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Abstract

The predictability of weather and climate forecasts is determined by the projection of uncertainties in both initial conditions
and model formulation onto flow-dependent instabilities of the chaotic climate attractor. Since it is essential to be able to
estimate the impact of such uncertainties on forecast accuracy, no weather or climate prediction can be considered complete
without a forecast of the associated flow-dependent predictability. The problem of predicting uncertainty can be posed in terms
of the Liouville equation for the growth of initial uncertainty, or a form of Fokker-Planck equation if model uncertainties are
also taken into account. However, in practice, the problem is approached using ensembles of integrations of comprehensive
weather and climate prediction models, with explicit perturbations to both initial conditions and model formulation; the
resulting ensemble of forecasts can be interpreted as a probabilistic prediction.

Many of the difficulties in forecasting predictability arise from the large dimensionality of the climate system, and special
techniques to generate ensemble perturbations have been developed. Special emphasis is placed on the use of singular-vector
methods to determine the linearly unstable component of the initial probability density function. Methods to sample
uncertainties in model formulation are also described. Practical ensemble prediction systems for prediction on timescales of
days (weather forecasts), seasons (including predictions of El Niño) and decades (including climate change projections) are
described, and examples of resulting probabilistic forecast products shown. Methods to evaluate the skill of these probabilistic
forecasts are outlined. By using ensemble forecasts as input to a simple decision-model analysis, it is shown that probability
forecasts of weather and climate have greater potential economic value than corresponding single deterministic forecasts with
uncertain accuracy.
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1. INTRODUCTION

1.1  Overview

A desirable if not necessary characteristic of any physical model is an ability to make falsifiable predictions. Such

predictions are the life blood of meteorology and climate science. Predictions from vast computer models of the

atmosphere, integrating the Navier-Stokes equations for a three dimensional multi-constituent multi-phase rotating

fluid, and coupled to a representation of the land surface, are continually put to the test through the daily weather

forecast (e.g. Bengtsson, 1999; see also http://www.ecmwf.int). On seasonal to interannual timescales, these same

models, with 2-way coupling to similar mathematical representations of the global oceans, predict the development

of phenomena such as El Niño, with consequences for seasonal rainfall and temperature patterns around much of

the globe (e.g. Stockdale et al., 1998; see also http://www.iges.org/ellfb). Coupled ocean-atmosphere models are

also widely used to make predictions of possible changes in climate over the next century as a result of anthropo-

genic influence on the composition of the atmosphere (e.g. IPCC, 1996).

However, there is little sense in making predictions without having some prior sense of the accuracy of those pre-

dictions (Tennekes, 1991); quantification of error is a basic tenet in experimental physics. Earth's climate is a pro-

totypical chaotic system (Lorenz, 1993), implying that its evolution is sensitive to the specification of the initial

state; however, an appreciation of the importance of quantifying the role that initial error plays in limiting the ac-

curacy of weather predictions pre-dates the development of chaotic models (Thompson, 1957).

How would one go about making an a priori assessment of the accuracy of a weather forecast, or a prediction of El

Niño? Of course, a 'climatological-mean' error can be derived by verifying a past set of predictions, and averaging

the resulting forecast errors. However, such a crude estimate may not be particularly useful. Chaotic dynamics im-

plies not only that a forecast is sensitive to initial error, but also that the rate of growth of initial error is itself a

function of the initial state (see Section 2). Weather forecasters have a practical sense of this dependence of error

growth on initial state; certain types of atmospheric flow are known to be rather stable and hence predictable, others

to be unstable and unpredictable. As such, a key to predicting forecast uncertainty lies in the estimation of the ef-

fects of local instabilities in regions of phase space through which a forecast trajectory is likely to pass.

In addition to error in initial conditions, the accuracy of weather and climate forecasts are influenced by our ability

to represent computationally the full equations of that govern climate. For example, there will be inevitable errors

in representing circulations on scales comparable with or smaller than a model's truncation scale. These errors can
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propagate upscale and influence weather and climate phenomena with characteristic size much larger than the trun-

cation scale. Uncertainty in model formulation is certainly one of the most important factors which undermine con-

fidence in climate forecasts - representation of cloud systems (in models which cannot resolve individual clouds)

being a particular manifestation of this problem. As with initial error, uncertainties in model formulation impact

on climatic circulation patterns through the projection of these uncertainties onto flow-dependent dynamical insta-

bilities of the climate system.

In the body of this paper, results are shown from a number of numerical models of the climate system. It is useful

to consider three types of model, distinguished by their degree of complexity. The first could be thought of as 'toy'

models; they are used primarily to illustrate particular paradigms. Examples are the Lorenz (1963) model and the

delayed oscillator model (see Sections 2 and 7). The second type of model could be described as 'intermediate'; it

certainly has prognostic value, but is based on simplified equations of motion where terms which are second order

in some small parameter are ignored. For many examples discussed in this paper, the so-called Rossby number

(e.g. Gill, 1982) is such a parameter. Here, , denote a typical horizontal velocity and length

scale associated with a particular climatic or weather phenomenon, is the Coriolis parameter, where

is the angular speed of the Earth and denotes latitude. Examples of intermediate models, are the atmospheric

quasigeostrophic model (e.g. Marshall and Molteni, 1993: see Sections 3 and 7), and a simplified coupled ocean-

atmosphere model of El Niño (e.g. Zebiak and Cane, 1987: see Sections 5 and 7). Intermediate models are gener-

ally truncated to have O(103) or less degrees of freedom, which makes numerical integration and stability analysis

extremely tractable by modern computing standards.

The final type of model in the hierarchy of complexity are the comprehensive global climate and weather prediction

models; these typically have O(106-107) degrees of freedom. At national (and international) meteorological and

climate centres, quantitative weather and climate predictions are now almost universally based on output from these

types of model. The models are formulated using finite (Galerkin) truncations of fluid-dynamic partial differential

equations where (at most) only the hydrostatic assumption is applied to filter meteorologically-unimportant modes.

A possible (and easily visualised) representation is in terms of grid points in physical space; a typical resolution

would be about 100 km in the horizontal and 1km in the vertical (somewhat finer for weather prediction models,

somewhat coarser for climate prediction models with longer integration times). These equations describe the local

evolution of mass, energy, momentum and composition, with suitable source and sink terms. The most important

atmospheric composition variable is water, represented in each of its different phases. Details of these equations

can be found in many references (e.g. Trenberth, 1992). Such comprehensive models are integrated on supercom-

puters, with (at the time of writing) typical sustained speeds of O(1011) floating point operations per second. In

practice, the difference between the atmosphere component of weather and climate prediction models is not great

- and in some instances there is no difference; however, weather prediction models do not generally have an inter-

active ocean, whilst climate models do. An example of this third type of comprehensive model, discussed below,

is the European Centre for Medium-Range Weather Forecasts (ECMWF) weather and climate prediction model

(Bengtsson, 1999).

In this paper, we consider two types of prediction. Following Lorenz (1975), we refer to initial value problems as

'predictions of the first kind'. By contrast, forecasts which are not dependent on initial conditions, for example pre-

dicting changes in the statistics of climate as a result of some prescribed imposed perturbation, would constitute a

'prediction of the second kind'. A weather forecast is clearly a prediction of the first kind; so is a forecast of El Niño,

referred to as a climate prediction of the first kind. By contrast, estimating the effects on climate of a prescribed

volcanic emission, prescribed variations in Earth's orbit (thought to cause ice ages) or prescribed anthropogenic

changes in atmospheric composition, would constitute a climate prediction of the second kind.

Ro U fL⁄= U L
f 2Ω φsin=

Ω φ
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1.2  Scope

This paper deals with the problem of forecasting uncertainty in weather and climate prediction from its theoretical

basis, through an outline of practical methodologies, to an analysis of validation techniques including estimates of

potential economic value. The author hopes that the mathematical description of these components will be of some

help to readers wishing to gain some introduction to the quantitative methods used in the subject. However, at the

least, the reader will be able to deduce that the topic of weather and climate prediction is quantitative and objective.

(The days are over, of hanging out the seaweed, examining the size of molehills, or studying animal entrails for

portents of coming tempests - that is, unless the computers are down!) On the other hand, readers not interested in

the details of the mathematics should be able to appreciate many of the results given without dwelling on the equa-

tions at any length.

In Section 2, we consider how to forecast uncertainty in a prediction of the first kind, assuming a perfect determin-

istic forecast model. The evolution equation for the probability density function (pdf) of the climate state vector is

the Liouville equation; an example of its solution is given for illustration. However, application to the real climate

system is severely hampered by two fundamental problems. The first is directly associated with the dimensionality

of the climate equations; as mentioned above, current numerical weather prediction models comprise O(107) indi-

vidual scalar variables. The second problem (not unrelated to the first) is that, in practice, the initial pdf is not itself

well known.

To amplify on this last remark, a description of current (variational) meteorological data assimilation schemes is

described in Section 3. These schemes are used to determine initial conditions for weather and climate forecasts,

given a set of atmospheric and oceanic observations whose density is heterogeneous in both space and time. Such

data assimilation schemes are based on minimising a cost function which combines these observations with a back-

ground estimate of the initial state provided by a short-range model forecast from an earlier set of initial conditions.

In principle, given Gaussian error statistics, the Hessian or second derivative of the cost function determines the

initial pdf. In practice, there are significant shortcomings in our ability to estimate this pdf.

The number of degrees of freedom in comprehensive climate and weather prediction models is not determined by

any scientific constraint (there is no obvious 'gap' in the energy spectrum of atmospheric motions), but rather by

the degree of complexity than can be accommodated using current computer technology. As such, there are inevi-

tably processes occurring in the atmosphere and oceans which are partially resolved or unresolved and must be rep-

resented by some parametrised closure approximation. Examples are associated with cloud formation and

dissipation, and momentum transfer to the solid earth by topography. However, there is a fundamental indetermi-

nacy in the formulation of these parametrisations since there is no meaningful scale separation between resolved

and unresolved scales in the climate system. Section 4 describes two recent attempts to represent the pdf associated

with this uncertainty in the computational representation of the equations of motion of climate: the multi-model

ensemble, and stochastic parametrisation.

A theoretical framework for describing error growth is developed in Section 5. Two common measures of pertur-

bation amplification used in different branches of physics and mathematics are normal mode growth and Lyapunov

exponent growth. Neither is well suited to describing error growth in the climate system. Firstly, because of the

advective nonlinearity in the governing equations of motion, the linearised dynamical operators are not normal; as

such, over finite times, perturbation growth need not be bounded by the fastest eigenmode growth. Also, dominant

Lyapunov or eigenmode growth in a comprehensive multi-scale model may refer to fast instabilities (such as con-

vective instabilities) whose spatial scales are much smaller than those describing weather or climate phenomena.

To address these problems, we discuss in Section 5 a general formulation of perturbation growth in the linearised

approximation, in terms of a singular value decomposition of the linearised dynamics (building on the develop-

ments in Section 3). Examples of singular vectors for weather and climate prediction problems are shown, and their

fundamental non-modality is discussed. Because of the nonlinearity of the underlying dynamics, the appropriate
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singular values vary on the attractor; this variation describes why forecast error can fluctuate for fixed initial error.

The variation of singular values on the attractor is also relevant for understanding the amplification of model error

by flow dependent instabilities. The relationship between singular values, eigevalues and Lyapunov exponents is

discussed.

Section 6 discusses some applications of the singular vector analysis. In one application ('chaotic control of the

observing system') singular vectors are used to determine locations where additional 'targeted' observations might

significantly improve a forecast's initial state.

Section 7 describes the basis behind attempts to predict uncertainty in daily, seasonal and climate change forecasts

using ensembles of atmosphere or coupled ocean-atmosphere model integrations. In practice such ensembles are

interpreted in probabilistic form. If the ensemble of forecast phase-space trajectories evolve though a relatively sta-

ble part of the climate attractor, then resulting probability forecasts will be relatively sharp. Conversely, if the en-

semble passes through a particularly unstable part of the attractor, then the corresponding forecast probability may

be little different from a long-term climatological frequency.

The question of how to validate probability forecasts is discussed in Section 8. Two particular techniques are de-

scribed. The first is based on a root mean square distance between the probability forecast of a dichotomous event

and the corresponding verification. This measure allows one to formulate the notion of reliability of probability

forecasts. The second quantity measures the so-called hit and false alarm rate of the forecast of a dichotomous

event, assuming that the event is forecast if the predicted probability exceeds some prescribed probability thresh-

old.

A fundamental question when assessing probability forecasts is whether a useful level of skill has been attained.

