
this text appeared in the proceedings of the ECMWF Seminar 2003 on
Recent developments in data assimilation for atmosphere and ocean

Adaptive observations, the Hessian metric and singular vectors

Martin Leutbecher

ECMWF, Shinfield Park, Reading
RG2 9AX, United Kingdom

ABSTRACT

Techniques for planning adaptive observations that are based on tangent-linear models and their adjoints are discussed.
The emphasis is on the validation of techniques that predict the statistically expected impact of additional non-routine
observations on the forecast error. The concepts are illustrated using the Lorenz-95 system, which is a low-dimensional
system that has similar error growth characteristics as operational NWP systems. The objective of a consistent approach to
data assimilation and adaptive observations is formulated and illustrated for an extended Kalman filter and for an OI/3D-
Var system. A reduced rank technique is introduced. It predicts forecast error variance in a singular vector subspace.
The reduced rank predictions of forecast error variance are evaluated for both assimilation systems. Furthermore, a few
examples are given of possible applications of the reduced rank estimate in the context of an operational variational
assimilation scheme.

1 Introduction

Several techniques have been proposed that hold promise of identifyingoptimal sitesfor additional observa-
tions in order to improve numerical weather forecasts. Experience with such techniques has been and is going
to be gained in field experiments as FASTEX, NORPEX, WSRP and the Atlantic TOST/TReC1. It has been
documented for the past observation campaigns2 that the use of targeted observations has overall a positive
impact. However, we do not know how optimal the sites for the additional observations are really. So far, a
proper3 test to quantify the degree of optimality for the full NWP system is lacking because it would require a
large number of additional observations: both targeted and un-targeted ones. The goal of this presentation is to
advocate a more realistic target for targeted observation techniques: Can we predict how forecast uncertainty
changes due to intermittent modifications of the observing network? Such predictions of changes of forecast
uncertainty are necessarily part of any optimisation procedure for planning adaptive observations. A modi-
fication of the observing network will be called intermittent if it occurs only during an isolated assimilation
cycle. Changes to the routine observing network that last over several subsequent assimilation cycles will not
be covered here as they require appropriate techniques to account for the propagation of covariance information
from one assimilation cycle to the next.

Predictions of changes of forecast uncertainty can be verified with observing system experiments in a similar
way as the spread of ensemble forecasts is verified with the error of the ensemble mean or the error of the un-
perturbed control forecast. The equivalent of the spread-skill relationship for the adaptive observation problem
is a change of forecast uncertainty – change of skill relationship. Such a kind of verification has been presented

1 Fronts and Atlantic Storm-Track EXperiment (1997); The North Pacific Experiment (1998); Winter Storm Reconnaissance Pro-
gram (1999-2003), THORPEX Observing System Test or THORPEX REgional Campaign (2003)

2About 10–40 dropsondes per case constituted the additional targeted observations in the past campaigns.
3that is with real observations, see e.g.Hansen and Smith(2000) or Leutbecher et al.(2002) for attempts to quantify optimality with

observations taken from a simulated truth.
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by Majumdar et al.(2001) for the Ensemble Transform Kalman filter technique (ETKF). The ETKF has been
introduced by (Bishop et al.2001) for observation targeting. The underlying assimilation scheme is computa-
tionally very efficient as it can work with subspaces of the dimension of the ensemble. The scheme belongs
to the wider class of the Ensemble Square Root filters (Tippett et al.2003). In their evaluation of the ETKF
targeting approach,Majumdar et al.(2001) noted that the lack of consistency between the ETKF assimilation
scheme on which the targeting is based and the operational 3D-Var used at NCEP to assimilate the additional
dropsonde observations is a likely cause of discrepancies between the predicted reductions of forecast error
variance and the actual realizations.

In order to predict changes of forecast uncertainty, knowledge is required about the statistics of initial condition
errors, and of how they change due to the assimilation of additional observations, and about the perturbation
dynamics from the assimilation time to the forecast verification time. All techniques that are currently feasi-
ble for operational NWP models assume either explicitly or implicitly that the perturbation dynamics can be
approximated by a linear operator. Ensemble based techniques as the ETKF assume that linear combinations
of ensemble perturbations are a solution of the model equations. For linear perturbation dynamics and Gaus-
sian error statistics, optimal state estimation can be achieved with the extended Kalman filter. As outlined by
Berliner et al.(1999) the extended Kalman filter is also the appropriate technique to objectively select optimal
sites for additional observations. Current developments in data assimilation in general and in observation tar-
geting in particular can be seen as an attempt to approximate the extended Kalman filter. Approximations of
the extended Kalman filter are necessary due to the large dimension of the state space of NWP models. Several
methods that aim at improving approximations of the extended Kalman filter can be found in these proceed-
ings. One aim of this contribution is to explain and to verify approximate versions of the extended Kalman filter
for observation targeting in the context of a low-dimensional system. Throughout this paper a perfect model
scenario will be adopted, the contribution of model errors to forecast errors will be neglected.

