nz,nrens)
holding an ensemble of a uni-variate three dimensional model state. A multi-variate model state can be stored
in a structure or type declaration, and still be input tomulta .

5.3.2 Remark 2:

In principle the multiplication has a serious drawback caused by the stridendim copies. Here the routine relies
on BLAS for the inner matrix multiplication, since the BLAS routines have already been designed to optimize
cache performance. The variableiblkmax is only used for storage considerations and a typical value of 200
seems to work fine. This routine also opens for a possible block representation of the model state.

5.4 A block algorithm for large ensemble matrices

It is still possible to use the EnKF even if the whole ensemble does not fit in memory. In this case a block
algorithm can be used for the final update, using additional reads and writes to file. The algorithm goes as
follows:

1. Read each individual ensemble member into a vector one at the time while computing and storing the
columns ofHA.

2. Compute the measurement perturbationsϒ.

3. Compute the innovationsD′.

4. ComputeHA and subtract it fromHA to getHA′.

Use the algorithm described in theanalysis subroutine to computeX5. So far we have only kept one full
model state in memory at the time. It remains to solve the Eq. (86). Using the block algorithm just discussed
it is possible to perform this computation without keeping all of the ensemble in memory at once. A proposed
strategy is to store the ensemble in several files, say one file for the temperature, one for the salinity, etc. Then
the analysis can be performed sequentially on the individual blocks, a the cost of one additional read and write
of the whole ensemble.

A Consistency checks on error statistics

The EnKF provides error statistics for the results. To validate the predicted error statistics it is possible to
compare statistics computed from the innovation sequence with the predicted error statistics.

If the model forecast is written as
ψ

f = ψ
t +q, (88)

i.e., it is given as the truth plus an error, and the measurements are written as

d = Hψ
t + ε, (89)
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the innovation becomes
d−Hψ

f = ε−Hq. (90)

By squaring this equation and taking the expectation we get the expression

(d−Hψ f)(d−Hψ f)T = R+HPfHT (91)

where correlations between the forecast error and the measurement error have been neglected.

Thus, it is possible to compute the variance of the innovation sequence in time, subtract the measurement vari-
ance and compare this with the predicted error variance from the ensemble. This provides a solid consistency
test on the prescribed error statistics used in the EnKF.

B Ensemble Optimal Interpolation (EnOI)

Traditional optimal interpolation (OI) schemes have estimated or prescribed covariances using an ensemble of
model states which has been sampled during a long time integration. Normally the estimated covariances are
fitted to simple functional forms which are used uniformly throughout the model grid.

Based on the discussion in this paper it is natural to derive an OI scheme where the analysis is computed in
the space spanned by a stationary ensemble of model states sampled, e.g., during a long time integration. This
approach is denoted Ensemble OI (EnOI).

The EnOI analysis is computed by solving an equation similar to (54) but written as

ψ
a = ψ +αA′A′THT(

αHA′A′THT +ϒϒT)−1
(d−Hψ).

(92)

The analysis is now computed for only one single model state, and a parameterα ∈ (0,1] is introduced to allow
for different weights on the ensemble versus measurements. Naturally, an ensemble consisting of model states
sampled over a long time period will have a climatological variance which is too large to represent the actual
error in the model forecast, andα is used to reduce the variance to a realistic level.

The practical implementation introducesα in (59), which is now written as
√

αHA′+ϒ = UΣVT, (93)

and the coefficient matrixX4 in (65) is further scaled withα beforeX5 is computed.

The EnOI method allows for the computation of a multivariate analysis in dynamical balance, just like the
EnKF. However, a larger ensemble may be useful to ensure that it spans a large enough space to properly
represent the correct analysis.

The EnOI can be an attractive approach to save computer time. Once the stationary ensemble is created, only
one single model integration is required in addition to the analysis step where the final update cost is reduced to
O(nN) floating point operations because only one model state is updated. The method is numerically extremely
efficient but it will always provide a suboptimal solution compared to the EnKF. In addition it does not provide
consistent error estimates for the solution.