Obviously, different users have different criteria for judging usefulness. For some, probability forecasts might be

deemed useless unless they are sharp and quasi-deterministic. For others, who might be looking to accrue benefit

over a long time, forecast probabilities which are only marginally different from climatological frequencies, may

be useful. To assess this issue more quantitatively, a simple cost/loss decision model is applied in Section 9 based

on the hit and false alarm rates discussed in Section 8. It is shown, that the (potential) economic value of probability

weather forecasts for a variety of users, is higher than the corresponding value from single, deterministic forecasts.

Concluding remarks are made in Section 10.

2. THE LIOUVILLE EQUATION

The evolution equations in a climate or weather prediction model are conventionally treated as deterministic. These

(N dimensional) equations, based on spatially-truncated momentum, energy, mass and composition conservation

equations will be written schematically as

(1)

where describes an instantaneous state of the climate system in -dimensional phase space. Eq. (1) is funda-

mentally nonlinear and deterministic in the sense that, for any initial state , the equation determines a unique

forecast state . (As described in Section 3 below, information from meteorological observations are combined

with a prior background state through a process called data analysis and assimilation. In meteorology, the initial

state is often referred to as the initial ‘analysis’ - hence the subscript ‘a’.)

The meteorological and oceanic observing network is sparse over many parts of the world, and the observations

themselves are obviously subject to measurement error. The resulting uncertainty in the initial state can be repre-

sented by the pdf ; given a volume of phase space, then is the probability that the true

Ẋ F X[ ]=

X N
X a

X f

ρ X ta,( ) V ρ X ta,( ) Vd
V∫
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initial state at time lies in . If is bounded by an isopleth of (i.e. co-moving in phase space), then,

from the determinism of Eq. (1), the probability that lies in is time invariant. Hence, (similar to the mass

continuity equation in physical space), the evolution of is given by the Liouville conservation equation (intro-

duced in a meteorological context by Gleeson, 1966, and Epstein, 1969)

(2)

where is given by Eq. (1). In the second term of Eq. (2), there is an implied summation over all the components

of .

Fig. 1 illustrates schematically the evolution of an isopleth of . For simplicity we assume the initial pdf

is isotropic (e.g. by applying a suitable coordinate transformation). In the early part of the forecast, the isopleth

evolves in a way consistent with linearised dynamics; the N-ball at initial time has evolved to an N-ellipsoid at fore-

cast time . For weather scales of 0(103) km, this linear phase lasts for about 1-2 days into the forecast. Beyond

this time, the isopleth starts to deform nonlinearly. The third schematic shows the isopleth at a forecast range in

which errors are growing nonlinearly. Predictability is finally lost when the forecast pdf has evolved ir-

reversibly to the invariant distribution ?inv of the attractor. This is shown schematically in Fig. 1 using the Lorenz

(1963) attractor - a ‘toy-model’ surrogate of the real climate attractor (Palmer, 1993a).

Figure 1: Schematic evolution of an isopleth of the probability density function (pdf) of initial and forecast error

in -dimensional phase space. (a) At initial time, (b) during the linearised stage of evolution. A (singular) vector

pointing along the major axis of the pdf ellipsoid is shown in (b), and its pre-image at initial time is shown in (a).

(c) The evolution of the isopleth during the nonlinear phase is shown in (c); there is still predictability, though the

pdf is no longer Gaussian. (d) Total loss of predictability, occurring when the forecast pdf is indistinguishable

from the attractor's invariant pdf.

As mentioned in the introduction, the growth of the pdf through the forecast range is a function of the initial state.

This can be seen by considering a small perturbation to the initial state . From Eq. (1), the evolution equa-

tion for  is given by

(3)

where the Jacobian is defined as

(4)

X true ta V V ρ
X true V

ρ

∂ρ
∂t
------

∂
∂X
------- Ẋ ρ( ) Lρ≡–=

Ẋ
X

ρ X ta,( )

t1

ρ X ta,( )

N

δx X a

δx

δ ẋ Jδx=

J dF dX⁄=
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Since is at least quadratic in , then is at least linearly dependent on . This dependency is illustrated

in Fig. 2 showing the growth of an initial isopleth of an idealised pdf at three different positions on the Lorenz

(1963) attractor. In the first position, there is little growth, and hence large local predictability. In the second posi-

tion there is some growth as the pdf evolves towards the lower middle half of the attractor. In the third position,

initial growth is large, and the resulting predictability is correspondingly small.

Figure 2: Phase-space evolution of an ensemble of initial points on the Lorenz (1963) attractor, for three different

sets of initial conditions. Predictability is a function of initial state.

The nonlinear phase of pdf evolution can be much longer than the linear phase. For example, Smith et al. (1999)

have studied the evolution of an initial pdf on the Lorenz (1963) attractor using a Monte Carlo process. The initial

pdf was obtained by adding some notional prescribed 'observation' error to points on the attractor. The initial pdf

is sharp, consistent with a small 'observation' error, and initially spreads out in a way consistent with linear theory.

The pdf resharpens as it enters the region of phase space where small perturbations decay with time (cf Fig. 2 ),

and then bifurcates, leading to a highly non-normal distribution. The existence of such bimodal behaviour indicates

that it may not be sufficient to describe forecast uncertainty in terms of a simple ‘error bar'.

F X[ ] X J X
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As shown in Ehrendorfer (1994a), the Liouville equation can be formally solved to give the value of at a given

point  in phase space at forecast time . Specifically

(5)

where ' ' denotes the trace operation. The point in this equation corresponds to that initial point, which, under

the action of Eq. (1) evolves to the given point  at time .

Figure  3: An analytical solution to the Liouville equation for an initial Gaussian pdf (shown peaked on the right-

hand side of the figure) evolved using the Riccati equation (see text). From Ehrendorfer (1994a).

Using the identity , then Eq. (5), can be written as

(6)

where

(7)

is the so-called forward tangent propagator, mapping a perturbation , along the nonlinear trajectory from

to  to

(8)

A simple example which illustrates this solution to the Liouville equation is given in Fig. 3 , for a 1 dimensional

Riccati equation (Ehrendorfer, 1994a)

(9)

ρ
X t

ρ X t,( ) ρ X ′ ta,( ) tr J t′( )dt′[ ]
ta

t

∫
 
 
 

exp⁄=

tr
X t

det Aexp tr exp A=

ρ X t,( ) ρ X ′ ta,( ) detM t ta,( )⁄=

M t ta,( ) J t′( ) t′d
ta

t

∫exp=

δx ta( ) X
X′

δx t( ) M t ta,( )δx ta( )–

Ẋ aX 2– bX c+ +
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where , based on an initial Gaussian pdf. The pdf evolves away from the unstable equilibrium point at

and therefore reflects the dynamical properties of Eq. (9). Within the integration period, this pdf has

evolved to the nonlinear phase.

The forward tangent propagator plays an important role in meteorological data assimilation systems; see Section 3

below. However, even though the forward tangent propagator may exist as a piece of computer code, this does not

mean that the Liouville equation can be readily solved for the weather prediction problem. Firstly, the determinant

of the forward tangent propagator is determined by the product of all its singular values (see Section 5). For a com-

prehensive weather prediction model, a determination of the full set of O(107) singular values is currently impos-

sible. Secondly, the inversion of Eq. (1) to find an initial state , given a forecast state , is itself problematic.

Even on timescales of a day or so, decaying phase-space directions (as determined by the existence of small sin-

gular values of the propagator, see Section 5) will lead to the inversion being poorly conditioned (Reynolds and

Palmer, 1998). Thirdly, a particular type of weather at a particular location is not related 1-1 with a state of the

climate system. For example, to estimate the probability of it raining in London two days from now, we would have

to apply Eq. (6) and the inversion to find , to each state on the climate attractor, for which it is raining in London.

An alternative to using the solution form (6) is to integrate the partial differential equation (2) by randomly sam-

pling the initial pdf, and integrating each sampled point using (1); the Monte-Carlo solution. However, the problem

of dimensionality continues to be a significant issue. If phasespace is dimensional, then, even in the linear phase,

O(N2) integrations will be needed to determine the forecast error covariance matrix. In the nonlinear phase, many

more integrations are needed to determine the pdf, as it begins to wrap itself around the attractor. Ehrendorfer

(1994b) has shown that even for a 3-dimensional dynamical system, a Monte-Carlo sampling of O(102) points can

be insufficient to determine the pdf within the nonlinear range.

Yet another method of solution of the Liouville equation is possible, writing Eq. (2) in terms of an infinite hierarchy

of equations for the moments of , and applying some closure to this set of moments (Epstein, 1969). This method

is certainly useful for evolving the pdf within the linearised phase, and indeed forms the basis of the so-called Ka-

lman filter approaches to data assimilation (see Section 3 below). Ehrendorfer (1994b) has shown that in the non-

linear phase, substantial errors in estimating the first and second moments of can arise from neglecting third and

higher order moments. A more sophisticated approach to closure is to use arguments from turbulence theory (see

Section 5) to seek scaling relations between moments (Frisch, 1995). Nicolis and Nicolis (1998) have studied an

approach in which high order moments are expressed as time-independent functionals of low-order moments,

based on a study of dynamical systems which showed that subsets of moments vary on a timescale given by the

dominant eigenvalues of the Liouville operator , defined in Eq. (2). In general, however, this method of moment

decomposition has not yet been studied in the context of realistic weather and climate systems.

In conclusion, whilst a formal analytic solution can be found to the problem of predicting the forecast pdf, there

are practical problems associated with the dimension of the underlying dynamical system. However, the issue of

dimensionality affects the problem in other, more insidious, ways. These are discussed in the next two sections.

3. THE PROBABILITY DENSITY FUNCTION OF INITIAL ERROR

In order to discuss how the pdf of initial error can be estimated in weather and climate prediction, it is necessary

to outline the method by which observations are used to determine the initial conditions for a deterministic weather

or climate forecast.

In meteorology and oceanography, data assimilation is a means of obtaining a forecast initial state which in some

well-defined sense optimally combines the available observations for a particular time with an independent back-

ground state (Daley, 1991). This background state is usually a short-range forecast (e.g. 6 hour) from an estimate

b2 4ac>
X 1–=

X′ X

X

X′

N

ρ

ρ

L
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of the initial state valid at an earlier time, and this carries forward information from observations from earlier times.

A very simple example of the basic notion can be illustrated by considering two different independent estimates,

and , of a scalar . Suppose that the errors associated with these two estimates are random, unbiased and

normally distributed, with standard deviations and , respectively. Then the maximum-likelihood estimate of

 is the state  which minimises the cost function

(10)

The least-squares solution

(11)

is easily found. The error associated with  is normally distributed with variance given by

(12)

The data assimilation technique used in weather prediction (e.g. at ECMWF) is a multi-dimensional generalisation

of this technique (Courtier et al., 1994, 1998). The analysed state of the atmospheric state vector is found by

minimising the cost function

(13)

where is the background state, and are covariance matrices for the pdfs of background error and obser-

vation error respectively, is the so-called observation operator, and denotes the vector of available observa-

tions. For example, if includes a radiance measurement taken by an infrared radiometer onboard a satellite

orbiting the earth then includes an estimate of the infrared radiance that would be emitted by a model atmos-

phere as represented by the state vector . Similarly, if includes a surface pressure measurement taken at some

point on the earth's surface, then includes the surface pressure at given . Since is finite dimensional,

the operator inevitably involves an interpolation to . Similar to Eq. (12), the Hessian of is given by (Fisher

and Courtier, 1995)

(14)

We refer to  as the analysis error covariance matrix.

In the current ECMWF operational data assimilation system, the background error covariance matrix is not de-

pendent on the present state of the atmospheric circulation. This is believed to introduce considerable imprecision

in the estimate of the initial pdf as given by (14). This estimate can be improved; within the linearised regime (cf.

Fig. 1 ), the forecast error covariance matrix F implied by Eqs. (6) and (8) can be written

(15)

so sb s
σo σb

s sa

J s( )
s sb–( )2

2σb
2

--------------------
s so–( )2

2σo
2

--------------------+=

sa sb

σb
2

σb
2 σo

2+
------------------ so sb–[ ]+=

sa

∂2J

∂s2
--------- σb

2– σo
2–+ σa

2–= =

X a

J X( ) 1
2
--- X X b–( )TB 1– X X b–( ) 1

2
--- HX Y–( )TO 1– HX Y–( )+=

X b B O
H Y

Y
HX

X Y
ρ HX p X X

H p J

∇∇J B 1– HTO 1– H A 1–≡+=

A

B

F t( ) M t ta,( ) A ta( )MT ta t,( )=
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where is the tangent propagator along the trajectory between the initial state and the forecast state at

time . Since the time between consecutive analyses (typically 6 hours) is broadly within this linearised regime,

then a flow-dependent estimate of the background error covariance matrix at time can be obtained by propagat-

ing the analysis error covariance matrix from the earlier analysis time , i.e.