Adjoint-based techniques such as sensitivity to initial conditions and singular vectors have been proposed to
identify sensitive regions of the atmosphere in which additional observations should be taken (e.g.Palmer
et al. 1998; Montani et al.1999, and references therein). Two extensions of these techniques that actually
account for the assimilation of additional observations are the Kalman filter sensitivity and the Hessian reduced
rank estimate. The former, proposed byBergot and Doerenbecher(2002), predicts forecast error variance in
the direction of an adjoint sensitivity to the model state. The latter, introduced byLeutbecher(2003), predicts
forecast error variance in the direction of a subspace of leading Hessian singular vectors. The Hessian reduced
rank estimate can be seen as a special version of a more general class of singular vector based reduced rank
techniques of predicting forecast error variance. We will start with the more general case. The method is
explained and illustrated with the Lorenz-95 system, which may be one of the simplest dynamical systems
that permits the construction of some nontrivial examples. Section 2 explains the methodology and section 3
contains the results. The Hessian reduced rank estimate in the context of an operational NWP framework is
explained in section 4. The paper concludes with a discussion in section 5.

2 Adaptive observations in the Lorenz 95 system — Methodology

In his lecture at the 1995 predictability seminar at ECMWF, Edward Lorenz introduced a chaotic dynamical
system that has similar error growth characteristics as operational NWP systems. I will refer to it from now on
as L95. The L95-system is attractive as its dynamics are sufficiently complex and yet it is a low order system
in which some advanced techniques can be tested easily. Therefore, the system is an ideal starting point for
studies in data assimilation and predictability.
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2.1 L95-dynamics

Here, we use a 40-variable version of the L95-system given by

dxi

dt
=−xi−2xi−1 +xi−1xi+1−xi +F, (1)

wherei = 1,2. . .40, and cyclic boundary conditions are usedx0 = x40, x−1 = x39, x41 = x1. The magnitude
of the forcing is set toF = 8. Lorenz (1995) concluded that similar error growth characteristics to operational
NWP systems are obtained if a time unit in the L95-system is associated with 5 days. This scaling will be
used throughout this paper. Solutions of the system are obtained by numerical integration with a fourth-order
Runge-Kutta scheme using a 3-hour time-step(∆t = 0.025). For the chosen forcing, the system has 13 positive
Lyapunov exponents, the largest corresponds to a doubling time of 2.1 days. The dynamics is the same for
each variable as (1) is invariant under the transformationi→ i +1. Variables fluctuate about the mean in a non-
periodic manner with a climatological standard deviation ofsclim = 3.6. A perturbation of the initial condition
will grow with time and its leading edge propagates “eastward” (to higher indices) at a speed of about 25
degrees/day. SeeLorenz(1995) andLorenz and Emanuel(1998) for a more detailed discussion of the system.

The system has been used previously for adaptive observation studies.Lorenz and Emanuel(1998) have com-
pared various strategies for adding observations using a direct insertion data assimilation scheme.Berliner
et al. (1999) have illustrated observation targeting based on the extended Kalman filter with the L95-system.
Hansen and Smith(2000) compared the performance of various targeting strategies for both direct insertion and
ensemble Kalman filter assimilation. They conclude that “for analysis errors of sufficiently small magnitude,
dynamically based selection schemes will outperform those based only upon uncertainty estimates; it is in this
limit that singular vector-based adaptive observation strategies will be productive.”

2.2 Observing network

Now, the observing network is described that is used for the predictability experiments with the L95 system in
this study. Observations become available every 6 hours. The observations are based on model states from a
long integration of Eqn. (1) using the same setting as for the forecast model4. This integration is referred to
as truth or truth run. Observed values are constructed by adding noise to the values taken from the truth run.
The noise represents unbiased and uncorrelated normally distributed errors. The purpose is to mimic to some
extent the inhomogeneous atmospheric observing network. Therefore, the 40-variables are divided into ocean
points (i = 1−20) and land points (pointsi = 21−40, cf. Fig.1). Over land, there is an observation at every
location with a standard deviation of observation error of 0.05sclim. Over the ocean, observations are available
at “cloud-free locations” with an error standard deviation of 0.15sclim. Clouds depend deterministically on
the statex of the system but in such a way that the space-time pattern looks like a random process (Fig.2).
The probability for occurrence of cloud is 0.7. Land and ocean observations together constitute theroutine
observing network.

For the adaptive part of the observing network, a single additional observation with the error characteristics of
a land observation is considered. The aim of adding this observation over the less well observed ocean is to
improve the forecast at a chosen range of up to 5 days for the western part of the continent (sites 21–28), which
will be referred to as “Europe” (Fig.1). The evaluation of the targeting techniques is based on a 1000 day
period during which additional observations (with 0.05sclim) are available at every ocean site once daily5.

4That means that a perfect model scenario is adopted.
5A major observing campaign also termed theSecondHemisphericAdaptive observing,Predictability-Intercomparison and

ResearchExperiment.
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Figure 1: The 1D-world of NWP in the L95-system

Next, we will formulate the data assimilation and observation targeting methodologies that we will compare.
We begin with an extended Kalman-filter in section 2.3. Section 2.4 deals with the reduced-rank approximation
of the Kalman filter for the observation targeting part. Finally, a version of the reduced rank estimate that
uses constant climatological background error covariances is introduced in section 2.5. Impact experiments use
either none (control) or one of the additional observations and always start from the control-background fields
and covariances.