C Assimilation of in situ measurements

The direct assimilation ofin situ observations such as temperature and salinity profiles is problematic in ocean
models unless both temperature and salinity is known simultaneously or the correct temperature-salinity cor-
relation are known. Thus, using simple assimilation schemes, it is not known, a priori, how to update the
water-mass properties in a consistent manner, see e.g.,Troccoli et al.(2002) andThacker and Esenkov(2002).
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From the interpretation of the EnKF analysis as a combination of valid model states, and the the discussion
on nonlinear measurement functionals in the EnKF, it is possible to compute a consistent analysis even if only
temperature (or salinity) is observed. The algorithm applies a definition of a measurement functional which
interpolates the model temperature (or salinity) to the measurement location in depth. The model state is
then augmented with the observation equivalents for each independentin situ measurement. Innovations and
covariances between the measurement equivalents can then be evaluated and the standard analysis equations
can be used to compute the analysis. This approach ensures that the model update in the vertical and horizontal
is performed consistently with the error statistics predicted by the ensemble.

In order to obtain a variable’s value at a specific depth an interpolation algorithm is needed. We use a second
order spline to interpolate in the vertical. It is important to note that when interpolating values between different
layers the interpolating spline should not pass exactly through the mean of the variable at the center of each
layer. Instead a criterion is used where the mean value computed by integrating the spline function across the
layer is equal to the mean of the variable in that layer. The details of the algorithm follows.

C.1 Upper layer

Layer one is divided into upper and lower parts where the spline polynomial, used to represent the variable to
be interpolated is defined as

f1(x) =

{
c0 for x∈ [0, 1

2h1)
a1x2 +b1x+c1 for x∈ [1

2h1,h1].
(94)

Herehi is the location of the lower interface of layeri. Conditions are specified atx = 1
2h1 for continuity of the

function and the derivative, i.e.,

f1(
1
2

h1) = c0, (95)

and
∂ f1(x)

∂x

∣∣∣∣
1
2h1

= 0, (96)

and in addition the integral over layer 1 should satisfy

1
h1

∫ h1

0
f1(x) = c0

1
2

+a1
7
24

h2
1 +b1

3
8

h1 +c1
1
2

= u1, (97)

with u1 being the model predicted layer variable in layer one.

C.2 Interior layers

Within each interior layer,i, a function of the form

fi(x) = aix
2 +bix+ci , (98)

is used to represent the model variables. For each interior layer there are three conditions which determine the
three unknowns in each layer, i.e., continuity at layer interfaces

fi(hi−1) = fi−1(hi−1), (99)

continuity of derivatives at layer interfaces

∂ fi(x)
∂x

∣∣∣∣
hi−1

=
∂ fi−1(x)

∂x

∣∣∣∣
hi−1

, (100)
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and a condition for the mean of the variable becomes after some manipulations

1
hi −hi−1

∫ hi

hi−1

fi(x)dx= ai
1
3

(
h2

i−1 +hi−1hi +h2
i

)
+bi

1
2

(
hi +hi−1

)
+ci = ui . (101)

C.3 Closing the system

A final condition is obtained by setting the variable at the sea floor equal to the mean of the variable in the
bottom layer,

fk(hk) = uk. (102)

Thus, the system is closed.

D Ensemble Kalman Smoother (EnKS)

In light of the discussion in this paper it is also possible to derive an efficient implementation of the EnKS.
The EnKS, as described inEvensen and van Leeuwen(2000), updates the ensemble at prior times every time
new measurements are available. The update exploits the space-time correlations between the model forecast
at measurement locations and the model state at a prior time. It allows for a sequential processing of the
measurements in time. Thus, every time a new set of measurements becomes available the ensemble at the
current and all prior times can be updated.

Similar to the analysis Eq. (54) the analysis for a prior timet ′ which results from the introduction of a new
measurement vector at timet > t ′ can be written as

Aa(t ′) = A(t ′)+A′(t ′)A′T(t)HT(
HA′(t)A′T(t)HT +ϒϒT)−1

D′(t),
(103)

This equation is updated repetitively every time a new set of measurements are introduced at future timest.

The EnKS analysis can best be computed using the formulation discussed in the previous sections, and in par-
ticular using the definition ofX5 in Eq. (87). It is easily seen that the matrix of coefficientsX5(t) corresponding
to the measurements at timet, is also used on the analysis ensemble at the prior timest ′ to update the smoother
estimate at timet ′.

Thus, the smoother estimate at a timet ′ whereti−1 ≤ t ′ < ti ≤ tk, using data from the future data times, i.e.,
(ti , ti+1, . . . , tk), is just

Aa
EnKS(t

′) = AEnKF(t
′)

k

∏
j=i

X5(t j). (104)

As long as the previous ensemble files have been stored, it is straight forward to update them with new informa-
tion every time a new set of measurements is available and the matrixX5 corresponding to these measurements
have been computed. This discussion has assumed that a global analysis is used. The local analysis becomes a
little less practical since there is anX5 matrix for each grid point.