(16)

The propagator , and its transpose are essential components of 4-dimensional data assimilation (Courtier

et al., 1994) where observations are assimilated over a time window. Using , a perturbation can be evaluated

at the same time that an observation is taken. Given the dimension of comprehensive weather prediction models,

is not known in matrix form, and is represented in operator form (cf. Eq. (8)). Similarly the transpose is

also represented in operator form  (see Eq. (18) below) and is known as the adjoint (tangent) propagator.

However, Eq. (16) is computationally intractable for numerical weather prediction, requiring O(1014) individual

linearised integrations of for a complete specification of the propagated matrix . Three possible solu-

tions have been proposed. The first is essentially a Monte Carlo solution, whereby a random sampling of is

evolved using (Evensen, 1994; Andersson and Fisher, 1999). The second proposal involves solving the propa-

gation Eq. (16) with an intermediate complexity model (Ehrendorfer, 1999). The final proposal (the so-called re-

duced-rank Kalman filter; Fisher, 1998) is to propagate explicitly only in the appropriate unstable subspace

defined by the dominant flow-dependent local instabilities of the attractor. Broadly, speaking, the proposal is to

have the best possible knowledge of the initial state in that part of phase space from which forecast errors are most

likely to grow. At present these three different proposals are being evaluated.

Since the notion of local flow-dependent instability features strongly in later sections of this paper, it is worth out-

lining some more detail on how these instabilities can be estimated. First consider a Euclidean inner product <..,..>

so that for any perturbations , ,

(17)

In terms of <..,..> the adjoint tangent propagator  is defined by

(18)

where

(19)

for an arbitrary pair of perturbations , .

The analysis error covariance matrix  defines a secondary inner product

(20)

Here is the covariant form of an analysis error covariance metric, (Palmer et al., 1998). Hence the per-

turbation , which has maximum Euclidean amplitude at and unit norm at initial time is given by

(21)
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This is equivalent to finding the dominant eigenvector of the generalised eigenvector equation

(22)

Formally, by taking the square root of , Eq. (22) can be transformed to a singular vector equation which can be

solved using a Lanczos algorithm (Strang, 1986). More generally, Eq. (22) is solved using a generalised Davidson

algorithm (Barkmeijer et al., 1998). We refer to the solutions in Eq. (22) as -singular vectors of .

The set of dominant singular vectors of (with largest singular values ) defines an unstable sub-

space in the tangent space at . It comprises the set of most rapidly-growing directions defined locally on phase

space, relative to a basic-state trajectory between and , subject to the constraint that the initial perturbations

are normalised with respect to the initial pdf. At forecast time , these singular vectors have evolved into the major

axes of the forecast error ellipsoid, or, equivalently, into the eigenvectors of the forecast error covariance matrix.

The first two parts of Fig. 1 show schematically a dominant singular vector at initial and forecast time. Fur-

ther discussion of these singular vectors, and their relation to more familiar forms of perturbation growth (such as

normal mode and Lyapunov exponent growth) are discussed in Section 5.

4. REPRESENTING UNCERTAINTY IN MODEL FORMULATION

So far, we have assumed the 'classical' chaotic paradigm, that loss of predictability occurs only because of inevita-

ble uncertainty in initial conditions. However, there are also inevitable uncertainties in our ability to represent com-

putationally the governing equations of climate. These uncertainties can contribute both to random and systematic

error in model performance. In practice, as discussed below, it is not easy to separate the predictability problem

into a component associated with initial error and a component associated with model error.

As mentioned, weather and climate models have a resolution of O(100 km) in the horizontal. This immediately

raises the problem of closure - how to represent the effect of partially resolved or unresolved processes onto the

resolved state vector . The effects of topography and cloud systems are examples. In weather and climate pre-

diction models, Eq. (1) is generally expressed as

(23)

where represents terms in the equations of motion associated directly with resolved scales, and

stands for some parametrised representation of unresolved processes. Conceptually, a parametrisation is usually

based on the notion of a statistical ensemble of sub-grid scale processes within a grid box, in some secular equilib-

rium with the grid-box mean flow. This allows Eq. (23) to be written

(24)

where and represent the projection of and into the subspace associated with a single grid box in

physical space. Borrowing ideas from statistical mechanics, a familiar parametrisation might involve the diffusive

approximation, where would be a diffusion coefficient depending on the Richardson number at . However,

whilst diffusive closures do in fact play a role for example in representing the effects of the turbulent planetary

boundary in the lower kilometre of the atmosphere, they are certainly insufficient, and, in some circumstances, may

be fundamentally flawed. To see this, it is enough to concentrate on one relevant process - atmospheric convection.

On average, the atmosphere is stable to convective overturning. However, on local space and time scales, especially

in tropical regions where incoming solar radiation strongly heats the surface of the earth, conditions exist for con-
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vective instability (Emanuel, 1994). Often, such instability is released through overturning circulations whose hor-

izontal scales are small compared with the smallest resolved scale of a global weather or climate model. One

manifestation of such small-scale convective instability is the cumulus cloud beloved by glider pilots. These clouds

can develop into precipitating cumulonimbus clouds; typically a few kilometres in horizontal extent, but still much

smaller than the smallest resolved scale in a weather or climate model. However, at the other end of the spectrum

of convectively-driven circulations is the organised mesoscale convective complex (Moncrieff, 1992), feared by

aviators in general. Such complexes have horizontal scales of perhaps 50 km. They can be simulated explicitly in

regional models with O(1 km) resolution, but such resolution is not practicable for global weather and climate mod-

els.

The form of parametrisation given in Eq. (24) is appropriate for describing cumulus and simple cumulonimbus. For

example, in a contemporary convective parametrisation (e.g. Betts and Miller, 1986) if the resolved-scale vertical

temperature gradient at is convectively unstable, then over some prescribed timescale (given by ) will op-

erate to relax back to stability. On the other hand, the existence of organised mesoscale convective complexes

poses a problem for parametrisations of this form. In particular, the basic assumption of a quasi-equilibrium of sub-

gridscale convectively-forced motions (with the implication that the kinetic energy released by overturning circu-

lations is dissipated on sub-grid scales, rather than injected into the large scale) cannot be fully justified.

Figure  4: Four 2-day integrations of the ECMWF model from identical starting conditions but different

realisations of the stochastic parametrisation scheme represented by Eq. (25) with parameter settings as given in

Buizza et al. (1999). The field shown is sea-level pressure over parts of Australia and the west Pacific. The

depressions in the pressure field represent potential tropical cyclones.

One means of addressing the erroneous assumption of deterministic locality in Eq. (24) would be to add to Eq. (24)

a stochastic energy source term . Recognising this, Buizza et al. (1999a) have proposed the simple sto-

chastic form

(25)

where is a stochastic variable drawn from a uniform pdf with values between 0.5 and 1.5. A particular realisation

of would be used over more than one model gridpoint and timestep, thus making the overall parametrisation both
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stochastic and nonlocal. Stochastic representation of sub-grid processes is a technique already utilised in turbulent

flow simulations (Mason and Thompson, 1992).

An example of the impact of the random effect of the stochastic parametrization represented by Eq. (25) is given

in Fig. 4 , which shows sea-level pressure over part of Australia and the west Pacific from four 2-day integrations

of the ECMWF model. The integrations have identical starting conditions, but different realisations of the pdf rep-

resented by . The figure shows two tropical cyclones. The intensity of the cyclones can be seen to be very sensi-

tive to the realisation of the stochastic parametrisation. In Fig. 4 (a) the western cyclone is intense; in Fig. 4 (b) the

eastern cyclone is intense; in Fig. 4 (c) they are both intense; in Fig. 4 (d) neither is intense. This rather extreme

example clearly shows the difficulty in predicting tropical cyclone development, and its sensitivity to sub-grid scale

parametrisation.

It is possible that a systematic misrepresentation of small-scale variability (such as convectively organised mesos-

cale systems) can have a systematic effect on larger-scale climatic variability. There is evidence (L. Ferranti, C.

Jakob, personal communication) that the parametrisation of organised convection is fundamental in determining

the strength of the so- called Madden-Julian oscillation - the dominant mode of intraseasonal variability in the trop-

ics (Madden and Julian, 1994), and poorly simulated in many climate models. Furthemore, as suggested by Moore

and Kleeman (1996), the (initial-time) singular vectors of El Niño (see Section 5 below), have a strong projection

onto the Madden-Julian oscillation. Hence, by a series of nonlinear processes, it is possible to infer that the clima-

tology of El Niño may be linked to the climatology of organised mesoscale convection in the tropical Pacific. Quan-

tifying these links between the small scale and large scale is an area currently under investigation at ECMWF.

The purpose of the discussion above is to point out that although current parametrisations have been enormously

successful in representing subgrid processes, there are inevitable uncertainties in the representation of such proc-

esses. In Section 2 we represented the evolution of the initial pdf given the deterministic Eq. (1) in terms of a Li-

ouville equation. In the idealised case where model uncertainties are represented by an additive Gaussian white

noise with zero mean and variance , then Eq. (2) becomes a Fokker–Planck equation (e.g. Hasselmann, 1976;

Moss and McClintock, 1989).

(26)

However, in practice, a realistic state-dependent stochastic forcing (e.g. in Eq. (25)) would be too complex for this

simple representation to be directly relevant.

For ensemble forecasting (discussed in Section 7), there are two other commonly-used techniques for representing

model uncertainty. The first is the multi-model ensemble (Harrison et al., 1999; Palmer et al., 2000). This can be

achieved by incorporating within the ensemble a number of quasi-independent models (e.g. constructed from the

stock of climate models developed by different groups around the world; Gates, 1992). In the second technique,

the values of the parameters used in the deterministic Eq. (23) of one particular model, are perturbed in some

stochastic manner (cf. Houtekamer et al., 1996).

On the other hand, these latter techniques should be seen as conceptually distinct from the type of stochastic phys-

ics scheme described schematically in Eq. (25). In multi-model ensembles, and ensembles with stochastic , the

model perturbations account for the fact that the expected value of the pdf of sub-grid processes is not itself well

known. (Hence, for example, there are many different atmospheric convection parametrisation schemes in use

around the world; the Betts-Miller scheme described above is but one of these. The existence of this ensemble of

convection schemes is an indication that the expectation value of the pdf of the effects of subgrid convection is not

known with complete confidence!) By contrast, the stochastic physics scheme described in Eq. (25) is an attempt

to account for the fact that in circumstances of convective organisation, the pdf of sub-grid processes is not espe-
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cially sharp around the mean. This would argue for the combined use of multi-model ensembles and stochastic

physics parametrisation.

As discussed in Section 3, the initial state for a weather prediction is determined by assimilating observations onto

a background field obtained from a short-range integration from an earlier initial condition. As such, model error

clearly plays a role in the determination of the initial pdf. In general, it is difficult to separate cleanly the role of

model error and observation error, even though information from the observations and the background state are in-

put into separate terms in the cost function (13). For example, as mentioned in Section 3, local observations are

assimilated by comparing with , where is an observation operator which includes an interpolation from the

grid point to the observation point. This interpolation will necessarily be affected by random and systematic errors

in the representation of unresolved or poorly-resolved scales.

5. ERROR GROWTH IN THE LINEAR AND NONLINEAR PHASE

5.1  Singular vectors, eigenvectors and Lyapunov vectors

As discussed in Section 3, the initial phase-space directions which evolve into the major axes of the ellipsoid of

forecast error pdf are determined by the dominant singular vectors of the forward tangent propagator .

Singular vectors of have been studied extensively in weather prediction models using simpler metrics than

(Lacarra and Talagrand, 1988; Molteni and Palmer, 1993; Buizza and Palmer, 1995). One simple choice

is the energy metric . The singular vectors of are the dominant eigenvectors of where '*' now

denotes the adjoint defined with respect to the inner product where is the total en-

ergy of the perturbation . An explicit expression for  is given in Buizza and Palmer (1995).

