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Linearized models in NWP

• different applications:
– variational data assimilation                 incremental 4D-Var at ECMWF

– singular vector computations              initial perturbations for EPS

– sensitivity analysis                               forecast errors

• first applications with adiabatic linearized model

• nowadays, including the physical processes in the linearized model

 4D-Var – Four-dimensional Variational Data Assimilation
 EPS – Ensemble Prediction System
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Linearized model with physical processes

 Including physical processes can:

• in variational data assimilation:
– reduce spin-up
– provide a better agreement between the model and data
– produce an initial atmospheric state more consistent with physical processes
– allow the use of new (satellite) observations (rain, clouds, soil moisture, …)

• in singular vector computations:
– help to represent some atmospheric features

(processes in PBL, tropical instabilities, development of baroclinic instabilities, …)

• in sensitivity analysis:
– allow a reduction of forecast error

• adjoint of physical processes can also be used for:
– model parameter estimation
– sensitivity of the parametrization scheme to input parameters
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Development of a physical package

• for important applications:
– incremental 4D-Var   (ECMWF, Météo-France),
– simplified gradients in 4D-Var  (Zupanski 1993),
– the initial perturbations computed for EPS (ECMWF),

linearized versions of forecast models are run at lower resolution

the linear model can be “not tangent” to the full model

(different resolution and geometry, different physics)

simplified approaches as a way to include progressively physical
processes in TL and AD models

• simplifications done with the aim to have a physical package:
– simple – for the linearization of the model equations

– regular – to avoid strong non-linearities and thresholds

– realistic enough
– computationally affordable

 TL – tangent linear
 AD – adjoint 
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Full nonlinear vs. simplified physical parametrizations

In NWP – a tendency to develop more and more sophisticated physical 
parametrizations                they may contain more discontinuities

For the “perturbation” model – more important to describe basic 
physical tendencies while avoiding the problem of discontinuities

 Level of simplifications and/or required complexity depends on:

• which level of improvement is expected (for different variables, vertical and horizontal
resolution, …)

• which type of observations should be assimilated
• necessity to remove threshold processes

 Different ways of simplifications:

• development of simplified physics (for instance, gaining from experience with 
simpler parametrization schemes used in history)

• applying only part of linearization
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Problems with including physics in adjoint models

• Development – requires substantial resources

• Validation – must be very thorough
(for non-linear, tangent-linear and adjoint versions)

• Computational cost – may be very high

• Non-linear and threshold nature of physical processes
(affecting the range of validity of the tangent-linear approximation)
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Validation  of  the  physical parametrizations

 Non-linear model:

• Forecast runs with particular modified/simplified physical parametrization schemes

Comparison:
finite differences (FD)  ↔ tangent-linear (TL) integration
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• examination of the accuracy of the linearization

• classical validation (TL - Taylor formula, AD - test of adjoint identity)

 Tangent-linear (TL) and adjoint (AD) model:

 Singular vectors:

• Computation of singular vectors to find out whether the new schemes do not
produce spurious unstable modes.
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Importance  of  the regularization of TL model

• physical processes are characterized by:

* threshold processes:

• discontinuities of some functions describing the physical processes

(some on/off processes)
• discontinuities of the derivative of a continuous function

* strong nonlinearities
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 WHY REGULARIZATION IS IMPORTANT

 Without any treatment of most serious threshold processes, the TL approximation can turn to be useless.

89.651

86.428

6.593

3.103

3.079
2.761

2.525

2.296

2.240

2.179

2.166

1.998

1.819

1.340

1.238

1.232

1.204

*******

-11.257

-8.562
-5.838

-4.039

-3.314

-2.279

-2.163

-2.061

-2.041

-1.891

-1.782

-1.572

-1.318

-0.988

89.651

86.428

6.593

3.103

3.079
2.761

2.525

2.296

2.240

2.179

2.166

1.998

1.819

1.340

1.238

1.232

1.204

*******

-11.257

-8.562
-5.838

-4.039

-3.314

-2.279

-2.163

-2.061

-2.041

-1.891

-1.782

-1.572

-1.318

-0.988

lv31 T* 1999-03-15 12h fc t+6 - TL with vdif (no regularization applied) [cont.int: 0.5e+07]