The product in Eq. (104) has an important property. The multiplication of the ensemble withX5 will always
result in a new ensemble with a different mean and a smaller variance. Thus, each consecutive update through
the repetitive multiplication in (104) will lead to slight reduction of variance and slight change of mean. Even-
tually, there will be a convergence with only negligible updates of the ensemble when measurements are taken
further into the future than the actual decorrelation time.
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E Generating pseudo random fields

Here a procedure is given which can be used to compute smooth pseudo random fields with mean equal to zero,
variance equal to one, and a specified covariance which determines the smoothness of the fields. The algorithm
follows the presentation in the appendix ofEvensen(1994b), and additional details and explanations are given
by Natvik(2001).

Let q = q(x,y) be a continuous field, which may be described by its Fourier transform

q(x,y) =
∫ ∞

−∞

∫ ∞

−∞
q̂(k)eik·xdk. (105)

Now, we are using anN×M grid. Further, we definek = (κl ,γp), wherel andp are counters andκl andγp are
wave numbers in theN andM directions, respectively. We now get a discrete version of Eq. (105),

q(xn,ym) = ∑
l ,p

q̂(κl ,γp)ei(κl xn+γpym)∆k, (106)

wherexn = n∆x andym = m∆y. For the wave numbers, we have

κl =
2π l
xN

=
2π l
N∆x

, (107)

γP =
2π p
yM

=
2π p
M∆y

, (108)

∆k = ∆κ∆γ =
(2π)2

NM∆x∆y
. (109)

We define (assume) the following form ofq̂(k):

q̂(κl ,γp) =
c√
∆k

e−(κ2
l +γ2

p)/σ2
e2π iφl ,p, (110)

whereφl ,p ∈ [0,1] is a random number which introduces a random phase shift. (The exponential function
may be written as a sum of sine and cosine terms). Note that increasing wave numbersκl andγp will give
an exponentially decreasing contribution to the expression above. Now, equation (110) may be inserted into
equation (106), and we get

q(xn,ym) =

∑
l ,p

c√
∆k

e−(κ2
l +γ2

p)/σ2
e2π iφl ,pei(κl xn+γpym)∆k. (111)

We want Eq. (111) to produce real fields only. Thus, when the summation overl , p is performed, all the
imaginary contributions must add up to zero. This is satisfied whenever

q̂(κl ,γp) = q̂∗(κ−l ,γ−p), (112)

where the star denote complex conjugate, and

Im q̂(κ0,γ0) = 0. (113)

The formula (111) can be used to generate an ensemble of pseudo random fields with a specific covariance
determined by the parametersc andσ . An expression for the covariance is given by

q(x1,y1)q(x2,y2) =

∑
l ,p,r,s

q̂(κl ,γp)q̂(κr ,γs)ei(κl x1+γpy1+κr x2+γsy2)(∆k)2. (114)

248



EVENSEN: THE ENSEMBLE KALMAN FILTER

By using Eq. (112), and by noting that the summation goes over both positive and negativer ands, we may
insert the complex conjugate instead, i. e.

q(x1,y1)q(x2,y2)

= ∑
l ,p,r,s

q̂(κl ,γp)q̂∗(κr ,γs)ei(κl x1−κr x2+γpy1−γsy2)(∆k)2

= ∑
l ,p,r,s

∆kc2e−(κ2
l +γ2

p+κ2
r +γ2

s )/σ2
e2π i(φl ,p−φr,s)

ei(κl x1−κr x2+γpy1−γsy2). (115)

We assume that the fields areδ - correlated in wave space. That is, we assume that there is a distance dependence
only (isotropy), and we may setl = r andp = s, and the above expression becomes

q(x1,y1)q(x2,y2)

= ∆kc2∑
l ,p

e−2(κ2
l +γ2

p)/σ2
ei(κl (x1−x2)+γp(y1−y2)). (116)

From this equation, the variance at(x,y) is

q(x,y)q(x,y) = ∆kc2∑
l ,p

e−2(κ2
l +γ2

p)/σ2
. (117)

Now, we require the variance to be equal to 1. Further, we define a decorrelation lengthrh, and we require the
covariance corresponding torh to be equal toe−1. For the variance, we get the equation