An example of a singular vector is given in Fig. 5 , calculated using the forward and adjoint tangent propagators

of the ECMWF weather prediction model, optimised over a three-day period, with starting conditions on 9 January

1993. The streamfunction (inverse Laplacian of vorticity) associated with the singular vector is shown at three lev-

els in the atmosphere, at initial and optimisation time. The singular vector has some qualitative resemblance to an

idealised baroclinically unstable eigenmode of the atmosphere (Charney, 1947; Eady, 1949); for example the dis-

turbance amplifies as it propagates through the region in the west Atlantic where north-south surface temperature

gradients are largest, and the disturbance shows evidence of westward tilting phase with height, consistent with a

northward flux of heat (Gill, 1982).

However, the singular vector also clearly illustrates non-modal characteristics. At initial time the disturbance is lo-

calised over the west Atlantic, at optimisation time the disturbance has propagated downstream to Europe. At initial

time, maximum disturbance amplitude is located in the lower troposphere, whilst at final time amplitude is largest

in the upper troposphere at the level of maximum winds. Finally, the horizontal scale of the initial disturbance is

noticeably smaller at initial time than at optimisation time.

A simple way of understanding the non-modal vertical structure of the singular vector is to consider a steady zon-

ally symmetric basic state flow , which is slowly varying in the vertical. In such a flow, the wave action

of a small-amplitude disturbance with energy , zonal wavenumber and frequency will be

conserved as it propagates vertically on the background flow (e.g. Gill, 1982). Optimal energy growth will there-

fore. tend to be associated with propagation away from a region of small intrinsic frequency (near the so-called

baroclinic steering level usually located in the-lower troposphere), to a region of large intrinsic frequency (such as

would occur at the jet stream level in the upper troposphere).

The upscale evolution is consistent with an inverse energy cascade characteristic of two dimensional turbulence

(see below). At first sight it might appear paradoxical that such a nonlinear property can be emulated by a linearised
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calculation. However, this non-modal characteristic of the linear perturbation is a consequence of the non-normal-

ity (i.e. ) of the tangent propagator (Farrell and Ioannou, 1996). In turn non-normality derives its

existence from the advective nonlinearity in Eq. (1). Hence, in some sense, the cascade properties associated with

nonlinear advection in Eq. (1) are partially reflected in the non-normality of .

Figure  5: Streamfunction of the dominant singular atmospheric singular vector calculated using a primitive

equation numerical weather prediction model for a 3-day trajectory portion made from initial conditions of 9

January 1993 at: (a) and (d) 200 hPa; (b) and (e) 700 hPa; (c) and (f) 850 hPa. The quantities in (a) - (c) are at

initial time, in (d) - (f) at final time. The contour interval at optimisation time is 20 times larger than at initial time.

From Buizza and Palmer (1995).

The ability of singular vectors to describe upscale evolution can be illustrated in simpler ‘toy models'.

Hansen (1998) has studied singular vectors of the two-scale dynamical system

(27)

of Lorenz (1996). Here are taken as large-scale variables, as small-scale variables. For each large-scale

variable, there are  small-scale variables. Hansen maximises

(28)

where is the forward tangent propagator of Eqs. (27), and P projects the entire state vector onto the subspace

of the large-scale variables. For particular choices of the parameters , and , the dominant singular vector

which maximises amplitude in the large-scale variables at optimisation time, is comprised almost entirely of small-
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scale components at initial time, emulating the upscale cascade exhibited in this nonlinear model.

It is also possible to compute singular vectors of the tangent propagator from intermediate coupled ocean-atmos-

phere models (e.g. Moore and Kleeman, 1996; Chen et al. 1997; Xue et al. 1997). As with the atmosphere-only

singular vectors, the growth characteristics are extremely non-modal. The surface temperatures of the evolved sin-

gular vectors at optimisation time is characteristic of the EI Niño phenomenon itself, whilst at initial time the sin-

gular vector has little spatial correlation with the El Niño pattern. The singular values are strongly dependent on

time of year, being largest from (boreal) spring to autumn, and weakest from (boreal) autumn to spring. As will be

argued below, the seasonal cycle in these coupled ocean-atmosphere singular vectors may be vital in understanding

how the climate responds to external forcing perturbations.

Let us consider the relationship between singular vector growth and eigenvector growth when Eq. (1) is linearised

about a stationary solution. In this case, normalised eigenvectors of with eigenvalues give rise to modal

solutions .) (The propagator will also have eigenvectors but with eigenvalues

.) Irrespective of normality, eigenvectors and eigenvalues of the adjoint Jacobian satisfy the

biorthogonality condition

(29)

where ‘cc' denotes the complex conjugate.

If an initial disturbance is written in terms of the eigenmodes , i.e.

(30)

then from Eq. (29)

(31)

Figure  6: This diagram illustrates schematically the crucial difference between eigenvector and singular vector

growth, and the relationship between singular vectors and adjoint eigenvectors. See text for details. From Buizza

and Palmer (1995).

From Eq. (30), the fastest growing eigenmode will ultimately contribute most to the growth of . In order

to maximise the contribution of the first eigenmode, should be as large as possible. From Eq. (31), this occurs

when is parallel to (for a non self-adjoint operator, ) Hence, in order to maximise the asymptotic

amplitude of , the initial perturbation should not project onto the fastest-growing eigenmode, but onto its ad-
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joint.

Fig. 6 illustrates schematically the crucial difference between eigenmode and singular vector growth. An idealised

2D system has two very non-orthogonal decaying eigenmodes and ; we take to have the larger real ei-

genvalue component. The adjoint eigenmodes and are also shown, consistent with the biorthogonality con-

dition (29). A normalised vector is shown parallel to ; the sequence of vectors show the time

evolution of . The projection of onto is much larger than that of a second vector which was initially

normalised and aligned along .

Another familiar measure of perturbation growth is given by the Lyapunov exponent. The system's Lyapunov ex-

ponents can be defined as

(32)

where  is the eigenvalue of the -th eigenvector of the operator

(33)

These eigenvectors, or Lyapunov vectors, correspond to (instantaneous) realisations of evolved singular vectors,

for long optimisation times.

Although Lyapunov exponents are normally associated with mean growth over the attractor, local Lyapunov expo-

nents can be defined as the growth rates

(34)

Just as singular vector growth can exceed eigenmode growth for stationary flows, so it can also exceed local Lya-

punov growth for transient flows (Trevisan and Legnani, 1995).

In fact in a multi-scale system, the concept of Lyapunov exponent growth is not a useful one. For example, in Eq.

(27), the dominant Lyapunov exponent is determined (for ) by the growth of the small scale variables.

However, if is sufficiently large, then their effect on the predictability of the variables will be small compared

with the effect of initial uncertainty in the large-scale variables themselves. In the atmosphere, Lyapunov expo-

nent growth would be associated with small-scale convective instability, rather than large-scale more slowly grow-

ing baroclinic instability (which determines the structure of extratropical weather systems). As such, the

predictability of these weather systems can be much longer than a dominant atmospheric Lyapunov timescale.

One way over overcoming this problem with the Lyapunov vector is through the so-called breeding-vector modi-

fication (Toth and Kalnay, 1993, 1997). A bred vector is obtained by integrating the model twice over a time ?t

from initial conditions differing by a small random perturbation. The resulting difference field is rescaled to the

initial perturbation amplitude, and the procedure repeated. The essential difference between a bred vector and a

Lyapunov vector is that the time is chosen to be sufficiently long that instabilities on scales much smaller than

weather, which would in practice determine the atmosphere's dominant Lyapunov exponent, are damped by non-

linear saturation.
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5.2  Error dynamics and scale cascades

A fundamental characteristic of error growth in climate and weather prediction is the upscale cascade of error. This

characterises the essential element of the ‘butterfly effect' paradigm, as much as does amplitude growth (i.e. initial

conditions are sensitive not only to small amplitude error, but also small-scale error). In this section, we briefly de-

scribe estimates of predictability arising from cascade processes, using from simple scaling arguments.

Let denote a characteristic wavenumber in such a system, and denote the energy kinetic energy per unit

wavenumber, at wavenumber . Assume that observations cannot resolve wavenumbers higher than . Hence the

initial pdf will certainly be non-zero in the phasespace sub-manifold associated with wavenumbers higher than kr.

We present below a heuristic argument for determining the time it takes this component of initial error to infect the

meteorological scales . Following Lorenz (1969) and Lilly (1973), let us assume that the time it takes be-

fore complete uncertainty at wavenumber to strongly infect wavenumber , is proportional to the ‘eddy turn-

over time' . The time taken for uncertainty to propagate from wavenumber

 to wavenumber  is therefore given by

(35)

In the case of a two-dimensional isotropic homogeneous turbulence in the inertial subrange between some large-

scale (e.g. baroclinic) forcing scale and dissipation scale, then , is independent of , and

which diverges as . Hence, although uncertainty at small scales (within the inertial range) can infect the

larger meteorological scale, in theory long-range predictions are possible providing the initial data has sufficient

small-scale resolution. This two dimensional paradigm is appropriate to weather systems where quasi-geostrophic

scaling is appropriate (Charney, 1971).

By contrast, for homogeneous isotropic 3-dimensional flow and , the familiar Kolmogorov

inertial range (Frisch, 1995). In this case  tends to a finite limit as , that is

(36)

This remarkable result says that the predictability time for a large-scale system is on the order of an eddy turn-over

time, a few days. In the limit of infinite Reynolds number, this is consistent with the hypothesised lack of existence

of a unique smooth solution of the Navier-Stokes equations in the Euler limit (Frisch, 1995), since it implies that

uncertainty on arbitrarily small scales can destroy predictability on large scales in finite time.

However, for the quasi-2D large-scale weather and climate systems discussed in this paper, this 3D paradigm does

not appear to be directly relevant; for scales O(100 km) or larger, horizontal scales dominate the vertical scale (the

aspect ratio is small). However, there is evidence for a spectrum on scales of km (Nastrom

and Gage, 1985; Gage and Nastrom, 1986); Cho et al., 1999). This is likely to be associated with a 2D inverse

energy cascade (Kraichnan, 1971) possibly forced by organised convective activity (Lilly, 1983), of the type dis-

cussed in section 4. This suggests that in the atmosphere there are two sets of 2D inertial ranges, an enstrophy

cascading range associated with forcing from weather systems at large scale, and a smaller-scale inverse en-

ergy cascading range associated with forcing from mesoscale variability on small scales (Lilly, 1983, 1989). As

such, uncertainties on these mesoscales may influence the predictability of large-scale weather systems within a

few days, and reinforces the need for a stochastic representation of such effects in global weather and climate mod-

els (see Section 4).
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6. APPLICATIONS OF SINGULAR VECTORS

In this section we describe some applications of the singular vector analysis described above.

6.1  Data assimilation

As described in Section 3, the approximation of treating the background error covariance matrix as flow independ-

ent can lead to significant imprecision in defining the initial pdf. However, the integration of Eq. (16) is currently

computationally impossible using comprehensive weather prediction models. As discussed above, a reduced-rank

solution has been developed (Fisher, 1998) in which the initial pdf is evolved explicitly in the space of dominant

singular vectors using a  metric.

6.2  Chaotic control of the observing system

The second application can be thought of as an example of the principle of chaotic control. Suppose we could sup-

plement the standard observing network with additional observations, and that, in principle, these observations

could be made anywhere in the atmosphere, where should they be made? These observations would have the big-

gest impact on forecast error if they were made in the region of the dominant singular vector (Palmer et al.,

1998).

Consider, for example, the singular vector calculation shown in Fig. 5 . The actual period corresponded to a time

of storminess over the North Atlantic (the oil tanker Braer ran aground on the Shetland Islands, leading to fears of

a major environmental disaster). As can be seen the evolved dominant singular vector is located over the north-east

Atlantic. In order to improve the quality of a 3-day weather forecast over this region of the north-east Atlantic (and

assuming that can be taken as a reasonable approximation for ), the location of the initial singular vector

suggests that additional observations should be taken near the eastern seaboard of the US, particularly in the mid-

lower troposphere.

However, since singular vectors are flow dependent, a fixed-location observation at the site of this particular sin-

gular vector would have been highly sub-optimal a few days later. On the other hand, new pilotless aircraft tech-

nology (e.g. the aerosonde; Holland et al., 1992) enables such flow-dependent targeted observations. to be made.

Essentially, the aerosonde can be programmed to fly to the principal locations of the dominant singular vectors,

measure vertical profiles of wind and temperature, and transmit the data to satellite. The additional data would be

assimilated in the determination of the initial state of the atmosphere. Real experiments testing this possibility are

currently in the design phase.