 ECMWF, Reading

 SPURIOUS UNSTABLE MODES PRODUCED BY THE LINEARIZED PHYSICS
 The first singular vectors located around the cyclone (58oE, 18oS) computed 

 at the resolution T95        (Barkmeijer, 2002)
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Potential source of problem

dyNL
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 dyTL
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 Possible solution, but …
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 … may just postpone the problem and influence the performance of NL scheme

 dx1

 d
y N

L

 d
y T

L2

 d
y T

L3

 dx2



 ECMWF, Reading

 dx

 d
y N

L

 d
y T

L1

 d
y T

L2

 However,  the better the model  → the smaller the increments
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Examples of regularizations and simplifications    (1)

 Regularization of vertical diffusion scheme:

• perturbation of the exchange coefficients (which are function of the Richardson 

number Ri) is neglected, K’ = 0 (Mahfouf, 1999)  

• reduced perturbation of the exchange 
coefficients (Janisková et al., 1999):

– original computation of Ri modified in 
order to modify/reduce  f’(Ri), or

– reducing a derivative, f’(Ri), by factor 10 
in  the central part (around the point of 
singularity )

 -20.            -10.             0.               10.             20.
 Ri number

 0.010

 0.000

f(Ri)

 -0.010

 -0.020

 Function of the Richardson number 



 ECMWF, Reading

Examples of regularizations and simplifications    (2)

• reduction of the time step to 10 seconds to guarantee stable time integrations 
 of the associated TL model (Zhu and Kamachi, 2000)

• selective regularization of the exchange coefficients K based on the linearization 

 error and a criterion for the numerical stability (Laroche et al., 2002)
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 Comparison:    FULL TL  – K’=0  – reduced K’  – selective K’ (Laroche et al.2002)

 RMS linearization errors for the potential temperature perturbations at the 1st level above the surface

 ∆t = 1800 s

 δ = 1 FULL TLM
 selective K’
 reduced K’

 K’=0

∆t = 60 s
δ = 0.001

∆t = 60 s
δ = 1
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Importance  of  the regularization of TL model

• physical processes are characterized by:

* threshold processes:

• discontinuities of some functions describing the physical processes

(some on/off processes)
• discontinuities of the derivative of a continuous function

* strong nonlinearities

• regularizations help to remove the most important threshold processes in
physical parametrizations which can effect the range of validity of 
the tangent linear approximation

• after solving the threshold problems

clear advantage of the diabatic TL evolution of errors compared to 
the adiabatic evolution
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 Zonal wind increments at model level ~ 1000 hPa [ 24-hour integration]

 TLADIAB

 TLWSPHYS

 FD

 TLADIABSVD

 TLADIAB        – adiabatic TL model

 TLADIABSVD – TL model with very simple vertical diffusion (Buizza 1994)

TLWSPHYS    – TL model with the whole set of simplified physics (Mahfouf 1999)
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Simplified  physical  parametrizations
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Tangent-linear diagnostics

Comparison:
finite differences (FD)  ↔ tangent-linear (TL) integration
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Diagnostics:

• mean absolute errors:

• relative error
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Impact of physical processes
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Impact of physical processes
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Impact of physical processes
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Impact of physical processes
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Impact of physical processes
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Impact of physical processes
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Impact of physical processes
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Impact of physical processes
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 Zonal wind

 Specific humidity
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Temperature: 3.8 %
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Physics in 4D-Var
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'=

• In incremental 4D-Var, the objective function is minimized in terms of increments:

with the model state defined at any time ti as: ( ) bbb
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 ← tangent linear model
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• 4D-Var can be then approximated to the first order as minimizing: 

 where  is the innovation vector

( ) ( )ii
'
ii

n

i
ii Htt d)(,

2
1 1

0
00

1
0

−+=∇ −

=

− ∑ xRHMxB TT
x δδδ  J

Gradient of the objective function to be minimized:

J
0xδ∇

id

ixδ

J
0xδ∇

 ← computed with the non-linear model at high resolution using full physics ← M

 ← computed with the tangent-linear model at low resolution using simplified
 physics ← M’

 ← computed with a low resolution adjoint model using simplified physics ← MT
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Impact of the linearized physics in 4D-Var  (1)

• comparisons of the operational version of 4D-Var against the version 
without linearized physics included shows:

– positive impact on analysis and forecast

 FORECAST VERIFICATION – 500 hPa GEOPOTENTIAL
 period: 15/11/2000 – 13/12/2000

 root mean square error – 29 cases

 N.HEM  S.HEM

 oper RD
 4v no phys
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Impact of the linearized physics in 4D-Var  (2)