1 = ∆kc2∑
l ,p

e−2(κ2
l +γ2

p)/σ2
, (118)

which means that

c2 =
1

∆k ∑l ,pe−2(κ2
l +γ2

p)/σ2 . (119)

If we let x1−x2 = rh andy1−y2 = 0, we must have a covariance equal toe−1 between these points, i. e.,

e−1 = ∆kc2∑
l ,p

e−2(κ2
l +γ2

p)/σ2
eiκl rh

= ∆kc2∑
l ,p

e−2(κ2
l +γ2

p)/σ2
cos(κl rh). (120)

By inserting forc2 from Eq. (119), we get

e−1 =
∑l ,pe−2(κ2

l +γ2
p)/σ2

cos(κl rh)

∑l ,pe−2(κ2
l +γ2

p)/σ2 . (121)

This is a nonlinear scalar equation forσ , which may be solved using some numerical routine. One can thereafter
find a value forc from Eq. (119).

Once the values forc andσ have been determined, equation (111) may be used to create an ensemble of pseudo
random fields with variance 1 and covariance determined by the decorrelation lengthrh. An efficient approach
for finding the inverse transform in (111) is to apply a two-dimensional fast Fourier transform (FFT). The
inverse FFT is calculated on a grid which is a few characteristic lengths larger than the computational domain
to ensure non-periodic fields in the subdomain corresponding to the computational domain (Evensen, 1994b).

To summarize, we are now able to generate (sample) two-dimensional pseudo random fields with variance
equal to one and a prescribed covariance (isotropic as a function of grid indices). The simple formulas used in
Section4.2(i.e., using Eq.28with a choice ofα) can be used to introduce correlations between the fields.
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F An example with a scalar model

A simple example is now presented to illustrate some of the properties of the EnKF and EnKS. There is already
a large number of applications of the EnKF using different physical models as cited in Section2. Thus, in the
following example the focus will be on the stochastic behaviour of the EnKF and EnKS rather than the impact
of a dynamical model on the evolution of error statistics.

The model considered is the linear scalar version of the model described by Eq. (43), with f (ψ) = ψ, i.e.,(
qk
ψk

)
=
(

αqk−1
ψk−1 +

√
∆tσρqk

)
+
( √

1−α2wk−1
0

)
.

(122)

Two experiments will be discussed, which both use the following parameter settings:

1. the time interval is from 0 to 10 time units;

2. the ensemble size is 1000 which is large enough to eliminate any visible effects of using a finite ensemble;

3. the time step isdt = 0.1 which splits the time interval into 100 subintervals;

4. the initial ensemble is sampled fromN (0.0,1.0), it has mean zero and variance equal to one;

5. the model errors are sampled fromN (0.0,1.0) indicating that the model error variance will increase
with 1.0 when the ensemble is integrated over one time unit;

6. the measurements are sampled fromN (0.0,0.5);

7. there are 5 measurement times distributed equally over the time interval.

The two experiments use different values for the coefficientα which denote the time correlation of the model
errors. In Case A,α = 0.00, which implies white noise, while in Case B a strong time correlation is imposed
usingα = 0.95, which results in approximately 2 time units as the decorrelation time from Eq. (32). The factor
ρ is computed using the formula (42) to ensure that the two cases have similar error variance growth in the
stochastic model.

In all the cases both the EnKF and EnKS solutions are computed, and the procedure for estimation of model
noise discussed in Section4.2.2is used.

The EnKF and EnKS results from Case A are shown in Figure1. The thick line shows the ensemble mean which
represents the EnKF estimate. At the measurement locations, represented by the circles, there are discontinu-
ities in the estimate due to the analysis updates. During the integration between the measurement locations the
ensemble mean satisfies the dynamical part of the model equation, i.e., the time derivative of the solution is
zero.

The two dotted lines represent the ensemble mean with the ensemble standard deviation respectively added
and subtracted and thus indicate the ensemble spread around the mean. The ensemble standard deviation is
reduced at every measurement time, and increases according to the stochastic forcing term during the integration
between the measurements.