Such types of observation are not yet possible on an operational basis. However, the basic concept discussed in this

sub-section was tested during the Fronts and Atlantic Storm Track Experiment (FASTEX; Joly et al., 1997), during

the winter of 1997. Aircraft were flown to the locations of the dominant singular vectors over the Atlantic, and

special dropsondes were released. These dropsondes measured wind and temperature profiles. Sometimes these ex-

tra targeted data had a substantial impact on weather forecast quality over Europe (Montani et al., 1999). It should

be noted that for such applications, the singular vectors are targeted to produce maximum growth in a region de-

fined by a projection operator P (e.g. P = 1 for European grid points, P = 0 otherwise). The corresponding domi-

nant singular vectors maximise

(37)
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6.3 The response to external forcing: paleoclimate and anthropogenic climate change

The singular vector analysis described above is not only relevant in describing the system's response to initial er-

rors, but also in describing the system's response to some external forcing. Consider the problem of the linearised

response of the climate system to a weak imposed external forcing . As mentioned in the introduction, this

forcing could also represent a prescribed perturbation e.g. radiative forcing due to orbital variations or volcanic

eruption, or a doubling of atmospheric CO2. Adding  to Eq. (4) we have

(38)

Using the tangent propagator , the solution to (38) can be written over the finite interval  as

(39)

If  is time independent over , and setting ,

(40)

where

(41)

The system's response to depends on the projection of onto local phase-space instabilities. To see this more

explicitly, perform a singular vector decomposition on M, so that

(42)

where is the matrix whose columns contain the left singular vectors of M, is the matrix whose columns

contain the right singular vectors of M, and is a diagonal matrix whose real elements are the singular values

of M.

If we expand  as

(43)

then, from Eq. (40)

(44)

Now if is normalised, then the largest possible response is obtained if is equal to the leading right singular

vector of M, so that . However, this is a rather contrived situation. If, by contrast, projects uniformly

onto the so that , then the largest contribution to will come from the dominant (left) singular vec-
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tor . The state vector will be relatively insensitive to in regions of the attractor where , is small, and rela-

tively sensitive in regions of phase space where , is large.

Fig. 7 shows an example of the variable impact of a small fixed imposed forcing on the Lorenz (1963) model, with

equations

(45)

The leading singular value (for a finite length trajectory of 0.12 non-dimensional Lorenz time units) is shown

in Fig. 7 (a), clearly showing that the attractor instability is localised near to the origin (consistent with the ensem-

ble integrations shown in Fig. 2 ). The scalar plotted in Fig. 7 (b) is ; it shows clearly that the

Lorenz system is most sensitive to the imposed forcing in the region where the dominant singular value is large.

From this it is easy to see that the response to a forcing with zero time mean, need not itself be zero (consider for

example, in Eq. (45), the forcing , where is the time-average value of the variable in the un-

perturbed Lorenz equations. When the state vector will be in a relatively sensitive region and the (negative)

forcing will be relatively effective. By contrast, when , the state vector will be in relatively insensitive region

and the positive forcing will be relatively ineffective.

Figure 7: (a) The dominant singular value of the Lorenz (1963) model based on trajectory lengths of 0.12 Lorenz

time units. (b) The amplitude of the local response to a weak constant forcing applied to the Lorenz model (see

Eq. (45)).

The importance of this variable response has been demonstrated in the context of paleoclimate simulation. Clement

and Cane (1999) and Cane and Clement (1999) have studied the response of the intermediate-complexity Zebiak

and Cane (1987) coupled ocean-atmosphere model of the tropical Pacific, to paleoclimatic variations in solar in-

solation (due mainly to precession of the equinoxes). While the annual mean forcing from these orbital perturba-

tions is close to zero in the tropics (or indeed averaged globally), the annual mean response of the system to the

imposed forcing is not zero. This can be understood from the study of El Niño singular vectors of the coupled
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ocean-atmosphere system discussed above, where it was noted that the dominant singular value of the tangent prop-

agator M of a tropical Pacific coupled ocean-atmosphere model is larger for 6 month trajectory portions starting in

(boreal) spring than from trajectory portions starting in (boreal) autumn. Hence a sinusoidal forcing with

, can excite an annual average response. Cane and Clement (1999) argue that to understand the

fact that many observed paleoclimate changes are simultaneous in both hemispheres, the tropics must provide an

important intermediary between global climate and orbital forcing. If these ideas prove correct, then this will pro-

vide a fundamentally new paradigm for understanding paleoclimate variability.

The same general ideas may apply when considering the atmosphere's response to anthropogenic perturbations,

discussed in detail elsewhere (Palmer, 1993b, 1999). For example, it is commonly imagined that the climate re-

sponse to anthropogenic forcing should be distinct from patterns of natural climate variability. On the other hand,

consider Eq. (45). Largely independent of the details of the imposed forcing, the system's response to an imposed

forcing f is associated with an increase in the pdf associated with one of the Lorenz regimes, and a decrease in the

pdf associated with the other regime. (With in Eq. (45), the pdfs associated with the two regimes are iden-

tical.) On the other hand, the phase-space locations of the regime centroids are largely unaffected by the imposed

forcing. This can be understood by noting that the regime centroids are phase-space regions of relative stability;

the system is sensitive to the imposed forcing in a region of the attractor between the two centroids (see Fig. 7 (b)).

If this picture were applicable to the climate system, it would imply that anthropogenically-forced changes in cli-

mate would project primarily onto the principal patterns of natural variability, even though such natural variability

may occur predominantly on timescales much shorter than that of the imposed forcing. Corti et al. (1999) have

argued that this is indeed the case based on an analysis of changes to the frequency of occurence of atmospheric

circulation regimes defined from observed hemispheric circulation data for from 1949 to 1994.

Hence in predicting climate change, particularly on a regional basis, it will be very important to predict changes in

the frequency of occurrence of familiar circulation patterns. For example, the UK can expect milder winters if the

frequency of occurence of zonal circulation regimes which bring mild maritime air over the European continent

(e.g. associated with the positive phase of the North Atlantic Oscillation; Hurrell, 1995), increases. Conversely

winters can be expected to be more severe if the frequency of so-called blocked regimes with persistent anticyclonic

flow, increases. Results suggest that these regime frequencies are sensitive to changes in the diabatic heating fields

in the tropics (Trenberth et al., 1998). From this point of view, expecting observed regional climate change to be

directly predictable from perturbations to radiative forcing is a gross oversimplification of the problem.

Indeed, these results indicate that predictions of anthropogenic climate change, particularly on a regional basis, re-

quire models which can simulate accurately natural circulation regimes and their associated variability, even

though the dominant timescale of such variability may be much shorter than the climate-change signal itself. More-

over, since variability in these circulations regimes is essentially chaotic, the impact of anthropogenic forcing on

the frequency of occurrence of a particular regime over a particular period of time, cannot be deduced determinis-

tically; such predictions are necessarily probabilistic. The generation and verification of probability forecasts from

global climate prediction models are discussed in the sections below.

6.4  Initialising ensemble forecasts

A third application of the singular vector technique is in providing a manageable set of initial conditions which

sample the unstable subspace of the initial pdf, to provide the starting conditions for an ensemble of integrations

to determine the forecast pdf into the nonlinear range. This application will be discussed in detail in the next sec-

tion.
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7. FORECASTING UNCERTAINTY BY ENSEMBLE PREDICTION

In the discussion above, the problem of forecasting uncertainty in weather and climate prediction has been formu-

lated in terms of a Liouville, or, including model uncertainty, a form of Fokker-Planck equation. In practice these

equations are solved using ensemble techniques i.e. from multiple integrations of the governing equations from

perturbed initial conditions, using multiple models and/or stochastic parametrizations to represent model uncer-

tainty. Insofar as the perturbed initial conditions constitute a random sampling of the initial pdf, this could be de-

scribed as a Monte-Carlo approach. However, the methodologies discussed below for estimating the initial

perturbations do not necessarily constitute such a random sampling, for reasons to be discussed. As such, the more

general term "ensemble prediction" is used.

In the discussion below, it is useful to describe separately the problem of forecasting predictability on timescales

of days, seasons, and beyond.

7.1  Global weather prediction: from 1-10 days

On timescales of 1 day or so, the extratropical weather forecast problem could be described conceptually as the

prediction of the development of individual baroclinic disturbances, and their associated weather (fronts, cloud,

rainfall etc). The notion that extratropical weather systems can be described qualitatively in terms of baroclinic ei-

genmodes has been mentioned in Section 5 above.

On the other hand, atmospheric circulations exhibit a degree of organisation on timescales of 10 days or so. From

a popular perspective, the atmosphere exhibits “spells of weather”, characterised by a run of similar weather sys-

tems, or an extended period marked by the absence of weather systems. More precisely there is evidence of “cir-

culation regimes” characterised by persistence on timescales much longer than an individual weather system, but

with transitions between regimes characterised by the faster timescale e.g. of the dominant baroclinic instability

(Cheng and Wallace, 1993; Kimoto and Ghil, 1993; Mo and Ghil, 1988; Molteni et al., 1990; Vautard 1990). The

prediction of persistence or changes in circulation regime could be said to be characteristic of the 10-day medium-

range forecast problem.

The existence of these two timescales is illustrated in the Lorenz (1963) model, whose attractor has two clear re-

gimes of activity (see Fig. 2 ). For commonly-used values of the parameters in the model, a typical regime residence

timescale is longer than the timescale of oscillation about a regime centroid, or of the timescale of transition be-

tween regimes. In this context, the Lorenz model is a paradigmatic 'toy model' of atmospheric circulation regime

behaviour. Intermediate models based on atmospheric quasi-geostrophic equations also show regime behaviour. An

example (discussed further below) is the nonlinear quasi-geostrophic model of Reinhold and Pierrehumbert (1982)

with two zonal and two meridional wavenumbers producing a topographically-forced planetary scale interacting

with a baroclinically- unstable cyclone scale. Phase-space trajectories vacillate aperiodically between two long-

lived weather regimes; results from this model are discussed below.

There is evidence of similar behaviour in tropical atmospheric circulations. Consider, for example, the Asian mon-

soon. Individual monsoon ‘depressions’, associated with an instability of the monsoon jet stream, develop on

timescales similar to (or faster than) extratropical instabilities, and thus characterise the short-range forecast prob-

lem. On the other hand, the so-called active and break phases of the monsoon (which characterise the intraseasonal

fluctuations of the monsoon) appear to have distinct regime dynamics with typical residence timescales on the order

of 10-20 days (Webster et al., 1998).

Hence on the timescale of 10 days, it is important to be able to estimate uncertainty in predictions of persistence

or change in regime type. In the last few years, ensemble forecasting on this 10-day timescale has become an es-

tablished part of operational global weather prediction (Palmer et al., 1993, Toth and Kalnay, 1993, Houtekamer

et al., 1996, Molteni et al., 1996). Different strategies have been proposed for determining the ensemble of starting
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conditions. Conceptually, the strategies can be delineated according to whether the initial perturbations merely

sample observation error, or whether (given the dimension of phase space and the uncertainty in our knowledge of

the initial pdf) the initial perturbations are constrained to lie in some dynamically unstable subspace. In the latter

case, this dynamical subspace can be defined in different ways. Within the meteorological community, there has

been a very lively debate on the merits and deficiencies of the different strategies.

A recent analysis of the problem has been performed by Anderson (1997) using the Lorenz (1963) model. First,

points are sampled at regular intervals on the attractor. A pdf of "observation error" is then assumed. A sampled

point on the attractor is perturbed with a realisation of ; this is the "analysed state". A 2-member ensemble is

then generated by perturbing about the analysed state with perturbations , where is again drawn from .

The integration from the state on the attractor is taken as "truth". Based on standard measures of skill (see Section

8 below), this ensemble is more skilful than any other 2-member ensemble, e.g. based on singular-vector perturba-

tions of the analysed state. Similar results have been found by Hamill et al. (1999) based on an intermediate quasi-

geostrophic model. This study concludes that it is enough in generating an ensemble of initial conditions to ran-

domly perturb the observations  (see Section 3) consistent with the observation error covariance matrix .

On the other hand, this type of experiment is rather idealised. On the basis of the discussion in section 3, a sampling

of the initial pdf obtained from Eq. (13) by perturbing observations, is likely to be a gross underestimate of (for

example) the second moment of the initial pdf. Unfortunately, as discussed, there are so many unquantified uncer-

tainties in the actual details of the data assimilation procedure, it is not at all straightforward to quantify this under-

estimation.

The strategies that use dynamically-constrained perturbations, in some sense bypass the quantification of these un-

certainties, and focus on perturbations that are necessarily growing, and hence are likely to contribute to significant

forecast error. Two types of dynamically-constrained perturbation have been proposed: the first based on the "bred

vectors" (Toth and Kalnay, 1993) and the singular vectors discussed in section 5 (Mureau et al., 1993).