2.3 Data assimilation and observation targeting with the extended Kalman filter

The covariance evolution in the Kalman filter is described by an alternating sequence of forecast steps and
analysis updates. The covariance update can be written as(

Pa
j

)−1 =
(

Pf
j

)−1
+HT

j R
−1
j H j , (2)

where the indexj denotes objects at timet j . Otherwise, the notation follows the standard introduced byIde
et al.(1997). The covariance forecast from timet j to the next assimilation cycle att j+1 is given by

Pf
j+1 = M j(∆t) Pa

j MT
j (∆t)+Q, (3)

whereM j(∆t) denotes the propagator of the tangent-linear model from timet j to time t j+1 = t j + ∆t. It is
necessary to include a small model error termQ in order to avoid filter divergence. The nonlinear model is
perfect but the linear model used in the extended Kalman filter is imperfect due to linearisation errors6.

6The model error covariance matrix is represented with a diagonal matrix withqkk = 5× 10−3
sclim for ocean points andqkk =

5×10−4
sclim for land points. At the western seaboard there is a smooth transition ofq from ocean values to land values to account for

the eastward advection of larger errors.
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Figure 2: Hovmuller diagram of cloud cover (white) affecting the data coverage of observations over the
ocean (sites 1–20)

The application of the Kalman filter to observation targeting requires an extension of the forecast range and
variance localisation. The linear prediction of the forecast error variance in the verification region at time
t j+` = t j + `∆t is then given by the trace of

LEuP
f
j+`

LT
Eu = LEuM j(`∆t)Pa

j MT
j (`∆t)LT

Eu, (4)

where the contribution of the model error termQ has been neglected. The operatorLEu denotes the projection
operator for the verification region ((LEu) j j = 1 for j = 21,22, . . . ,28 and 0 otherwise).

The prediction of changes of forecast error variance in the verification region due to an additional observation
at locationi proceeds similarly. From now onwards, there is no need to refer to different assimilation cycles.
Therefore, the time indexj is dropped. New indicesr and i are introduced to refer to the routine observing
network and an additional observation at locationi, respectively. Indexi is used in two ways: The 40-by-1 and
1-by-1 matricesH i ,Ri refer to observation operator and error variance “matrix” for the additional observation
at locationi whereas the symbolsPa

i ,P
f
i

denote the covariance matrices for the routine observing network
augmented by the additional observation at sitei. The effect of the additional observation on the analysis error
covariance matrix valid at timet j is described by

(Pa
i )
−1 =

(
Pf

r

)−1
+HT

r R−1
r Hr +HT

i R−1
i H i = (Pa

r )
−1 +HT

i R−1
i H i (5)

Note, that the covariance update (5) starts from the routine forecast error covariance matrixPf
r valid at timet j .

This is consistent with the assumption that the modification of the observing network is isolated in time. The
covariance matrix is evolved fromt j to t j+` via

Pf
i = MPa

i MT, (6)

whereM denotes the propagator fromt j to t j+`. The reduction of forecast error variance in the verification
region that is due to an additional observation at positioni is then given by

r i = trace
(
LEu

(
Pf

r −Pf
i

)
LT

Eu

)
. (7)

The optimal position for an adaptive observation is the one that maximises (7).
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2.4 A reduced rank approximation of the covariance forecast step in the Kalman filter

Approximations to the Kalman filter are important in order to develop techniques that are feasible for current
NWP models with state space dimensions ranging from 105 to 107. In this section, we explore an approximation
to the covariance forecast step (Eqn.3). for the prediction used for planning the adaptive observations. For the
assimilation of data, an extended Kalman filter is used as in the previous section. The approximation reduces
the rank of the problem by predicting the variance of forecast errors only in a subspace of leading singular
vectors. Formally, this means that trace(LEuP

f LT
Eu) is replaced by trace(ΠnLEuP

f LT
EuΠT

n), whereΠn denotes
a projection into then-dimensional subspace of leading singular vectors ofLEuM . The singular vectors are
computed with the inverse of the routine analysis error covariance matrix(Pa

r )
−1 as initial time metric because

these singular vectors evolve into the leading eigenvectors of the forecast error covariance matrixLEuP
f
r LT

Eu.
We will use the notationVn = (v1 . . .vn) for the matrix containing the leadingn initial singular vectors as
columns.

For the routine observing network, the analysis error covariances in the singular vector subspace can be rep-
resented byVnVT

n because the singular vectorsv j are orthonormal with respect to the routine analysis error

covariance metric(Pa
r )
−1. Intuitively, it makes sense that only initial errors in the direction of the initial sin-

gular vectors need to be accounted for if one is interested in the forecast error in the direction of the evolved
singular vectors. A formal proof is given inLeutbecher(2003). For the augmented observing network, the
analysis error covariances are represented by an outer product of transformed singular vectorsVnΓiΓ

T
i VT

n . The
n-by-n transformation matrixΓi is an inverse square root of the matrix

Ci = VT
n (Pa

i )
−1Vn = In +VT

nHT
i R−1

i H iVn. (8)

The matrixCi is the modified analysis error covariance metric expressed in the basis of the singular vectors.
This representation of the analysis error covariances involves an approximation of the full covariance matrix by
a block-diagonal form — seeLeutbecher(2003) for further details. Using these representations of the analysis
error covariances, the forecast error variance in the verification region turns out to be

trace(ΠnLEuP
f LT

EuΠT
n) =

{
∑n

j=1s
2
j for the routine network and

trace(ΓTdiag(s2
1 , . . . ,s2

n)Γ) for the modified network.
(9)

Here,s j denotes the singular value of singular vectorv j .