– reducing spin-up problem when using physical processes

 Time evolution of global precipitation in the tropical belt  [30S, 30N] 
averaged over 14 forecasts issued from 4D-Var assimilation
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Impact of the linearized physics in 4D-Var  (3)
 1-DAY FORECAST ERROR OF 500 hPa GEOPOTENTIAL HEIGHT

 OPER vs. NEWRAD  (27/08/2001 t+24)

 A1:

 FC_OPER
 –

 ANAL_OPER

 A2:

 FC_NEWRAD
 –

 ANAL_OPER

A2 – A1

 75.4

 -30.3

63.8

 -23.3

0.2

-17.9

-10.0
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1D-Var assimilation of observations related to the physical processes

• For a given observation yo, 1D-Var searches for the model state x=(T,qv) that minimizes
the objective function:

B = background error covariance matrix
R = observation and representativeness error covariance matrix
H = nonlinear observation operator (model space observation space)

(physical parametrization schemes, microwave radiative transfer model, 
reflectivity model, …)

)(()((
2
1)()(

2
1)( 11 oobb yxRyxxxBxxx TT −−+−−= −− )H)HJ

Background term Observation term

• The minimization requires an estimation of the gradient of the objective function:

)(()()( 11 ob yxRHxxBx T −+−=∇ −− )HJ

• The operator HT can be obtained:
– explicitly (Jacobian matrix)

– using the adjoint technique
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Precipitation assimilation at ECMWF

A bit of history:
• Work on precipitation assimilation at ECMWF initiated by Mahfouf and Marécal.

• 1D-Var on TMI and SSM/I rainfall rates (RR) (M&M 2000).

• Indirect ‘1D-Var + 4D-Var’ assimilation of RR more robust than direct 4D-Var.

• ‘1D-Var + 4D-Var’ assimilation of RR is able to improve humidity but also the
dynamics in the forecasts (M&M 2002).

More recent developments:
• New simplified convection scheme (Lopez 2003)
• New simplified cloud scheme (Tompkins & Janisková 2003) used in 1D-Var
• Microwave Radiative Transfer Model (Bauer, Moreau 2002)

• Assimilation experiments of direct measurements from TRMM and SSM/I (TB or Z)   
instead of indirect retrievals of rainfall rates, in a ‘1D-Var + 4D-Var’ framework.

Goal: To assimilate observations related to precipitation and clouds in ECMWF’s 
4D-Var system including parameterizations of atmospheric moist processes.

 TMI – TRMM Microwave Imager, TRMM – Tropical Rainfall Measuring Mission
 SSM/I – Special Sensor Microwave/Imager
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“1D-Var+4D-Var” assimilation of observations related to precipitation

4D-Var

1D-Var
moist physics

moist physics 
+ radiative transfer

background T,qv background T,qv

“Observed” rainfall rates

Retrieval algorithm (2A12,2A25)

1D-Var on TBs or reflectivities 1D-Var on TMI or PR rain rates

Observations interpolated on model’s T511 Gaussian grid

TMI TBs 
or 

TRMM-PR reflectivities

“TCWVobs”=TCWVbg+mzδqv
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1D-Var on TMI data (Lopez and Moreau, 2003)

Background

PATER obs 1D-Var/RR PATER

1D-Var/TB

Tropical Cyclone Zoe (26 December 2002 @1200 UTC)

1D-Var on TMI Rain Rates / Brightness Temperatures

Surface rainfall rates (mm h-1)
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1D-Var on TRMM/ Precipitation Radar data (Benedetti, 2003)

2A25 Rain Background Rain 1D-Var Analysed Rain

2A25 Reflect. Background Reflect. 1D-Var Analysed Reflect.

Tropical Cyclone Zoe (26 December 2002 @1200 UTC)

Vertical cross-section of rain rates (top, mm h-1) and reflectivities (bottom, dBZ): 
observed (left), background (middle), and analysed (right).