A study of differences between ensembles initialised using bred vectors and singular vectors has recently by Tre-

visan et al. (2000) using the intermediate nonlinear quasi-geostrophic model of Reinhold and Pierrehumbert

(1982) described above. A preliminary study of the predictability properties of the model was made by performing

relatively large Monte Carlo simulations to each of 2,500 initial states (on the model attractor). Much smaller en-

semble integrations were then constructed using the two types of dynamically constrained perturbation. The study

focussed on cases of regime transition. It was found that in general, the bred-vector ensemble provided an average

error distribution more similar to the Monte Carlo distribution, whilst the singular-vector ensemble provided a

more reliable estimate of an upper bound on error growth. For example, a prediction of a low probability of tran-

sition of weather regime was found to be much more reliable using the singular vector perturbations than using the

bredvector perturbations in these dynamically-constrained ensembles.

This is of some relevance for user confidence in probability forecasts. As discussed in more detail in Section 9,

consider a user who could potentially suffer a catastrophic loss if an event occurs (in this case a circulation

regime change bringing severe weather of some type). The user can take protective action at cost , which might

itself be substantial, but can be presumed to be less than . Based on the ensemble forecast, one can estimate a

probability that will occur. If is sufficiently low, then the user should be able to assume that protective

action is not necessary. On these occasions of very low , the incurrence of a loss would be seen as a failure of

the forecast system, and user confidence in the system would be seriously compromised. Of course, an a posteriori

constant offset could be added to the forecast probability, so that very small probabilities would never be issued.

But in this case, the ensemble would have no realistic value to the user as a decision tool, since the issued proba-

bilities would always be sufficiently high that protective action would always be taken.
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Figure  8: An example of an operational forecast product from the 50-member ECMWF ensemble prediction

system. Probability that (a) 850 hPa temperature is at least 4oC above normal, (b) 8oC above normal, based on a 6-

day forecast.

The implication of this analysis is that it is important, arguably paramount, to be sure that the user can be confident

in a forecast where the ensemble spread is small. For this reason, it is important in an operational environment to

ensure that the initial perturbations, are not conservative in the sense of not spanning phase space directions where

the pdf is underestimated (due to unquantified errors in the data analysis procedures), and where forecast error

growth could be large because of dynamical instability. For these reasons, the ECMWF ensemble system is based

in part on initial perturbations using rapidly growing singular vectors (with approximations to the metric).

Examples of the beneficial impact of singular vector perturbations over other types of perturbation are given in Mu-

reau et al. (1993) and Gelaro et al. (1998).

At the time of writing, the ECMWF Ensemble Prediction System (EPS) comprises 51 forecasts of the ECMWF

forecast model (see Buizza et al., 1998: Buizza et al., 1999b). As above, the control forecast is run from the oper-

ational ECMWF analysis. The 50 perturbed initial conditions are made by adding and subtracting linear combina-

tions of the dominant 25 singular vector perturbations to the operational analysis. In addition, the 50 perturbed

forecasts are also run with the stochastic parametrisation defined in Eq. (25). The EPS is run every day and basic

meteorological products are disseminated to all the national meteorological services of the ECMWF Member

States. These products often take the form of probability forecasts for different events E, based on the fraction of

ensemble members for which E is forecasts. For example, Fig. 8 shows day 6 probability forecasts over Europe

for the events , defined as: difference of lower tropospheric temperature from a long-term climatology

is greater than 8oC, or 4oC, respectively.

Based on the EPS, many of the European national meteorological services are providing their customers detailed

probability forecasts of possible weather parameters for site-specific locations. For example, based on the EPS, the

United Kingdom Meteorological Office provides forecast pdfs of surface temperature and precipitation for various

specific locations in the UK. Joint probability distributions are also estimated (e.g. the probability of precipitation

with surface temperature near or below freezing).

As discussed above (cf. Fig. 2 ), a feature of nonlinear dynamical systems is the dependence of error growth on

initial state. Fig. 9 illustrates this, based on two 10-day EPS integrations from starting dates exactly one year apart,

the meteorological forecast variable being surface temperature over London. The unperturbed control forecast and

verification are also shown. In the first example, the growth of the initial perturbations is relatively modest, and the

associated forecast temperature pdf is relatively sharp. In the second example, the initial perturbations grow rapidly

and the associated forecast temperature pdf is broad. Notice in the second example that the control integration is

already very unskilful 3 days into the forecast. The large ensemble spread provides an a priori warning to the user

gA 1–

E 8> E 4>
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that decisions made from single deterministic forecasts during this period could be extremely misleading.

lthough forecasters have traditionally viewed weather prediction as deterministic, a culture change towards proba-

bilistic forecasting is in progress. On the other hand, it is still necessary to demonstrate to users of weather forecasts

that reliable probability forecasts provide greater value than imperfect deterministic forecasts. Such a demonstra-

tion will be given in Section 9 below.

Figure  9: Time series of ensemble forecast integrations for surface temperature over London from starting

conditions exactly 1 year apart. The unperturbed control forecast (heavy solid) and the verifying analysis (heavy

dashed) are also shown. Top: a relatively predictable period. Bottom: an unpredictable period. (In these examples,

the ensembles comprised 32 perturbed forecasts and the model did not include the stochastic representation as

described in Eq. (25).)

7.2  Seasonal to interannual prediction

After the major 1997/98 El Niño, event (e.g. Webster and Palmer, 1998), the media and public alike have been

fascinated by El Niño; indeed, almost every unusual weather event during that period was attributed to El Niño.
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However, in addition to this explosion of general interest, there has, in the last few years, been a major development

in our ability to predict El Niño and its global consequences. As a result, forecasts of the fluctuations of the climate

system on seasonal to interannual timescales have matured to the stage of being produced routinely by operational

forecast centres around the world (see http://www.iges.org/ellfb ).

The term "El Niño" was coined by Peruvian fisherman to describe a seasonal warming of coastal waters, but was

adopted by scientists to denote a fluctuation of the large-scale ocean atmosphere temperature and circulation field

across the equatorial Pacific (Philander 1990). During normal years, equatorial Pacific sea surface temperatures

(SSTs) along the equator are coldest in the east Pacific and warmest in the west Pacific. From a meteorological

point of view, the release of energy from convective instability over these warmer waters drives the large-scale cir-

culations in the tropical atmosphere including the surface trade winds which blow from east to west across the

equatorial Pacific. From an oceanographic point of view, these westward (or "easterly") trade winds maintain the

SST gradients across the. equatorial Pacific. In part, the trade winds "pile up" warm surface waters in the Western

Pacific. In addition, due to the Coriolis effect, the trade winds cause an upwelling of colder subsurface water to the

surface at the equator; this effect being strongest in the east Pacific (Gill 1982).

From this point of view, the ocean and atmosphere are in some sort of coupled equilibrium. However, this is not a

completely stable equilibrium. Consider a weakening of the trade winds locally in the central equatorial Pacific.

The effect of this perturbation would be to weaken the upwelling of cold water and hence to locally increase SST.

The influence of this perturbation in the ocean can propagate eastwards and westwards, through oceanic Kelvin and

Rossby modes respectively (Gill 1982). The faster-propagating Kelvin wave spreads the influence of this anoma-

lous downwelling perturbation to the equatorial eastern Pacific, which leads to a weakening of the overall east-west

gradient of SST. As a consequence, the convergence of moisture and consequent release of convective instability

over the west Pacific will also weaken. The result is a further reduction in the strength of the trade winds. The am-

plification of this feedback can lead to an evolution of the ocean-atmosphere system to a state where both the trade

winds and the east-west SST gradient are almost completely eliminated. This corresponds to a (major) EI Niño

state.

However, this EI Niño state is not in a stable equilibrium either. The westward propagating oceanic Rossby mode,

forced by the relaxed trade winds, reflects off the Indonesian archipelago and returns as a Kelvin mode restoring

the ocean back to its normal state, or even to a overrelaxed "La Niña" state in which the east-west SST gradients

are enhanced. It is these propagating oceanic Kelvin/Rossby modes which are believed to make the EI Niño event

predictable several seasons ahead. The first coupled-model predictions of El Niño were performed using interme-

diate models of the Pacific ocean coupled to relatively simple atmospheric representations (Zebiak and Cane,

1987).

The basic dynamics and predictability of EI Niño can be qualitatively characterised by the ("toy-model") differen-

tial-delay equation (Schopf and Suarez, 1988; Battisti and Hirst, 1989)

(46)

where denotes the SST anomaly in the eastern equatorial Pacific. The first term on the right-hand side of Eq.

(46) represents the positive feedback between the strength of the trade winds and the strength of the SST gradient

across the Pacific. The second term is a delayed negative feedback representing the adjustment processes in the

ocean associated with wave dynamics. The delay is determined by the time it takes the Rossby wave to propagate

westward across the Pacific basin, reflect off the Indonesian archipelago, and return as an eastward propagating

Kelvin wave.
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Figure  10: Time series of ensemble seasonal forecasts of monthly mean sea surface temperature anomalies

predicted for the region of the tropical Pacific where the El Niño signal is strongest. Forecasts of the ECMWF

coupled model are run over 6-month periods from consecutive days. The heavy line shows the observed sea

surface temperatures. From the ECMWF seasonal prediction system (see http://www.ecmwf.int/seasonal).

El Niño influences atmospheric circulations around the globe. However, it is important to realise that these circu-

lations are essentially chaotic. In this sense the impact of El Niño on global atmospheric circulations is not itself

predictable. An analogy is provided by the Lorenz (1963) model, in which an additional prescribed forcing term is

added (see Eq. (45)). With or without forcing, the timeseries of the Lorenz model state vector is chaotic. On the

other hand, the probability of the state vector lying in one of the two Lorenz-attractor regimes is predictably altered

by the imposed forcing. This analogy emphasises the essential point that reliable seasonal forecasts of the influence

of El Niño on the global atmospheric circulation are necessarily probabilistic.

The successful prediction of El Niño events by intermediate complexity coupled ocean-atmosphere models, strong-

ly motivated the development of operational forecast systems using comprehensive global coupled ocean-atmos-

phere models. The 1997/98 event was successfully forecast by a number of such models, including the ECMWF

model (Stockdale et al., 1998) which comprised the weather forecast model described above, coupled to a global

ocean model developed at the Max Planck Institute for Meteorology (Latif et al. 1994).

Predicting seasonal climatic fluctuations is essentially an initial value problem; however, unlike the weather pre-

diction problem, predictability arises from a memory of initial conditions primarily in the ocean. Hence, ocean data

assimilation schemes, similar to that described in Section 3, are used to assimilate relevant ocean observations. (It

should be noted that the land-surface can also impart seasonal-timescale predictability on the atmosphere; for ex-

ample, the strength of the Indian summer monsoon is known to be influenced by snow amount accumulated over
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the Asian continent during the previous winter; Blanford, 1884). In principle, the same techniques used for fore-

casting uncertainty in weather prediction can be used for seasonal prediction. For example, at ECMWF, an analysis

of the ocean and atmosphere is performed every day, and a single 6-month integration of the global coupled ocean-

atmosphere model is made from each analysis (see http://www.ecmwf.int/seasonal ). Taken over a month, the set

of such forecasts comprises an approximately 30-member "time-lagged" ensemble (Hoffman and Kalnay, 1983).

Fig. 10 shows an example of such an ensemble of coupled model forecasts made just before the onset of the 1997/

98 El Niño. The forecast variable is the mean SST anomaly in the central to eastern tropical Pacific. The ensemble

shows a significant probability of the development of an El Niño event.

Figure  11: Probability that seasonal-mean precipitation is above or below normal based on a 30-member

ensemble of 6-month integrations of the ECMWF seasonal forecast system for the boreal winter 1997/98 starting

in October 1997. Dotted shading indicates a higher than normal probability of above average precipitation, the

denser the dots, the higher the probability. Solid shading indicates a higher than normal probability of below

average precipitation, the deeper the shading, the higher the probability. Regions shaded white indicate that the

forecast probabilities are not significantly different to climatology. From the ECMWF seasonal prediction system

(see http://www.ecmwf.int/seasonal for more details).

As mentioned, the effect of El Niño is global. Fig. 11 shows a probability forecast of precipitation, based on an

ensemble of ECMWF seasonal integrations. The density of shading gives the probability that seasonal mean pre-

cipitation (for the northern winter 1997/98) will be above (dots) or below (solid) average. In the regions shown

white, the influence of the anomalous boundary forcing is small (statistically insignificant) compared with chaotic

variability arising from internal atmospheric fluctuations. For example, according to the forecast in Fig. 11 , there

is a high probability of relatively dry conditions over Amazonia and Indonesia, and wet conditions over California

across to Florida. Such conditions actually occurred and featured extensively in media coverage of weather anom-

alies during that winter.