2.5 Approximation using a reduced rank covariance prediction and a climatological back-
ground error covariance matrix

The next step of approximating the full Kalman filter is the replacement of the predicted forecast error covari-
ance matrixPf in the assimilation by a static matrixB (Eqn.2). This approximation will be used consistently
for the data assimilation part and the targeting part. Subsequently, we will refer to it as the OI-assimilation
scheme7. Variational assimilation schemes can be viewed as implementations of the Kalman filter that are ini-
tialised with a fixed static background error covariance matrixB at the initial time of each assimilation cycle.
With this approximation of the background error covariances, the analysis error covariance matrix is given by

A−1 = B−1 +HTR−1H. (10)
7OI-schemes for NWP applications also select observations. This aspect is not considered here.
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range (d) 0 1 2 3 4 5
KF 0.11 0.17 0.25 0.38 0.57 0.80
OI 0.33 0.49 0.74 1.04 1.38 1.74
sclim = 3.6, so,land = 0.18, so,ocean= 0.54

Table 1: Kalman filter (KF) versus optimum interpolation (OI) performance, global rms errors

For the L95-system, the background error matrix has been obtained from forecast-minus-truth8 differences from
the 1000-day period9. The diagnosed estimateB(n) depends on the estimateB(n−1) used in the assimilation.
Superscripts refer to the iteration number. The iterations are started with a diagonal matrixB(0). A few iterations
are required until the estimate of the background error covariance matrix converges. The approximation of the
background error covariances is combined with the reduced rank technique introduced in the previous section:
Forecast error variances are predicted in a subspace of leading singular vectors. The motivation for this twofold
approximation is that it leads to a system that is similar to the current implementation of the Hessian reduced
rank estimate for the ECMWF forecasting system. The latter will be discussed in section 4.

3 Adaptive observations in the Lorenz 95 system — Results

Now, we turn to the verification of the variance predictions obtained with the three different targeting tech-
niques. Results are based on a 1000-day period. There are 21 different forecasts on each day: The control
forecast and the 20 forecasts using an additional observation at sitei, i = 1, . . . ,20. The latter always start
from the control forecast as background. The results obtained with the Kalman filter will be compared with the
results obtained with the two reduced rank approximations. Due to the low dimensionality of the system, we
will consider only the rank 1 version of the reduced rank approximations. At the end of the section, the impact
of the additional targeted observations will be discussed.

3.1 Skill of forecast systems using the routine observations

Before discussing results of the observation targeting experiments, it is of interest to compare the skill of
the forecast system using an OI assimilation scheme with that of the forecast system using a Kalman filter
assimilation scheme. Global rms errors of analyses and forecasts are given in Tab.1. The Kalman filter
analyses and short-range forecasts are about three times more accurate than the optimum interpolation analyses
and forecasts. The 1-day forecast error of the Kalman filter system is about as large as the observation error of
a land observation and the 1-day forecast error of the optimum interpolation system is similar to the error of an
ocean observation.

3.2 Prediction of forecast error variance reductions

The goal of targeting techniques — as advocated throughout this paper — is to make skilful predictions of
how forecast error variance is reduced due to various upgrades of the observing system. A prerequisite for this
is the prediction of forecast error variances. Forecast error variance prediction is one of the classical aims of

8truth is defined in section 2.2.
9This technique should provide an upper bound on forecast errors for all techniques using a static representation ofB because truth

is unknown and further approximations ofB are required for operational NWP systems. See Mike Fisher’s contribution for a description
of howB is estimated and represented in operational NWP systems.
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Figure 3: Mean squared error versus Kalman filter variance predictions. 2 day forecast range, verification
region “Europe”. Size of bins. . .

ensemble prediction. The corresponding verification diagrams are referred to as spread-skill diagrams. In the
linear regime, there is no need for a Monte-Carlo approach. In the Kalman filter, the variances are evolved
explicitly using the tangent-linear model via (4). Figure3 shows the verification of this variance prediction for
the 2-day forecast for Europe for the system that uses the routine observations only. Cases are stratified with the
predicted 2-day forecast error variance in the verification region and grouped into bins of 50 forecasts each in
order to construct the diagram. The mean predicted variance in each bin is plotted on the abscissa whereas the
mean squared error in each bin is plotted on the ordinate. The latter constitutes asample estimate of the actual
variance. For a perfect system, all points will scatter close to the diagonal. The scatter around the diagonal will
decrease with increasing bin size. There appears to be a tendency for slightly too large variance predictions.
This may be due to a conservative estimate of the model error term in the Kalman filer and due to nonlinear
error saturation effects.