The thick dashed line is the EnKS solution, which is computed using the procedure outlined in SectionD.
Clearly this provides a continuous curve which is a more realistic estimate than the EnKF solution. Note that,
due to the use of white noise this curve will have discontinuous time derivatives at the measurement locations,
a property also found in the representer solutions byBennett(1992, 2002) when white model errors are used.
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The thin dash-dot lines indicate the ensemble standard deviation for the EnKS. Clearly there is an impact
backward in time from the measurements and the overall error estimate is smaller than for the EnKF. The
minimum errors are found at the measurement locations as expected, and after the last measurement the EnKF
and EnKS solutions are identical, in agreement with the theory fromEvensen and van Leeuwen(2000).

In Figure2 the results from Case B are presented. We have used the same format and line styles as was used in
Figure1. There are several features to note from this experiment.

The EnKF solution now sometimes shows a positive or negative trend during the integration between the mea-
surements. This is caused by the assimilation updates of the model noise which introduces a “bias” in the
stochastic forcing. An explanation for this can be found by examining Figure3 which plots the EnKF solution
as the dashed line, the EnKF estimate for the model noise as the thick solid line, and the standard deviation of
the model noise is plotted as the dotted lines. It is clearly seen that the model noise is being updated at the as-
similation steps, e.g., the second measurement indicates that the solution is around−1. This leads to an update
of the model ensemble toward the measurement as well as an introduction of a negative bias in the system noise.
This is the negative bias which previously should have been used in the model to achieve a better prediction of
this particular measurement. In the continued integration this bias starts working until it is corrected to become
a positive bias at the next assimilation step. Note that during the integration between the measurements the bias
slowly relaxes back toward zero as was discussed in Section4.2.2.

The EnKS solution in Case B is smoother than in Case A and there are no longer discontinuous time derivatives
at the measurement locations. Further, the standard deviation for the EnKS is smoother and indicates that the
impact of the measurements are carried further backward in time.

The estimated EnKS system noise is presented as the thick solid line in Figure4 and also here the time deriva-
tives are continuous at the measurement locations. In fact, this estimated model noise is the forcing needed
to reproduce the EnKS solution when a single model is integrated forward in time starting from the initial
condition estimated by the EnKS. I.e., the solution of

ψk = ψk−1 +
√

∆tσρq̂k

ψ0 = ψ̂0

(123)

with q̂k andψ̂0 being the EnKS estimated model noise and initial condition respectively, will exactly reproduce
the EnKS estimate.

This is illustrated by the two similar curves in Figure4, i.e., the dashed curve which is the EnKS estimate, and
the dash-dot-dot curve which is the solution of the model forced by the estimated EnKS model noise (note that
the curves are nearly identical and a number 0.1 was subtracted to make it easier to distinguish the curves).
Obviously, the estimated model noise is the same as is computed and used in the forward Euler Lagrange
equation in the representer method (Bennett, 1992, 2002). This points to the similarity between the EnKS and
the representer method, which for linear models will give identical results when the ensemble size becomes
infinite.

G Bias and parameter estimation

The estimation of poorly known model parameters or biases in dynamical models has been discussed by, e.g.,
Evensen et al.(1998) and the references cited therein. The following examples will illustrate how the EnKF
and EnKS may be used for parameter and bias estimation.

Note first, that the distinction between model bias and time correlated model errors is not clear. As an example
one can envisage an ocean model which overestimates a variable during summer and underestimates it during
winter. This could happen if a constant is used to represent a process which changes slowly on the seasonal
time scale. In a multiyear simulation, the poor representation of this process should be interpreted as a time
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correlated model error. However, if the model is used only for short simulations one could also consider this
error to be a model bias since it appears to be constant on short time scales.

The following model system based on Eq. (122) will now be examined in two examples to illustrate the impact
of a model bias,  qk

βk
ψk

=

 αqk−1
βk−1

ψk−1 +(η +βk)∆t +
√

∆tσρqk


+

 √
1−α2wk−1

0
0

 .

(124)

In the dynamical model we have now included a “trend term”,η , which states that the model solution as
predicted by the deterministic model should have the slopeη . In the examples belowη = 1.0 while the
measurements are simulated under the assumption thatη = 0.0. We have also included an unknown bias
parameterβk which will be estimated to correct for the model bias introduced by the trend term. An additional
equation is introduced for the biasβk stating that it should be stationary in time.