At present, it is unclear what the ultimate limit of predictability of El Niño really is. Whether this limit is controlled

purely by the internal nonlinear dynamics of El Niño (e.g. as represented by the intermediate Zebiak-Cane model;

e.g. Münnich et al., 1991), or by unpredictable forcing from atmospheric motions external to the coupled system

(e.g. Eckert and Latif, 1997), remains to be established.
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7.3  Decadal prediction and anthropogenic climate change

It is well known that anthropogenic increases of CO2 have the propensity to change earth's climate. Even though

climate is almost certain to warm on a global scale, regional changes in climate can only be predicted using the

global coupled ocean-atmosphere models discussed above. But how confident can we be in such predictions? What

are the principal uncertainties?

The problem of predicting climate change arising from anthropogenic perturbations has a different character to the

weather or seasonal forecasts discussed above. In a general sense, anthropogenic climate-change prediction could

be described as a problem of estimating how the climate attractor changes for a prescribed increase in atmospheric

CO2 content. A conceptually similar problem was discussed in Section 5, how the climate responds to slow changes

in the orbit of the earth about the sun. As discussed in the introduction, the climate-change prediction problem, like

the paleoclimate problem, is a prediction of the second kind.

In practice, this delineation is perhaps simplistic; climate-change scenario experiments are made by running cli-

mate models over the coming decades with slowly increasing CO2. On these timescales there is in fact some evi-

dence that natural fluctuations of the Physical climate system are partially predictable. For example, anomalies of

ocean salinity and SST have been observed to propagate coherently for many years through high latitudes of the

North Atlantic (Dickson et al., 1988, Belkin et al., 1998, Hansen and Bezdek, 1996; Sutton and Allen, 1997). It has

been suggested that such anomalies may influence and/or be influenced by the global thermohaline circulation

(Dickson et al., 1996), a circulation which affects the mean climate over Northern Europe. Ensemble integrations

of coupled ocean-atmosphere models suggest that the thermohaline circulation has some predictability on decadal

timescales (Griffies and Bryan, 1997). There may be other ocean- atmosphere modes with decadal predictability

(Latif, 1998). In addition, the climate system may have biochemical feedbacks which are partially predictable on

decadal timescales (Pielke, 1999).

Figure  12: A multi-model ensemble of predictions of anthropogenic global temperature change, based on a

prescribed increase in atmospheric CO2 content. From IPCC (1996).

Let us suppose that such decadal predictability exists. Then, for example, it might be possible to estimate from en-
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semble integrations initialised with current data, that there is a significant probability (e.g. significantly different

than 0.5) that the thermohaline circulation will slow down in the next century as a result of natural climate varia-

bility. In this situation, the anthropogenic climate change problem becomes one of knowing how anthropogenic

forcing would further influence this probability. However, given our limited knowledge of the current state of the

climate system (especially the deep ocean), and the limited natural predictability that may in fact exist on decadal

to centennial timescales, the problem of predicting the impact of anthropogenic forcing on the thermohaline circu-

lation of the 21st century will in practice be a pure prediction of the second kind (e.g. as studied by Manabe and

Stouffer, 1994).

A principal uncertainty in climate change prediction lies in the uncertainties in model formulation, e.g as discussed

in Section 4. As discussed in Section 4, such uncertainty may necessarily imply some stochastic representation of

the influence of sub-grid scale processes within the model formulation. At present, such stochastic representations

have not been used in the context of climate simulation. Rather, the representation of model uncertainty in ensem-

ble integrations has been based on the multi-model ensemble (cf. Section 4).

Multi-model ensemble prediction of anthropogenic climate change is a central feature of climate change assess-

ment by the Intergovernmental Panel on Climate Change (IPCC). (IPCC was jointly established by the World Me-

teorological Organisation and the United Nations Environment Programme to assess available scientific

information on climate change, to assess the environmental and socio-economic impacts of climate change, and to

formulate response strategies.) For example, Fig. 12 shows a multi-model ensemble of climate change predictions,

based on a 1%/year increase of atmospheric CO2 concentration from 1990 (IPCC, 1996). The ensemble suggests

there is no substantial probability of global warming being less that 0.25oC, or more than 4oC, 60 years from now.

On the other hand, the pdf spanned by the use of the different sets of models is ad hoc, and may not cover all of the

uncertainties in model formulation. Moreover, in practice the models are not truly independent of one another;

there is a tendency (possibly for pragmatic rather than scientific reasons) for groups to adopt similar sets of para-

metrisations. In addition, most of the models used in IPCC (1996) suffer from similar shortcomings; for example,

none had sufficient equatorial resolution to simulate correctly the dynamics of El Niño. EI Niño does have an im-

pact on the largest of atmospheric scales; for example, during El Niño years, global mean temperatures are en-

hanced. Hence if the frequency of EI Niño events is affected by increasing CO2, this will impact on estimates of

global warming. The effects of increasing CO2 on EI Niño are now beginning to be studied in climate models (e.g.

Timmermann et al., 1999), though there is still uncertainty in the overall response.

Compared with weather and seasonal forecasts, where verifying data is reasonably plentiful, it is difficult to assess

quantitatively the predictions of uncertainty in forecasts of climate change. Certainly, a model's ability to predict

natural climate fluctuations on seasonal timescales is increasingly being taken as a prerequisite for a model to be

useful for climate-change prediction. The IPCC (1990) report made this point explicitly: "Confidence in a model

used for climate simulation will therefore be increased if the same model is successful when used in a forecasting

mode". This idea is consistent with the paradigm for climate change discussed above (Palmer, 1993b, 1999) which

emphasises the notion that anthropogenic forcing will change the pdfs of naturally-occurring regimes of climate

variability. This paradigm puts a premium on a model's ability to simulate such natural variability.

Hence, albeit indirectly, the validation of forecasts of natural fluctuations in the climate system is relevant to the

validation of climate-change scenarios. However, as we have emphasised, such validation techniques must take into

account the probabilistic nature of such prediction. The next section deals explicitly with two commonly - used

probabilistic validation techniques.
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8. VERIFYING FORECASTS OF UNCERTAINTY

As discussed, the output from an ensemble forecast can be used to construct a probabilistic prediction. In this sec-

tion, we discuss two basic measures of skill for assessing a probability forecast: the Brier Score and the Relative

Operating Characteristic. Both of these measures are based on the skill of probabilistic forecasts of a binary event

E, as discussed in Section 7 above. For example E could be: temperatures will fall below 0oC in three days time;

average rainfall for the next three months will be at least one standard deviation below normal; seasonal-mean rain-

fall will be below average and temperature above average, and so on.

8.1  The Brier score and its decomposition

Consider an event E which, for a particular ensemble forecast, occurs a fraction of times within the ensemble.

If E actually occurred then let , otherwise . Repeat this over a sample of different ensemble fore-

casts, so that is the probability of E in the th ensemble forecast and or , depending on whether

E occurred or not in the th verification ( ).

The Brier score (Wilks, 1995) is defined by

(47)

From its definition , equalling zero only in the ideal limit of a perfect deterministic forecast. For a large

enough sample, the Brier score can be written as

(48)

where is the relative frequency that E was forecast with probability between and , and

gives the proportion of such cases when E actually occurred. To see the relationship between (47) and (48) note

that is the Brier score for ensembles where E actually occurred, and

 is the Brier score for ensembles where E did not occur.

Simple algebra on (48) gives Murphy's (1973) decomposition

(49)

of the Brier score, where

(50)

is the reliability component,

(51)

is the resolution component
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is the uncertainty component, and

(53)

is the (sample) climatological frequency of E.

A reliability diagram (Wilks, 1995) is one in which is plotted against for some finite binning of width .

In a perfectly reliable system and the graph is a straight line oriented at 45o to the axes, and .

Reliability measures the mean square distance of the graph of  to the diagonal line.

Resolution measures the mean square distance of the graph of to the sample climate horizontal line. A system

with relatively high is one where the dispersion of about is as large as possible. Conversely, a forecast

system has no resolution when, for all forecast probabilities, the event verifies a fraction  times.

The term on the right-hand side of (49) ranges from 0 to 0.25. If E was either so common, or so rare, that it

either always occurred or never occurred within the sample of years studied, then ; conversely if E oc-

curred 50% of the time within the sample, then . Uncertainty is a function of the climatological fre-

quency of E, and is not dependent on the forecasting system itself. It can be shown that the resolution of a perfect

deterministic system is equal to the uncertainty.

When assessing the skill of a forecast system, it is often desirable to compare it with the skill of a forecast where

the climatological probability is always predicted (so ). The Brier score of such a climato-

logical forecast is (using the sample climate), since, for such a climatological forecast

. In terms of this, the Brier skill score, , of a given forecast system is defined by

(54)

 for a forecast no better than climatology, and  for a perfect deterministic forecast.

Skill-score definitions can similarly be given for reliability and resolution, i.e.

(55)

(56)

For a perfect deterministic forecast system, . Hence, from Eqs. (49) and (54)

(57)

Fig. 13 shows two examples of reliability diagrams for the ECMWF EPS taken over all day-6 forecasts from De-

cember 1998 - February 1999 over Europe (cf. Fig. 8 ). The events are , :- lower tropospheric temper-

ature being at least 4oC, 8oC greater than normal. The Brier score, Brier skill score, and Murphy decomposition are

shown on the figure.
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Figure  13. Reliability diagram and related Brier score skill score and Murphy decomposition for the events: (a)

850 hPa temperature is at least 4oC above normal and (b) at least 8oC above normal, based on 6-day forecasts over

Europe from the 50-member ECMWF ensemble prediction system from December 1998 - February 1999. Also

shown is the pdf  for the event in question.

The reliability skill score is extremely high for both events. However, the reliability diagrams indicate some

overconfidence in the forecasts. For example, on those occasions where was forecast with a probability be-

tween 80% and 90% of occasions, the event only verified about 72% of the time. However, it should be remembered

that the integrand in Eq. (50) is weighted by the pdf , shown in each reliability diagram. In both cases,

forecasts where  are relatively rare and hence contribute little to .

To see why probability forecasts of have higher Brier skill scores than probability forecasts of , con-

sider Eq. (57). From Fig. 13 , whilst is the same for both events, is larger for than for . This

can be seen by comparing the histograms of in Fig. 13 which are more highly peaked for than for

; there is less dispersion of the probability forecasts of the more extreme event about its climatological fre-

quency, than the equivalent probability forecasts of the more moderate event. This is hardly surprising; the more

extreme event is relatively rare (its climatological frequency is ) and most of the time is forecast with

probabilities which almost always lie in the first probability category ( ). In order to increase the Brier

score of this relatively extreme event, one would need to increase the ensemble size so that finer probability cate-

gories can be reliably defined. (For example, suppose an extreme event has a climatological probability of occur-

rence of Let us suppose that we want to be able to forecast probabilities of this event which can discriminate

between probability categories with a band width comparable with this climatological frequency, then the ensemble

size should be .) With finer probability categories, the resolution component of the Brier score

can be expected to increase. Providing reliability is not compromised, this will lead to higher overall skill scores.

However, this raises a fundamental dilemma in ensemble forecasting given current computer resources. It would

be meaningless to increase ensemble size by degrading the model (e.g. in terms of "physical" resolution) making

it cheaper to run, if by doing so it could no longer simulate extreme weather events. Optimising computer resources

that on the one hand ensemble sizes are sufficiently large to give reliable probability forecasts of extreme but rare

events, and that on the other hand the basic model has sufficient complexity to be able to simulate such events, is

a very difficult balance to define.

The Brier score and its decomposition provide powerful objective tools for comparing the performance of different
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probabilistic forecast systems. However, the Brier score itself does not address the issue of whether a useful level

of skill has been achieved by the probabilistic forecast system. In order to prepare the ground for a diagnostic of

probabilistic forecast performance which determines potential economic value, we first introduce skill score orig-

inally derived from signal detection theory.

8.2  Relative operating characteristic

The relative operating characteristic (ROC; Swets, 1973; Mason 1982; Harvey et al., 1992) is based on the forecast

assumption that E will occur, providing E is forecast by at least a fraction of ensemble members, where

the threshold is defined a priori by the user. As discussed below, optimal can be determined by the param-

eters of a simple decision model.

