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1. Introduction 
The specification of the background error covariance has long been thought to be extremely important for 
determining the quality of analyses and resulting forecasts. While more complete and appropriate than many 
of the background error covariances used in OI systems, the current operational background error 
covariances still are fairly simple and inappropriate in many situations. For example, many current 3D and 
4D implementations use spectrally defined homogeneous and isotropic background error covariances. For 
the analysis of hurricanes, frontal structures, precipitation, and other rapidly changing structures this 
definition of the background errors is probably inappropriate. NOAA/NWS/NCEP/EMC is attempting to 
improve our definition of the background errors by redefining the our analysis variables in grid space and 
using recursive filters to describe the background errors. 

In spectral space, very reasonable homogeneous isotropic background error covariances can be specified 
using a simple diagonal matrix. When the forecast model is spectral and global, the spectral formulation of 
the analysis variables and background error has advantages with the formulation consistent with the model. 
Also, in spectral space the singularities at the poles are easy to handle. However, the extension of the spectral 
formulation to include inhomogeneous, anisotropic error covariances is not straightforward. 

By defining the analysis variables in grid space and using the recursive filters to define the background error, 
we believe offers several advantages over the spectral definition of these quantities. These advantages 
include easier creation of inhomogeneous anisotropic background errors (still far from trivial), a local 
definition of the errors, easy discrimination between major features such as land-sea, tropics-midlatitudes, 
etc. and the ability to easily apply the same system to both regional and global systems. 

Note that there are two major considerations with the background error covariance. First, one must be able to 
computationally describe the appropriate background error structures. We believe that we can do this using 
recursive filters. Second, one must determine the appropriate background error structures. Several ways of 
defining the background errors have been proposed (e.g., defining them along isentropic surfaces, defining 
them in semi-geostrophic coordinates). However, none of the proposed structures appear to be appropriate in 
all 3-D situations. The definition of the background errors is an ongoing (and will likely continue to be for 
many years) research problem at NOAA/NWS/NCEP/EMC and other organizations. 

2. Recursive Filters 
Recursive filters are the basic building blocks used to create background error covariance structures in the 
grid point analysis system. The general 3-D structures possible using recursive filters are created by 
application of a series of simple 1-D recursive filters. In this paper, simpler and more straightforward 
applications of the recursive filter will be described. More general applications to more complex problems 
and the underlying theory can be found in Purser et al., 2003a and b). We note that the recursive filters are 
closely related to the diffusion operator methods used in Derber and Rosati (1989), Weaver and Courtier 
(2001) and presented in a paper in this volume by Anthony Weaver. 
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The general 1-D form of the recursive filter has two steps. First the advancing step: 
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where p is the input and q is the output of the advancing step and n is the order of the recursive filter. 
Followed by the backing step: 
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where s is the final output from the recursive filter. Note that 
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and that the recursive filter is self-adjoint. 

For a first order (n=1) recursive filter the equations simplify to: 
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From these equations, it can be seen that a single impulse in the input will quickly be propagated to the right 
(i increasing) by the advancing step and the propagated to the left (i decreasing) by the backing step. A single 
application of the recursive filter produces a quasi-Gaussian (see Fig. 1) response. As can be seen from Fig. 
1, higher order filters can produce results closer to Gaussian as can repeated applications of lower order 
filters (with appropriate coefficients). 

 
Figure 1. Comparison of one-dimensional applications of recursive filters approximating a Gaussian 
(solid). Long dashed curves show filter approximations: (a) order n=1, (b) n=2, and (c) n=4. From 
Purser et al. 2003a. 

To create 2D isotropic fields, the recursive filter is applied first along one direction (e.g., along the x axis) 
and then in the other (e.g., along the y axis). Results for the creation of 2D isotropic fields are given in Fig. 2. 
Note that the higher order recursive filters (e.g., n=4) give a much better approximation to a Gaussian than 
lower order filters (e.g., n=1). Also note that multiple applications of the low order recursive filters (n=1x4 - 
four applications of a first order recursive filter) also greatly improves the approximation to a Gaussian. 
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Of course for many applications, the derivatives of the fields are very important. For that reason, it is 
important to ensure that the recursive filter not only approximates the Gaussian reasonably well, but also the 
derivatives are well approximated. In Fig. 3, the negative of the Laplacian of the fields after the application 
of a 2-D recursive filter approximating the Gaussian is shown. It is clear that the second order (n=2) 
recursive filter is not sufficient. However, 4th

 order and higher recursive filters reasonably approximate the 
Gaussian. Based on this result and others, we believe that one should use at least a 4th

 order recursive filter. 

