

Realism of sensitivity patterns

Lars Isaksen ECMWF

Acknowledgements to Jan Barkmeijer (now KNMI) and Mike Fisher

- Define sensitivity patterns
- Define "Key analysis errors"
- Discuss links between the structure and realism of sensitivity patterns and data assimilation
- Show vertical and horizontal structure of sensitivity patterns
- Show links between sensitivity patterns and Eady index
- Compare sensitivity patterns and sensitivity perturbed forecasts against observations
- Conclusions

Method developed at MeteoFrance/ECMWF primarily by Florence Rabier

F. Rabier et al. "Sensitivity of forecast error to initial conditions" Q.J.R.Meteorol.Soc. (1996),122, pp. 121-150.

- Use 48 hour forecast error as penalty term in the cost function
- Define a norm to enable calculation of the difference between two atmospheric states
- Use adjoint of tangent linear model to determine perturbation at initial time

The diagnostic function to be minimised:

$$J = 0.5 < \mathbf{P}(\mathbf{x}_{t}^{fc} - \mathbf{x}_{t}^{ver.ana}), \mathbf{P}(\mathbf{x}_{t}^{fc} - \mathbf{x}_{t}^{ver.ana}) > \mathbf{or}$$

$$J = 0.5 < \mathbf{P}(\mathbf{M}(\mathbf{x}_0) - \mathbf{x}_t^{\text{ver.ana}}), \mathbf{P}(\mathbf{M}(\mathbf{x}_0) - \mathbf{x}_t^{\text{ver.ana}}) >$$

where **P** is the projection on the area (30°N;90°N) **M** represents the non-linear model integrated for 48 hours (time t) $\mathbf{x}_{t}^{\text{ver.ana}}$ represents the verifying analysis valid at 48 hour forecast time (t)

A norm is required to quantify the forecast error.

An often used definition is the square energy norm:

$$<\mathbf{x},\mathbf{x}>=0.5\int_{0}^{1}\int\int_{A}(u^{2}+v^{2}+R_{d}T_{r}(\ln p_{s})^{2}+T^{2}C_{p}/T_{r})dA(\partial p_{r}/\partial \eta)d\eta$$

The gradient of J at time t can be written as:

$$\nabla J_t = \mathbf{P}(\mathbf{x}_t^{\text{fc}} - \mathbf{x}_t^{\text{ver.ana}})$$

If the tangent linear approximation is valid for 48 hours:

$$\delta \mathbf{x}_{t} = \mathbf{M}(\mathbf{x}_{0} + \delta \mathbf{x}_{0}) - \mathbf{M}(\mathbf{x}_{0}) \approx \mathbf{R} \delta \mathbf{x}_{0}$$

where **R** represents the tangent linear model, it can be shown that

$$\nabla J_0 = \mathbf{R}^* \mathbf{P} (\mathbf{x}_t^{\text{fc}} - \mathbf{x}_t^{\text{ver.ana}})$$

where \mathbf{R}^* represents the adjoint of the tangent linear model

 $abla J_0$ is the sensitivity of the forecast error to the initial condition

Sensitivity gradient example

Example of the gradient of J

$$\nabla J_t = \mathbf{P}(\mathbf{x}_t^{\text{fc}} - \mathbf{x}_t^{\text{ver.ana}})$$

at time t=48h for temperature at level 43 (650 hPa) on 12 UTC 3 January 2003

Black contours: Z500 hPa analysis valid at 12 UTC 3 January 2003

$$\nabla J_t = \mathbf{P}(\mathbf{x}_t^{\text{fc}} - \mathbf{x}_t^{\text{ver.ana}})$$

ECMWF Analysis VT:Thursday 3 January 2002 (2UTC 500hPa geopotential height Tuesday 1 January 2002 (2UTC ECMWF Sensitivity Gradients 1+48 VT: Thursday 3 January 2002 (2UTC Model Level 43 "temperature Diagnostic: 11 teration: 0

Sensitivity gradients at t=0 and t=48

 $\nabla J_t = \mathbf{P}(\mathbf{x}_t^{\text{fc}} - \mathbf{x}_t^{\text{ver.ana}})$

ECMWF Analysis VT:Thursday 3 January 2002 12UTC 500hPa geopotential height Tuesday 1 January 2002 12UTC ECMWF Sensitivity Gradients 148 VT: Thursday 3 January 2002 12UTC Model Level 43 **temperature Diagnostic : 1 Iteration: 0

From sensitivity gradient to perturbation

This method only determines the <u>gradient</u> at initial time:

 $\nabla J_0 = \mathbf{R}^* \mathbf{P}(\mathbf{x}_t^{\text{fc}} - \mathbf{x}_t^{\text{ver.ana}})$

A perturbation is found by trial-and-error, based on typical values for fastest growing singular vectors ($\lambda = 10-15$ times amplification in 48 hours).