Now, we turn to the predictions of forecast error variancereductions. We begin with the (full rank) Kalman
filter and then turn to the two levels of approximation in subsequent sections.

3.2.1 Kalman filter predictions

The predictions of forecast error variance reductions in the full rank Kalman filter are based on Eqn. (7). The
verification of these predictions proceeds similarly to the verification of the variance predictions themselves.
Cases are now stratified by the predicted reduction of forecast error variance. Figure4 shows the verification
for the 2-day forecast over “Europe” for bin sizes of 50 and 250. The number of bins in Fig.4a is larger than
in Fig. 3 because there are now 20 realizations of a variance reduction each day. However, as the background
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error is the same in these realizations the data are not independent. In consequence the relationship between
predicted and realized reductions in forecast error variance is still quite noisy for a bin size of 50. The scatter
is considerably reduced at a bin size of 250. There is a small tendency to over-predict forecast error reductions.
Apart from this minor discrepancy, the Kalman filter based prediction of forecast error variance reductions is
skilful. We note that large sample sizes may be required for the verification.

3.2.2 Kalman filter-rank-1 predictions

Now, we turn to the verification of the approximate version of the Kalman filter targeting that uses rank reduc-
tion based on a subspace of leading singular vectors. Only the rank 1 case is considered here. The reduction
of the total mean square error in the verification region is compared with the predicted reduction of forecast
error variance in the subspace of the leading singular vector. The verification for forecast day 2 is plotted in
Fig. 5. The rank-1 predictions of variance reduction are of a similar magnitude as the full-rank predictions.
The projection of forecast errors in the direction of the leading singular vector will result in smaller variances
for every forecast: the one using the routine observations and each one using an augmented observing network.
However, the block-diagonal approximation of the analysis error covariance matrix for the modified observing
network results in an underestimation of the associated forecast error variance. The net effect is a moderate
over-prediction of forecast error variance reductions. This appears plausible as the forecast error explained by
the leading singular vector is quite large in this low dimensional system.

3.2.3 OI-rank-1 predictions

Next, we verify forecast error variance reductions obtained with the rank-1 system that uses climatological
background error covariances. From the perspective of current NWP applications, this is the most interesting
step as the similar systems can be designed for operational NWP systems. The Hessian reduced rank estimate,
which will be discussed in section 4, is one example. Predicted and actual reductions of forecast error variance
in the L95-system are compared in Fig.6. The average realized mean square error reductions increase mono-
tonically with the predicted rank 1 error variance reductions. Generally, the OI-rank 1 system significantly
over-predicts the variance reductions. This feature could be removed by an empirical scaling of the predicted
variance reductions.

The different performance of the optimum interpolation system (OI) and the Kalman filter system (KF) has two
causes: the different covariance estimate and the different accuracy of the trajectory upon which the lineari-
sation is based. As mentioned previously, the trajectory of the OI-system has about a three times larger error
than the trajectory of the KF-system. In order to disentangle the two causes one can compare with Kalman
filter results for longer forecast ranges. The 4-day error of the KF-system has a similar magnitude as the 2-day
error in the OI-system (Tab.1). The verification of forecast error variance reductions is plotted in Fig.7. We
notice a useful monotonically increasing relationship. There is evidence for nonlinear error saturation effects
for predicted reductions of forecast error variance larger than 1 but no sign of saturation for reductions smaller
than 0.5. In the OI-system, the overestimation of variance reductions is independent of the predicted reduc-
tion. This suggests that the constant background error covariance estimate is the main cause for the systematic
overestimation of variance reductions in the OI-system.
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Figure 4: Verification of the predictions of forecast error variance reductions due to additional observations
(Kalman filter). Top panel: bins of 50 forecasts; bottom panel: bins of 250 forecasts
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Figure 5: Evaluation of the Kalman Filter rank-1 predictions of forecast error variance reductions due to
additional observations. 2-day forecast and bins of 50 forecasts.
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Figure 6: Verification of 2-day forecast error variance reductions: OI-rank 1. 2-day forecast and bins of 250 forecasts.
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Figure 7: Verification of Kalman filter rank-1 predictions of forecast error variance reductions due to additional
observations. 4-day forecast and bins of 250 forecasts.

3.3 Impact of adaptive observations on the forecast error distribution

Figure8 illustrates the fact that the optimal site for an additional observation depends on the underlying assim-
ilation scheme. Next, we look at the impact that the adaptive observation has on the distribution of forecast
errors (Fig.9). A hard test for any targeting scheme that adapts positions for additional observations on a daily
basis is whether it outperforms a scheme that adds an observation at the best fixed site. Based on Fig.8, site 19
and 20 are selected as best10 fixed sites for the KF and OI-system, respectively. For both systems, the forecasts
using targeted observations are significantly better than the forecasts using the fixed additional observation or
the forecast using routine observations only. Further, we note that the rank-1 KF targeting and full-rank KF-
targeting yield almost identical reductions of the forecast error distribution. The forecast improvement obtained
with an additional observation at a fixed site in the OI-system is fairly small compared to the improvement ob-
tained with the rank-1 OI targeting. Note, that observation targeting is particularly efficient in reducing the risk
for particularly large forecast errors, say the largest 5–10% of errors.