 
Figure 2: Sequential application of quasi-Gaussian recursive filters of order n in two dimensions (a) n = 
1, (b) n = 2, (c) n = 4 and (d) four applications of filters with n = 1 with scale parameters adjusted to 
make the result comparable with the other single-pass filters. From Purser et al. (2003a). 
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Figure 3: Negative Laplacian applied to quasi-Gaussian recursive filters with (a) n =2, (b) n = 4, (c) n 
=6, and (d) corresponding contours for the exact Gaussian. Contours are at multiples of odd numbers 
with negative contours shown as dotted curves. From Purser et al. (2003a). 

Of course not every background error structure is Gaussian. Non-Gaussian isotropic structures can be 
constructed using by adding Gaussians (and Laplacians of Gaussians )of different structures. By doing this 
one can create fat-tailed error covariance which give greater weight to smaller scales than Gaussians. The 
fat-tailed nature of the covariances can be especially important in the transition regions between high density 
data and lower density data. By using fat-tailed covariances, it is less likely that strong gradients will be 
extrapolated long distances into the lower density data region. 

The creation of inhomogeneous anisotropic covariances on the globe is a bit more complicated. For general 
covariances it is necessary to apply the 1D recursive filters not along the x, y or z axis but along directions 
determined by the structure of the covariances. This can be accomplished by use of the triad (2D) and hexad 
(3D) algorithms as discussed in Purser et al. (2003b). In these algorithms, the coefficients for the 1D 
recursive filters are determined by the local aspect tensors defined at each grid point. Some problems have 
been noted in the past in cases where the orientation of the covariances shifts by 90 degrees over short 
distances. This problem has been solved by defining a bridging function between the two orientations. An 
example of before and after is shown in Fig. 4. 
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Figure 4: Correlation functions when strong (900)transition in orientation over short distance. Left 
without bridging function. Right with bridging function. 

The application of the recursive filters on the globe is not straightforward at the pole. There are several 
potential practical solutions to this problem. We have chosen to initially define three regular grids (tropical-
midlatitude and two polar stereographic grids). The fields are interpolated to these three grids, the recursive 
filters are then applied on each grid and the grids recombined. Note that the interpolation and recombination 
must be done carefully to preserve the self-adjointness of the background error covariance matrix. 

 

Figure 5: x-y section through 3-D moisture analysis with isotropic covariance functions (left) and 
anisotropic covariance functions (right) 
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Figure 6: x-z cross section through 3-D moisture analysis with isotropic covariance functions (left) and 
anisotropic covariance functions (right). 

By use of the recursive filters, general situation dependent background error covariance structures can be 
defined. For example, a moisture covariance matrix can be defined which is stretched along constant values 
of relative humidity. The resulting covariances for both the isotropic and anisotropic cases are shown in Fig. 
5 for a horizontal section and in Fig. 6 for a vertical section. Note that the structures revert to isotropic in the 
regions of weak gradients in the relative humidity and that across strong gradients the correlation lengths are 
greatly reduced. 

3. NCEP’s initial global grid point version 
The current pre-implementation version of the NCEP’s global analysis system has been transformed to 
define the background term in grid space and to use recursive filters to define the background error 
covariances. We have attempted to get keep the versions as close as possible to each other, with the 
differences limited to the background error calculations, the modified error statistics, changes to the balance 
equation, a different minimization algorithm and the removal of the divergence tendency equation constraint 
(currently not used operationally). The version described below should not be interpreted as our final 
version, but rather a starting point in the development of our first operational grid point version. An earlier, 
but similar version of this code is described in Wu et al. (2002). 

The background term initially assumes the form: 

/ 2 1 2 3 1/ 2( )T
V H H H VB B B B B B= + +  

where 1/ 2
VB  includes the vertical component of the recursive filter and the balance relationships and 

1 2 3
H H HB B + B+  represents three horizontal applications of the recursive filters. This form assumes the 

horizontal and vertical covariances are separable. Note that the vertical component 1/ 2
VB  can be incorporated 

into the definition of the analysis variables as is currently done for the complete background error covariance 
in the operational NCEP and ECMWF systems (e.g., Derber and Bouttier, 1999). 
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In the initial experiments we are attempting to produce a system which reasonably approximates the current 
spectral system. For this reason, we have produced horizontal error covariances which are homogeneous and 
isotropic in physical space. Note that since the system is solved on the model’s Gaussian grid, the horizontal 
error covariances are not homogeneous in grid space and it was necessary to include the capability to create 
inhomogeneous covariances in the system. It is more difficult to duplicate the structures in the spectral 
version for the vertical terms because of the interaction of the balance equation and the vertical structures. 
Therefore for the vertical term, the vertical covariance terms (as are the balance equation terms) are defined 
as a smoothly varying function of latitude. The specific statistics used to define the vertical terms and 1

HB  

are done using the NMC method. The lengths scales used in 2
HB  and 3

HB  are 1/2 and 1/4 those in 1
HB , 

respectively. This results in a fat-tail distribution for the covariances in the horizontal. 