It can be shown (Rabier et al. 1996 QJRMS) that a good perturbation estimate can be expected if:

$$\delta x_0 = -\alpha \nabla J_0 \approx -\frac{1}{\lambda^2} \nabla J_0$$
 $\alpha \approx \left[\frac{1}{15^2}; \frac{1}{10^2}\right] = [0.004; 0.01]$

Adding such a perturbation to the initial analysis field in most cases improve the 2-5 day forecast - because information from observations during the first two forecast days is included .

- Klinker, Rabier and Gelaro "Estimation of key analysis errors using the adjoint technique" QJRMS (1998),124, pp. 1909-1933
- Extended the sensitivity method so it could determine the perturbation step-size
- Performed a number of iterations to partially minimize the objective cost function
- Three iterations with the energy norm gave the best fit to observations and meteorologically reasonable perturbations
- These perturbations were called "Key analysis errors" because they were expected to describe the most important analysis errors

For the sensitivity gradient we previously defined:

$$J = 0.5 < \mathbf{P}(\mathbf{M}(\mathbf{x}_0) - \mathbf{x}_t^{\text{ver.ana}}), \mathbf{P}(\mathbf{M}(\mathbf{x}_0) - \mathbf{x}_t^{\text{ver.ana}}) >$$

where **P** is the projection on the area (30°N;90°N) **X**_t^{ver.ana} represents the verifying analysis valid at 48 hour forecast time (t)

This can be also be written as:

$$J = 0.5(\mathbf{M}(\mathbf{x}_0) - \mathbf{x}_t^{\text{ver.ana}})^{\mathrm{T}} \mathbf{A}(\mathbf{M}(\mathbf{x}_0) - \mathbf{x}_t^{\text{ver.ana}})$$

where **A** is the matrix defining the inner product including the projection on the area (30°N;90°N)

The first order approximation of cost function change with respect to increment is:

$$\delta J = (\mathbf{R} \| \delta \mathbf{x}_0 \|)^T \mathbf{A} (\mathbf{M}(\mathbf{x}_0) - \mathbf{x}_t^{\text{ver.ana}})$$

where **R** represents the tangent linear model

It can be shown (Klinker et al. 1998 QJRMS) that the maximum cost function change under the constraint $\|\delta \mathbf{x}_0\|_c^2 = N$ is:

$$\delta x_0 = \frac{1}{2\lambda} \nabla J_c$$
 where $\lambda^2 = \frac{1}{4N} \nabla J_c^T \mathbf{C} \nabla J_c$

It can be shown (Klinker et al. 1998 QJRMS) that the maximum cost function change under the constraint $\|\delta \mathbf{x}_0\|_c^2 = N$ is:

$$\delta x_0 = \frac{1}{2\lambda} \nabla J_c$$
 where $\lambda^2 = \frac{1}{4N} \nabla J_c^T \mathbf{C} \nabla J_c$

Ignore the mathematics!

The important things to note:

- An optimal step-size δx_0 can be determined
- The step-size depends on the choice of inner-product norm
- The spatial pattern depends also on the norm
- Validity of tangent linear approximation for 48 hours assumed

Example 1 Layout of "key analysis error" calculations

Climatologies of sensitive areas for short-term forecast errors over Europe

> EUMETNET-EUCOS Study TM 334 2001

G.J. Marseille and F. Bouttier

Layout of "key analysis error" calculations

Layout of "key analysis error" calculations

Key analysis errors – an example

Temperature perturbation at 650 hPa after 1 iteration (0.3 K contouring)

•

Temperature perturbation at 650 hPa after 2 iterations (0.3 K contouring)

Key analysis errors – an example

The energy norm and two other norms have been used in my study: the "approximate Hessian norm" and the J_b norm.