4 Reduced rank prediction of forecast error variance reductions in an opera-
tional NWP context

The reduced rank methodology for predicting the effect of additional observations on forecast uncertainty has
been introduced in the context of a low-dimensional system in section2. Now, we will see how this idea can be

10Another choice would be the site that actually leads to the largest forecast error reduction.
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Figure 8: Position of targeted observation sites using the KF for assimilation and targeting (a) and using OI for
assimilation and OI-rank1 for targeting (b).
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Figure 9: Impact of adaptive observations on the 2-day forecast error distribution. Panel (a) KF assimilation and
KF/KF-rank-1 targeting; panel (b) OI assimilation and OI-rank-1 targeting.
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applied in an operational NWP context. First, the implementation of a reduced rank estimate of forecast error
variance based on an incremental variational assimilation scheme will be explained. Then, three examples will
be given to illustrate the scope of this method.

4.1 Incremental Var and the Hessian reduced rank estimate

The ECMWF forecast system uses an incremental 4D-Var scheme. The analysis is found by minimising a cost
function

J(x) =
1
2

xTB−1x+
1
2
(Hx−d)TR−1(Hx−d),

where the vectorx denotes departure from the background and the vectord denotes departures of the observed
values from the background interpolated to observations. The Hessian of the cost function of the variational
assimilation scheme yields an estimate of the inverse of the analysis error covariance matrix.

∇∇J = B−1 +HTR−1H

We assume here thatJ is quadratic11. Therefore, the Hessian applied to an arbitrary vector can be computed
exactly as finite difference of gradients.

Singular vectors computed with the routine Hessian12 as initial time metric are used to define a reduced rank
estimate of forecast error variance reductions. These vectors are referred to as Hessian singular vectors.Bark-
meijer et al.(1998) introduced Hessian singular vectors and showed how they could be obtained from the
iterative solution of a generalised eigenproblem. The reduced rank estimate of forecast error variance is defined
as the variance of forecast errors projected into the subspace of routine Hessian singular vectors.Leutbecher
(2003) introduced it and proposed the name Hessian reduced rank estimate. In order to quantify the effect of
additional observations on the forecast error in the subspace of the routine Hessian singular vectors, it is neces-
sary to compute the modified Hessian in the subspace of the leadingn routine Hessian singular vectors. Here,
n is the rank of the estimate. The modified Hessian in the subspace of the leadingn routine Hessian singular
vectors is denoted by then-by-n matrix C. An efficient computation of this matrix is possible via

Ci j = vT
i ∇∇Jmodv j = vT

i

(
∇∇Jroutine+HT

aR−1
a Ha

)
v j

= di j + (Havi)
T R−1

a Hav j .

The main computational burden is the calculation of the routine Hessian singular vectorsv j . To compute
the matrixC it is sufficient to apply the observation operator for the additional observationsHa to each of
the singular vectors. Then, the reduction of forecast error variance in the singular vector subspace is readily
computed as

trace
([

I −C−1]diag(s2
1 . . .s2

n)
)
,

where thes j denote the singular values of the routine Hessian singular vectors.
11This is the case for linearised observation operators. Note that the cost function used in the operational assimilation contains some

non-quadratic terms, e.g. the one that represents variational quality control. The non-quadratic terms are neglected in the estimate of
the analysis error covariance matrix used here.

12we use routine Hessian to refer to the metric associated with the routine observing network. Similarly, we will use modified
Hessian to refer to the Hessian associated with the modified observing network consisting of the routine network and a set of additional
observations.
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Figure 10: Flight tracks considered during the Winter Storms Reconnaissance Program. Dots correspond to hypo-
thetical dropsonde sounding locations.

4.2 Ranking of flight tracks

The Hessian reduced rank estimate can be employed to select the best observing network upgrade among a finite
number of feasible options. An example is the design of a flight track to deploy dropsondes over the ocean with
the aim to improve a short-range forecast over the continent downstream. At NCEP, the Ensemble Transform
Kalman filter is used operationally to select the best track for a targeting flight. Figure11shows an example of
the predictions of forecast error variance reductions obtained with the Ensemble Transform Kalman filter and
with the Hessian reduced rank estimate for a case during the last Winter Storms Reconnaissance Program.

The histogram provided by the Ensemble Transform Kalman filter is considerably flatter than the histogram
obtained with the Hessian reduced rank estimate. Flights from Hawaii are generally expected to be more
effective in reducing forecast error than those from Alaska according to the Hessian reduced rank estimate. In
contrast, the Ensemble Transform Kalman filter shows little difference between the group of flight-tracks from
Hawaii and the group from Alaska. However, the ordering of flight tracks obtained within each group is not
too dissimilar for the two targeting techniques. The Atlantic TReC (2003) offers the opportunity for a more
rigorous comparison between the Ensemble Transform Kalman filter and the Hessian Singular vectors.