Black isolines on right panels = 1D-Var specific humidity increments.
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“1D-Var+4D-Var” assimilation of TRMM-PR rain rates/reflectivities:
Impact on analysed and forecast TCWV and MSLP (Experiment – Control)

(Tropical Cyclone Zoe, 26-28 December 2002)
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1D-Var assimilation of ARM observations (1)

ARM SGP, May 1999  - observations: - surface downward longwave radiation (LWD),
- total column water vapour  (TCWV) 
- cloud liquid water path (LWP)

Observation operator includes: - shortwave and longwave radiation schemes 
- diagnostic cloud scheme

 positive values = improvement

TCWV LWD

LWP SWD

 | FG - OBS | - | ANAL - OBS |
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1D-Var assimilation of ARM observations  (2)

Cloud %
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ARM – Atmospheric Radiation Measurement

 Time series of the cloud fraction (%) for the period 20-26 May 1999.
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Cloudy AIRS Tbs and 4D-Var                (Chevallier, 2003)

• 4D-Var assumes that the forward operator is linear in the vicinity of 
the background

Fairly true for cloudy upper tropospheric channels

6.3 µm
4.5 µm14.3 µm

PDF of correlations between
H.dx and H[x+dx] – H[x]
Hemispheric data

• x = T, q profile
• H = cloud scheme

+ RTTOVCLD
• dx = perturbation

 AIRS – Advanced Infrared Sounder
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Cloudy AIRS Tbs and 1D-Var                (Chevallier, 2003)

• Linear 1D-Var retrievals
observations = 35 upper tropospheric AIRS channels
performed only if  clouds are detected in more than 13 channels

Validation:

1D-Var vs 
European radiosondes
Nov 2002 and Feb 2003

• If T<243K use Vaisala RS90 only
• ~ 250 matches in upper troposphere 
• ~ 2300 matches in lower troposphere
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 Tropical SV with wsphys

Tropical singular vectors          (Leutbecher and Van Der Grijn, 2003) 
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Sensitivity of the parametrization scheme to input variables

• using the adjoint technique

• adjoint FT of the linear operator F provides the gradient of an objective function J
with respect to x (input variables) given the gradient of J with respect to y
(output variables):

x
F

x x ∂
∂

=
∂
∂ JJ  T  or JJ yxx F ∇=∇  T

xx ∂
∂

=∇
F

J

 ∂F / ∂T sensitivity to:  temperature
 ∂F / ∂q spec.humidity
 ∂F / ∂a cloud cover
 ∂F / ∂qlw cloud lwc
 ∂F / ∂qiw cloud iwc

 EXAMPLE:  sensitivity of radiation scheme - the gradient with respect to y of unity size
 (i.e., perturbation of some of the radiation fluxes with ± 1 W.m-2)

• experiments done in the global model:
– potential for a thorough evaluation of the relative importance of different variables

for parametrization scheme
– investigation of spatial and temporal patterns of sensitivity variations
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Sensitivity of the shortwave upward radiation flux at the TOA with respect 
to specific humidity  [W.m-2/g.kg-1]                                       CLEAR SKY
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Level 44 ~ 700 hPa

WINTER

-2.4

-2.4-2.4 -2.4

-2

-2 -2

-1.6 -1.6

-1.6 -1.6

-1.6-1.2 -1.2

-1.2
-1.2

-0.8 -0.8

-0.8 -0.8
-0.4

-0.4
-0.4-0.2 -0.2 -0.2 -0.2-0.1 -0.1

-0.1 -0.1

-0.05

dF/dq_swc      15 December 2000 12UTC ECMWF t+24       Level 44 

Sensitivity of the shortwave upward radiation flux at the TOA with respect 
to specific humidity  [W.m-2/g.kg-1]                               CLEAR SKY



 ECMWF, Reading

Sensitivity of the shortwave/longwave upward radiation flux at the TOA 
with respect to cloud fraction  [W.m-2/cloudfr]
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 Summary

• Positive impact from including linearized physical parametrization schemes
(into the assimilating model, singular vector computations used in EPS)
has been demonstrated in experimental and operational runs.

• Adjoint of physical processes can also be used for sensitivity studies and model
parameter estimation.

• Physical parametrizations become important components in recent  variational
data assimilation systems.

• Some care must be taken when deriving the linearized parametrization schemes

(regularizations/simplifications).

• This is particularly true for the assimilation of observations related to precipitation,
clouds and soil moisture, to which a lot of effort is currently devoted.

• One cannot also forget technical difficulties and time-consuming adjoint
development  → reliable and efficient automatic tool for adjoint coding would be useful.
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 FORECAST VERIFICATION – 500 hPa GEOPOTENTIAL
 period: 11/05/2001 – 26/05/2001

 (4D- Var experiments with the new linearized radiation: lin_rad)
 root mean square error – 16 cases

 Northern Hemisphere  North America
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