The balance equation used in the grid point version is fairly simple, but appears to be reasonably effective. 
The regression matrices are a function of latitude and are of the form: 
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where A, C and D are empirically defined (using the NMC method) matrices. The global mean explained 
variances in the temperature and velocity potential field are shown in Fig. 7. For the surface pressure, 86% of 
the variance is explained by the balance equation. A significant percentage of the variance is explained by 
the balance equation throughout the atmosphere except near the model top. For the velocity potential, the 
balance equation only becomes important near the surface. 

 
Figure 7: Global mean explained variance from balance equation for temperature (open circles) and 
velocity potential (filled circles). From Wu et al. (2002). 
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Since it is difficult to factor the 1 2 3
H H HB B B+ +  matrix into square-root form, it is necessary to change the 

minimization algorithm to a form which is reasonably well conditioned and only requires multiplication by 
the B matrix. We have chosen to use the preconditioned conjugate gradient routine described in Derber and 
Rosati (1989). This minimization routine in combination with the grid point analysis produces convergence 
characteristics similar to the spectral analysis system. 

The spectral and grid point versions of the analysis were compared initially by examining single point 
observations. Figs. 8-10 show various comparisons between the two analysis systems (run at T62) for a 
single temperature observation at 1000hPa at 45°N and 180°E. Note the similarity in the scale of the 
temperature increments and the similarity of the structure of the wind increments. This indicates that the 
horizontal component of the background errors and the balance equation are similar between the two 
systems. In the vertical, there are a few more differences. For the grid point version there is virtually no 
response above 600hPa and the response is more concentrated near the surface. Also, note the waviness 
away from the observation location in the horizontal plots from the grid point version This waviness is 
probably from the conversion back to spectral space at the end of the inner loop of the minimization and 
probably would be reduced at higher horizontal resolution. 

 
Figure 8: T62L28 analysis produced from a single 1000hPa temperature observaion. Difference between 
background and analysis for temperature field (left - spectral analysis, right - grid point analysis). 

 
Figure 9: Same as Fig. 8 except u component of the wind at 1000hPa. 
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Figure 10: Same as Fig. 8 except west to east vertical cross section of temperature field. 

Full resolution (T254L64) analyses have been run using the complete set of data being used in our pre-
operational testing. This is similar to our current operational data set except with the inclusion of GOES-12 
sounder radiances. The analysis increments produced by the spectral and grid point versions have 
similarities, but still have significant differences. We believe that most of the differences result from the 
different vertical covariances used in the grid-point system (which may be a good thing). The grid point 
version produces slightly better fits to the input observations (given exactly the same initial penalty). This 
difference probably results from either small difference in the variances or the different vertical correlation 
structures. 

4. Final comments 
NCEP is exploring a version of the global analysis system which uses a grid point form of the background 
error term. This work will be done in collaboration with the GMAO. Recursive filters are being used to allow 
local definition of the background error covariances. The initial test (some performed with bugs in the code) 
showed promising results especially in the tropics. Two important upgrades are currently underway prior to 
beginning tests to replace the spectral version. First, the code is being modified to improve the efficiency of 
the parallel processing. With the new grid point version some of the structuring of the data can be done in a 
much more efficient and flexible manner. These changes are expected to significantly improve the efficiency 
of the analysis system and the grid point version is expected to complete at least a quickly as the spectral 
version. Second, the code is being modified to work both globally and for our new regional system. This is 
intended to unify our global and regional analysis projects and allow improvements to be directly usable in 
both systems. 

Eventually the goal is to enable the use of situation dependent background error covariances. The major 
difficulty with using the situation dependent background errors is determining how to define the structures. 
Several different possibilities exist including using the background state or using the ensembles. A program 
to estimate the appropriate error statistics based on the innovations (not the NMC method) is underway. 

At NCEP, we have chosen to attempt to do this through a grid point version of the analysis system and by 
using recursive filters to define the background errors. However, this is not the only possibility. For example, 
Mike Fisher’s presentation in this seminar presented an alternative using wavelets. Regardless of the 
particulars of the scheme, the incorporation of situation dependent background error covariances is thought, 
among experienced data assimilators, to be one of the most promising ways of significantly improving 
analyses and resulting forecasts. 
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