4.3 Objective diagnosis of sensitive areas from singular vectors

Singular vectors have been used for observation targeting since the FASTEX experiment in 1997.Montani et al.
(1999) andBuizza and Montani(1999) suggested to diagnose regions in which to place additional observations
by means of a function defined as weighted average of the leadingn singular vectors. They proposed to use the
singular values as weights to give more attention to those errors that contribute most to the forecast error in the
verification region at verification time.Montani et al.(1999) based the function on temperature perturbations
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(a)

(b)

flight track number

Figure 11: Ranking of flight tracks using the Ensemble Transform Kalman Filter (a) and the Hessian reduced rank
estimate (b). The value of each bar corresponds to the reduction of forecast error variance associated with a
deployment of about 20 dropsondes along a flight track. The additional observations are aimed at improving the
48-hour forecast over Alaska, valid time: 6 Feb 2003, 0 UT, targeted observation time: 4 Feb 2003, 0 UT.
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Figure 12: Comparison of two ways toobjectivelydiagnose a sensitive region from a set of leading singular vectors:
The reduction of forecast error variance as function of the position of an additional dropsonde location is shaded; the
function proposed by Buizza and Montani (1999), the singular-value-weighted average of the vertically integrated
total energy, is contoured. Verification region over Alaska, 48-hour forecast range, observation time 4 Feb. 2003,
0 UT.

of the singular vectors andBuizza and Montani(1999) based their function on the vertically integrated total
energy of the singular vectors. Although this method allows to objectively diagnose a “sensitive” region from
the singular vectors, a thorough theoretical justification for the choice of this diagnostic function has been
lacking. With the Hessian reduced rank estimate this question can be addressed. Let us assume that we want to
optimise the location of a couple of dropsondes. Then, the appropriate objective measure should be the forecast
error variance reduction due to the use of an additional sounding at a given location. A plot of the forecast error
variance reduction as function of the sounding location will indicate the region where the additional observation
is likely to yield the largest forecast improvement. It turns out that the maps of forecast error variance reduction
agree remarkably well with maps of the weighted average of the vertically integrated total energy of the singular
vectors (Fig.12). Thus, in retrospective the choice of the function byBuizza and Montani(1999) is justified.

4.4 Comparison of different observation types

Up to now, adaptive observation campaigns were focused on targeting in situ observations, predominantly
dropsondes deployed from research aircraft over the oceans. In principle, one can apply targeting strategies to
any kind of observation13. Furthermore, targeting techniques may become a tool for adaptive data selection
strategies. These could help to cope with the huge stream of satellite data that will be available for NWP in
a few years from now. In this context, the question arises whether the abundance of advanced satellite data
will eliminate the need for targeted in situ observations. One may conjecture that adaptive in situ observations

13A first attempt to widen the scope of observation targeting is undertaken in the Atlantic THORPEX regional campaign Oct-Dec
2003, where additional soundings from ASAP ships, regular land stations and additional data from the AMDAR aircraft will be taken.
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may still be useful to constrain the analysis below cloud where satellite observing capabilities are more limited.
The Hessian reduced rank estimate can be employed to address that issue14. Forecast error variance reductions
can be determined for different observation types such as targeted dropsondes and satellite radiances in the
sensitive region and its surroundings. An example of such a comparison is presented in Fig.13. The 20
dropsonde locations are selected to sample the target region well15 whereas the HIRS data are not used in a
cloudy region, which is associated with a front traversing the target region. In this case, the dropsondes are
more efficient in constraining the forecast error over Europe at a range of 2 days than the HIRS radiances.
However, the HIRS data may be important for constraining the error of subsequent analyses and forecasts by
improving the first guess in the vicinity of the frontal zone. However, the presented methodology is not capable
of quantifying improvements arising from an improved first guess field.

5 Discussion

Now, we will discuss the factors that are likely to affect the skill of the predictions of forecast error variance
reductions for an operational NWP system.

5.1 Error dynamics

The estimates of forecast error variance are based on linear error dynamics. There are two issues here. First, we
note that the tangent-linear model is not the tangent-linear of the nonlinear forecast model. The tangent-linear
model and its adjoint are based on simplified version of the model — simplified in terms of the spatial resolution
and in terms of the representation of parameterised physical processes16. Advances in the formulation of the
tangent-linear and adjoint models should result in improved variance predictions. A test of the sensitivity of
the observation targeting guidance to the spatial resolution and the representation of moist processes in the
tangent-linear model will be performed during the Atlantic TReC17. Second, the validity of the tangent-linear
assumption is a contentious issue.Gilmour et al.(2001) conclude that the tangent-linear assumption is probably
not useful beyond 24 h. But their measure of nonlinearity is dominated by small scales. The results ofReynolds
and Rosmond(2003) are more optimistic. They find that singular vectors can be useful at a range of up to 72
hours. Their diagnostic is similar to that ofGilmour et al.(2001) but the scale-dependence is studied explicitly.
Furthermore, the diagnostic is applied in the space of the singular vectors.