Two examples will be discussed next. In both of them we set the following parameters in addition to the ones
used in Cases A and B:

1. the trend termη = 1.0, i.e., the model always predicts a slope equal to one;

2. the initial condition isψ0∈N (2.0,1.0) (2.0 is chosen instead 0.0 to make it easier to interpret the plots);

3. the measurements are sampled fromN (2.0,0.5);

4. the model error has a time correlation given byα = 0.99 indicating strong correlation in time with
approximately 10 days decorrelation time;

5. the time interval is from 0 to 50 time units, with the same∆t as before;

6. the total number of measurements is 25 which gives the same measurement density in time as before.

In Case C we will not attempt to estimate any bias term and the initial statistics forβ is N (0.0,0.0), i.e., zero
mean and variance. The purpose is to examine how a time correlated model error can correct for the model bias.
The results from Case C are shown in Figure5 for the EnKF (upper plot) and EnKS (lower plot) respectively. In
the EnKF case it is seen how the model trend term withη = 1.0 introduces a positive drift during the ensemble
integration resulting in an overestimate at measurement times. The estimated model error has a negative trend
and varies around minus one, thus it partly compensates for the positive model bias. However, the nature of
the stocastic forcing is to relax back towards zero between the measurement updates and it will not converge
towards a fixed value. For the EnKS the situation is similar. The estimate smooths the measurements very well,
and the estimated model error is varying around−1 to compensate for the positive trend term in the model.
Thus, the use of time correlated model errors may compensate for possible model biases.

In Case D we set the statistics forβ to beN (0.0,2.0), i.e., our first guess of the model bias is zero, but we
assume that the error in this guess has variance equal to 2.0. The results from Case D are given in Figure6 for
the EnKF (upper plot) and EnKS (lower plot) respectively.

In the EnKF case, the estimated model bias term converges toward a valueβk =−0.845. Thus, it accounts for,
and corrects, 84.5% of the model bias introduced by the trend termη . The estimate will always be located
somewhere between the first guess,β0 = 0.0, and the bias which is−1.0. A better fit to−1 can be obtained
by using a larger variance on the first guess ofβ or by assimilating additional measurements. The model error
term now varies around 0.0 possibly with a small negative trend which accounts for the uncorrected 15.5% of
the bias.
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In the EnKS case, the estimated bias is a constant through out the time interval. This is obvious since there is
no dynamical evolution ofβk, thusβk is constructed from

βk = β0

25

∏
i=1

X5(i),∀k. (125)

The value forβ is also equal to the final value obtained by the EnKF. Thus, there is no improvement obtained
in the estimate forβ by using the EnKS (see Figure7). Figure7 also illustrates the convergence over time of
the bias estimates and their error bars. Also in the EnKS the model error is varying around zero but with a weak
negative trend. Thus, it is possible to use the EnKF and EnKS for parameter and bias estimation in dynamical
models.
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Figure 1: Case A: Results usingα = 0.0. The thick solid and dashed curves are respectively the EnKF
and EnKS estimates, while the thin dotted and dash-dot curves represent respectively the ensemble standard
deviations around the EnKF and the EnKS estimates. The circles denote measurements.
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Figure 2: Case B: Results usingα = 0.95. The thick solid and dashed curves are respectively the EnKF
and EnKS estimates, while the thin dotted and dash-dot curves represent respectively the ensemble standard
deviations around the EnKF and the EnKS estimates. The circles denote measurements.
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Figure 3: Case B: The thick solid line is the EnKF estimate of the model noise. The dotted lines show the
standard deviation of the model noise ensemble around the EnKF estimate of the model noise. The dashed
line is the EnKF estimate as shown in Figure2.
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Figure 4: Case B: The thick solid line is the EnKS estimate of the model noise. The dotted lines show the
standard deviation of the model noise ensemble around the EnKS estimate of the model noise. The dashed line
is the EnKS estimate as shown in Figure2. The dash-dot-dot line is the EnKS estimate computed from the
forward model (123) but with a number 0.1 subtracted from the result to make it possible to distinguish the two
curves.
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Figure 5: Case C: The upper plot shows the EnKF estimate as the thick solid line and the estimated model error
as the dashed line. The lower plot shows the EnKS estimate as the thick solid line while the dotted lines indicate
the standard deviation of the estimate. The estimated model error is plotted as the dashed line.
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Figure 6: Case D: Same as Figure5 but with the additional dash-dot line showing the estimated bias for the EnKF
and the EnKS.
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Figure 7: Case D: The time evolution of the bias estimates from the EnKF (solid line) and the EnKS (dashed line),
with the error standard deviations for the EnKF (dotted line) and the EnKS (dash-dot line).
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