Consider first a deterministic forecast system. Over a sufficiently large sample of independent forecasts, we can

form the forecast- model contingency matrix giving the frequency that E occurred or did not occur, given it was

forecast or not forecast, i.e.

Based on these values, the so-called "hit rat" (H) and "false-alarm rate" (F) for E are given by

(58)

Hit and false alarm rates for all ensemble forecast can be defined as follows. It is assumed that E will occur if

(and will not occur if ). By varying between 0 and 1 we can define , .

In terms of the pdf

(59)

The ROC curve is a plot of against for . A measure of skill is given by the area under the

ROC curve (A). A perfect deterministic forecast has , whilst a no-skill forecast for which the hit and false

alarm rates are equal, has .

Relative operating characteristic curve for seasonal timescale integrations (run over the years 1979-93, run with

prescribed observed SST) for the event :- the seasonal-mean (December-February) 850 hPa temperature

anomaly is below normal. Solid: based on a single model 9-member ensemble. bottom: based on a multi-model 36-

member ensemble (see Palmer et al., 2000) for more details. The area A under the two curves (a measure of skill)

is shown.
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Figure 14. Relative operating characteristic curve for seasonal timescale integrations (run over the years 1979-93,

run with prescribed observed SST) for the event :- the seasonal-mean (December-February) 850 hPa

temperature anomaly is below normal. Solid: based on a single model 9-member ensemble. bottom: based on a

multi-model 36-member ensemble (see Palmer et al., 2000) for more details. The area A under the two curves (a

measure of skill) is shown.

We illustrate in Fig. 14 the application of these measures of skill to a set of multi-model multi-initial condition

ensemble integrations made over the seasonal timescale (Palmer et al., 2000). The event being forecast is :-

the seasonal-mean (December-February) 850 hPa temperature anomaly will be below normal. The global climate

models used in the ensemble are the ECMWF model, the UK Meteorological Office Unified Model, and two ver-

sions of the French Arpège model; the integrations were made as part of the European Union "Prediction of Climate

Variations on Seasonal to Interannual Timescales (PROVOST)". For each of these models, 9-member ensembles

were run over the boreal winter season for the period 1979-1993 using observed specified SSTs. The values

and have been estimated from probability bins of width 0.1. The ROC curve and corresponding A value is

shown for the 9-member ECMWF model ensemble, and for the 36-member multi-model ensemble. It can be seen

that in both cases, A is greater than the no-skill value of 0.5; however, the multi-model ensemble is more skilful

than the ECMWF-model ensemble. Studies have shown that the higher skill of the multi-model ensemble arises

mainly because of the larger ensemble size, but also because of a sampling of the pdf associated with model uncer-

tainty.

9. THE ECONOMIC VALUE OF PREDICTING UNCERTAINTY

Although B and A (defined in Section 8) provide objective measures of skill for ensemble forecasts, they do not

determine measures of usefulness for seasonal forecasts. In an attempt to define this notion objectively, we consider

here a simple decision model (Murphy, 1977; Katz and Murphy, 1997) whose inputs are probabilistic forecast in-

formation and whose output is potential economic value.

Consider a potential forecast user who can take some specific precautionary action depending on the likelihood that

E will occur. Let us take some simple examples relevant to seasonal forecasting. If the coming winter is mild (E:-

seasonal-mean temperature above normal), then overwintering crops may be destroyed by aphid growth. A farmer

can take precautionary action by spraying. If the growing season is particularly dry (E:- seasonal-mean rainfall at

least one standard deviation below normal), then crops may be destroyed by drought. A farmer can take precau-

tionary action by planting drought-resistant crops. In both cases taking precautionary action incurs a cost C irre-
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spective of whether or not E occurs (cost of spraying, or cost associated with reduced yield and possibly with more

expensive seed). However, if E occurs and no precautionary action has been taken, then a loss L is incurred (crop

failure).

This simple "cost-loss" analysis is also applicable to much shorter range forecast problems (Richardson, 1999). For

example, if the weather event was the occurrence of freezing conditions leading to ice on roads, and the precau-

tionary action was to salt the roads, then C would correspond to the cost of salting, and L would be associated with

the increase in road accidents, traffic delays etc.

In general, the expense associated with each combination of ac action /inaction and occurrence/non-occurrence of

E is given in the decision-model contingency matrix

It is presumed that the decision maker wishes wishes to maximise profits, or at least minimise overall expenses.

If only the climatological frequency of E is known, there are two basic options: either always or never take pre-

cautionary action. Always taking action incurs a cost C on each occasion, whilst never taking action incurs a loss

L only on the proportion  of occasions when E occurs, giving an expense .

If the seasonal forecast data used in Section 8 above were used by a hypothetical decision maker, would his/her

expenses would be reduced beyond what could be achieved using alone? Consider first a deterministic forecast

system with characteristics described by the forecast-model contingency matrix in Section 8.2. The user's expected

mean expense M per unit loss is

(60)

This can be written in terms of the hit-rate H and the false-alarm F using (58), so that

(61)

For a perfect deterministic forecast  and , hence

(62)

To calculate the mean expense per unit loss knowing only , suppose first the decision maker always protects, then

. Conversely, if the decision maker never protects then . Hence if the decision maker knows

only , M can be minimised by either always or never taking precautionary action, depending on whether

, or , respectively. The mean expense per unit loss associated with a knowledge of climatology

only is therefore
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(63)

The value V of forecast information is defined as a measure of the reduction in M over Mcli, normalised by the max-

imum possible reduction associated with. a perfect deterministic forecast, i.e.

(64)

For a forecast system which is no better than climate, ; for a perfect deterministic forecast system .

As discussed in Section 8, an ensemble forecast gives hit and false-alarm rates and , as

a functions of probability thresholds (see (59)). Hence V is defined for each , i.e. . Using (61),

(62) and (63)

(65)

For given  and event E, the optimal value is

(66)

Figs. 15 -16 show examples of optimal value as a function of user cost/loss ratio. Fig. 15 is for the ECMWF day-

6 ensemble weather prediction system and the event (as in Fig. 13 ). The solid curve is the optimal value for

the ensemble system, the dashed curve shows value for a single deterministic forecast (the unperturbed "control"

integration in the ensemble). Peak value tends to occur for ; for such users, it makes little difference

to the climatological expense whether they always protect, or never protect. The figure also illustrates the fact

that the ensemble forecast has greater "value" than a single deterministic forecast. For some cost/loss ratios (e.g.

), the deterministic forecast has no value, whereas the ensemble forecast does have value. The reason

for this can be understood in terms of the fact that for a probabilistic forecast, different users (with different )

would take precautionary action for different forecast probability thresholds. A user who would suffer a catastroph-

ic loss ( ) if E occurred, would take precautionary action even when a small probability of E was forecast.

A user for whom precautionary action was expensive in comparison with any loss ( ) would take precau-

tionary action only when a relatively large probability of E was forecast. The result demonstrates the value of a

reliable probability forecast.

Fig. 16 shows optimal value from the ECMWF seasonal integrations described in section 7. Two different events

are shown based on seasonal-mean rainfall forecasts over all regions in the tropics. They are: rainfall less than nor-

mal, and rainfall less than one standard deviation below normal (the latter being a possible objective definition of

drought). It can be seen that the peak value for the two events occurs at different , arising because the two

events have different values of . The figure also shows that the value of the forecasts of the more extreme

"drought" event is more valuable than the forecasts of rainfall simply below normal. It would appear that the reason

for this is that such events tend to be forecast more during El Niño years, when seasonal predictability is high, than

during other years, when predictability is lower.

An absolute "dollar" estimate of value can be attached to these curves, providing the user knows the "dollar" value
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of their cost and loss. An attempt to do this for seasonal forecasts in southern Africa suggests, for some applica-

tions, a potential value of O(109 $) (M. Harrison and N. Graham, personal communication).

Figure  15: Potential economic value of the ECMWF ensemble prediction system as a function of user cost/loss

ratio of day 6 weather forecasts over Europe (for the period December 1998 - February 1999) for the event :

850 hPa temperature at least 4oC below normal. Solid: value of the ECMWF ensemble prediction system. Dashed:

value of a single deterministic forecast (the unperturbed "control" forecast of the EPS system). From Richardson

(1999).

Figure 16: Potential economic value of seasonal ensembles as a function of user cost/loss ratio in the tropics, for

the events : seasonal-mean rainfall below normal (solid), and : seasonal-mean rainfall at least one

standard deviation below normal (dashed), based on 9-member ensembles of integrations with the ECMWF

model over the years 1979-93, run with prescribed observed SST.

10. CONCLUDING REMARKS

Our climate is a complex nonlinear dynamical system, with spatial variability on scales ranging from individual

clouds to global circulations in the atmosphere and oceans, and temporal variability ranging from hours to millenia.

Climate scientists interact with society through the latter's demands for accurate and detailed environmental fore-

casts: of weather, of El Niño and its impact on global rainfall patterns, and of man's effect on climate. The com-

plexity of our climate system implies that quantitative predictions can only be made with comprehensive numerical

models which encode the relevant laws of dynamics, thermodynamics and chemistry for a multi-constituent multi-

phase fluid. Typically such models comprise some millions of scalar equations, describing the interaction of circu-
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lations on scales ranging from tens of kilometres to tens of thousands of kilometres; from the ocean depth to the

upper stratosphere. These equations can only be solved on the world's largest supercomputers.

However, a fundamental question that needs to be addressed, both by producers and users of such forecasts, is the

extent to which weather and climate are predictable; after all, much of chaos theory developed from an attempt to

demonstrate the limited predictability of atmospheric variations. In the past, the topic of predictability has been a

somewhat theoretical and idealised one, somewhat removed from the practicalities of prediction. A famous clima-

tologist remarked some years ago: "Predictability is to prediction as romance is to sex!". However, the remark is

perhaps not so apposite today; the science of predictability of weather and climate is now an integral part of the

practical prediction problem - the two cannot be separated. The predictability problem can be formulated e.g.

through a Liouville equation; however, in practice, estimates of predictability are made from multiple (ensemble)

forecasts of comprehensive weather and climate prediction models. The individual members of the ensemble differ

by small perturbations to quantities that are not well known. For example, the predictability of weather is largely

determined by uncertainty in a forecast's starting conditions, whilst the predictability of climate variations is also

influenced by uncertainty in representing computationally the equations that govern climate (for example, how to

represent the effects of convective instabilities in a model that cannot resolve individual cloud systems).

Chaos theory implies that all such environmental forecasts must be expressed probabilistically; the laws of physics

dictate that society cannot expect arbitrarily accurate weather and climate forecasts. These probability forecasts

quantify uncertainty in weather and climate prediction. The duty of the climate scientist is to strive to estimate re-

liable probabilities; not to disseminate predictions to society with a precision that cannot be justified scientifically.

Examples were shown that, in practice, the economic value of a reliable probability forecast (produced from an

ensemble prediction system) exceeds the value of a single deterministic forecast with uncertain accuracy.

However, producing reliable probability forecasts from ensembles of climate model integrations puts enormous de-

mands on computer resources. Computer power is needed to be able to resolve the details of the climate system. It

has been argued that, because of the nonlinear nature of our climate system, a systematic mistreatment of small-

scale phenomena (such as organised convective instabilities in the tropics) could lead to a systematic mistreatment

of large-scale climate phenomena (such as EI Niño). However, there are reasons for studying small-scale phenom-

ena in their own right. From a weather prediction perspective, it is necessary to be able to simulate such detail if

models are to be able to forecast damaging weather events such as hurricanes and related extratropical systems

(such as the one that struck Southern England in October 1987). From a climate point of view it may also be nec-

essary to be able to simulate such detail in order to be able to assess the impact of anthropogenic forcing on the

probability distribution of these damaging weather events. Will hurricanes or October storms become more likely

or, on average, more intense in an enhanced CO2 atmosphere?

However, this poses a fundamental dilemma given current computing resources. To be able to simulate extreme

events requires models with considerable complexity and resolution. On the other hand, estimating reliably chang-

es to the probability distributions of extreme and hence relatively rare events, requires large ensembles. One thing

is certain; the more the need to provide reliable forecasts of uncertainty in our predictions of weather and climate,

the more the demand for computer power exceeds availability, notwithstanding the unrelenting advance in compu-

ter technology. Indeed the need for quantitative predictions of uncertainty in weather and climate science is a rel-

evant consideration in the design of future generations of supercomputers; ensemble prediction is a perfect

application for parallel computing! There can be little doubt that the benefits to society of reliable regional proba-

bility forecasts of extreme weather events, seasonal variability and anthropogenic climate change justify such tech-

nological developments.
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