The Hessian approximation used in the assimilation system is

$$\mathbf{H} = \mathbf{B}^{-\frac{1}{2}} (\mathbf{I} + \sum_{i=1}^{L} (\mu_i - 1) \mathbf{w}_i \mathbf{w}_i^T) \mathbf{B}^{-\frac{1}{2}}$$

where \mathbf{W}_i are the L=100 leading eigenvectors of the Hessian
and B is the background error covariance matrix

The J_b norm does not include any Hessian information, i.e. L=0 above, so: $\mathbf{H} = \mathbf{B}^{-1/2}(\mathbf{I})\mathbf{B}^{-1/2} = \mathbf{B}^{-1}$

- T159/T159 4D-Var assimilations were performed for December 2001 and January 2002
- For the assimilation experiments "key analysis errors" were calculated daily based on respectively:
- Energy norm sensitivities at 1200 UTC + 48 hours
- Jb norm sensitivities at 0300 UTC + 48 hours
- Hessian norm sensitivities at 0300 UTC + 48 hours
- The structure of the different sensitivity patterns were explored
- Short range (24 hour) forecasts which included comparison against good observations at proper time and location were run
- Observation statistics from these runs were used to investigate the realism of sensitivity patterns

Scores for control and sensitivity forecasts December 2001/January 2002

As expected: The "key analysis error" modified analyses results in improved 2-7 day forecasts

Eady index and rms of Energy norm sensitivity temperatures. January 2002

Eady index

RMSE of Eady index based on analyses Upper Level 300hPa, Lower Level 850hPa Period valid from 2002010112 until 2002012912

Rms of energy norm sensitivity temperatures level 42 January 2002

Eady index and rms of Hessian norm sensitivity temperatures. January 2002

Eady index

RMSE of Eady index based on analyses Upper Level 300hPa, Lower Level 850hPa Period valid from 2002010112 until 2002012912

Hessian norm sensitivities

ECMWF SV Anal VT:Tuesday 1 January 2002 03UTC Model Level 42 **temperature

rms of Jb and Hessian norm sensitivity temperatures. January 2002

Jb norm sensitivity

ECMWF SV Anal VT:Tuesday 1 January 2002 03UTC Model Level 42 **temperature

Hessian norm sensitivity

ECMWF SV Anal VT:Tuesday 1 January 2002 03UTC Model Level 42 **temperature

Hessian norm sensitivity

ECMWF SV Anal VT:Tuesday 1 January 2002 03UTC Model Level 42 **temperature

1 January 2002 case study

Eady index

ECMWF Analysis VT:Tuesday 1 January 2002 06UTC 300hPa **geopotential height

Energy norm sensitivity Temperature level 42

1 January 2002 case study

Jb norm sensitivity

1 January 2002 case study

Energy norm sensitivity

Hessian norm sensitivity

ECMWF_SV Anal VT/Tuesday 1 January 2002 03UTC Model Level 42 temperature

MSL pressure

ECMWF Analysis VT:Tuesday 1 January 2002 12UTC Model Level 42 **potential temperature

Potential temperature Model level 42

1 January 2002 Japan case study

Eady index

Energy norm Sensitivity Temperature Level 42

1 January 2002 Japan case study

ECMWF_SV Anal VT:Tuesday 1 January 2002 03UTC Model Level 42 temperature

Jb norm Sensitivity Temperature Level 42

ECMWF_SV Anal VT:Tuesday 1 January 2002 03UTC Model Level 42 temperature

Hessian norm Sensitivity Temperature Level 42

Energy norm Sensitivity Temperature Level 42

ECMWF_SV Anal VT:Tuesday 1 January 2002 03UTC Model Level 42 temperature

Hessian norm Sensitivity Temperature Level 42

Cross-sections for temperature sensitivity patterns

Energy norm

Jb norm

Hessian norm

Cross-sections for vorticity sensitivity patterns

Energy norm

- î 🗖

Jb norm

Hessian norm

Potential temperature east-west cross section

Temperature and vorticity spectra

Temperature and vorticity sensitivity Energy and Hessian patterns often differ a lot

Temperature sensitivity Energy norm more linked to unstable regions

Energy norm Temperature sensitivities

Temperature sensitivity Energy norm more linked to unstable regions

•\$

Temperature sensitivity

Energy and Hessian norm are sometimes very similar

Energy norm Temperature sensitivities

Eady index

 \mathbf{C}

Hessian norm temperature sensitivities

Hessian norm sensitivities ~47000 obs/hour

Hessian norm sensitivities ~47000 obs/hour

Û,

- Sensitivity patterns depends very much on the norm used
- Energy norm sensitivities are smaller scale and often very different in structure than J_b or Hessian norm sensitivities
- Energy norms are more closely associated with baroclinic regions than seen for J_b or Hessian norms
- J_b and Hessian norms give rather similar sensitivity patterns
- Forecasts from sensitivity pattern modified analyses are often further away from observations during the first 12 hours than is the case for the control forecasts
- From approximately 12 forecast hours and onwards the sensitivity forecasts are closer to the observations than is the case for the control forecast as expected
- These results of relevance for: understanding poor Reduced Rank Kalman Filter performance, targeting, restructuring of observing systems and estimating the benefit of new satellite instruments