5.2 Covariance estimates

The skill of the forecast error variance predictions depends on the quality of the background error covariance
estimate. This has been illustrated by the comparison of the Kalman filter and OI experiments for the L95-
system. Several presentations in this seminar deal with the estimation and representation of the background
error covariances in data assimilation schemes18. Improvements in the covariance representation used in the

14different parts of the observing network are observing system experiments in which data from part of the network are denied. These
experiments are computationally demanding as many assimilation cycles need to be run for each observing network configuration. The
interpretation of individual cases is not very meaningful as results depend on the actual observation errors and background errors. The
Hessian reduced rank estimate can be used to complement traditional observing system experiments. It has the advantage that it yields
meaningful results for individual cases as it is a dynamic-statistical technique that provides expectation values rather than realizations.

15This is a hypothetical deployment.
16see presentation by Janiskova in this volume.
17Atlantic THORPEX Regional Campaign, Oct–Dec 2003.
18see, e.g., presentations by Fisher, Farrell and Ioannou, Houtekamer.
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Figure 13: Comparison of the reduction of forecast error variance (total energy in subspace of leading 10 singular
vectors) due to 20 targeted dropsondes and due to HIRS radiances (a). The data coverage for the dropsondes and
the radiances is plotted in panels (b) and (c), respectively. The shading in (b,c) is the sensitive region as diagnosed
from the leading Hessian singular vectors.

data assimilation are likely to be also beneficial for the associated targeting technique.

Correlated observation errors are largely unaccounted for in present assimilation schemes. Correlations of
errors between channels and in space are expected for many satellite data, such as radiances and atmospheric
motion vectors (Bormann et al.2003). Predictions of forecast error variance reductions due to dense data with
suspected error correlations should be interpreted with caution as long as these observation error correlations
are not accounted for in the assimilation and targeting schemes. A possibility to address the problem without
actually including correlated observation error in the assimilation scheme is optimal thinning of dataLiu and
Rabier(2002).

The targeting technique presented here faces one additional challenge that is not shared with the data assim-
ilation schemes. It is necessary to predict the spatial distribution of used routine observations19. The spatial
distribution of observations (and their error characteristics) have to be known before the observations are actu-
ally taken. For parts of the network, the day-to-day variability is small so that the latest available data coverage

19that is after the quality control steps.
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provides a useful proxy for the coverage in the next few days. However, for satellite data affected by cloud it
is a nontrivial task to predict the future data coverage. The relevance of this issue will grow with the amount
and accuracy of satellite data used. It is conceivable that algorithms have to be developed that predict the data
coverage based on forecast model cloud.

5.3 Rank Reduction

As the dimension of the singular vector subspace is increased the reduced rank estimate of forecast error vari-
ance converges to the prediction of forecast error variance that would be obtained with the Kalman filter. The
question arises how many singular vectors are required to reliably predict the forecast error variance reductions.
For the L95-system, one singular vector was sufficient. For the NWP problem, the answer will depend on the
size of the verification region. A trivial upper bound for the dimension of the subspace is the number of degrees
of freedom20 in the verification region. A more useful bound can be obtained by looking at the fraction of
forecast error explained by then leading singular vectors.Cardinali and Buizza(2003) find for 10 NORPEX
cases that the leading 10 total energy singular vectors explain approximately 40% of the total forecast error in
the verification region. Thus it appears that of the order of 10–100 singular vectors are required for a reliable
prediction of forecast error variance reductions. In addition, there may be a necessity for updating the sub-
space in a sequential approach. Assume that already a part of the envisaged network upgrade constrains the
error in the routine Hessian singular subspace well. Then, new singular vectors should be computed with the
Hessian metric using the routine observations and the partial network upgrade in order to plan further adaptive
observations. The necessity for such a sequential approach will depend on the size of the adaptable part of the
observing network and on the dimension of the subspace

6 Conclusions

Adjoint-based tools to predict changes of forecast error variance due to modifications of the observing net-
work have been discussed in this paper. The methods comprise the Kalman filter and approximations of it.
The evaluation of these techniques was illustrated with experiments using the Lorenz 95 system. The rank-1
targeting technique based on the Kalman filter turned out to be as skilful as the full-rank Kalman filter. The
rank-1 method that uses climatological background error covariances is also skilful. It is a targeting technique
consistent with the used OI-assimilation. However, there appears a potential for improvements by accounting
for flow-dependent aspects of the error statistics.

An objective for any targeting technique should be that it is based on analysis error covariance statistics which
are consistent with the covariance estimates employed in the assimilation scheme which will use the adaptive
observations. The Hessian reduced rank estimate is a targeting technique that achieves consistency with the
4D-Var assimilation scheme21.

The verification of targeting techniques for operational NWP models, such as the Hessian reduced rank esti-
mate, is a major outstanding task. Due to the statistical nature of the verification, large sample sizes are required.
Data denial experiments may be better suited for the evaluation of targeting techniques than experiments with
existing targeted observations for two reasons. The number of cases where targeted observations are available
may be too small. Furthermore, for almost all of these cases deployments of additional observations outside
the identified sensitive regions are lacking.

20number of grid points times number of variables. For a typical verification region with 2000 km horizontal extension and a T42
truncation for the singular vectors, this corresponds to about 6×103 degrees of freedom.

21to be precise: The inner loop of a 4D-Var scheme that uses a quadratic approximation of the cost function.
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