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The ensemble Kalman filter (EnKF) is a 4-dimensional data-assimilation method
that uses a Monte-Carlo ensemble of short-range forecasts to estimate the
covariances of the forecast error

It is a close approximation to the Kalman filter. The Kalman filter provides
the least-squares solution in the case of small errors with Gaussian distribu-
tion. The approximation becomes “automatically” more accurate as bigger
ensembles are used.

The EnKF does not depend strongly on the validity of questionable hypothe-
ses (linearity of the model dynamics) and is conceptually simple. It does not
require an adjoint or tangent linear model. It is therefore an extremely attrac-
tive method.
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Overview
• Introduction

• Kalman filter equations

• Setting up an experimental environment

• Localization of covariances

• Model error simulation

• Error dynamics

• Comparison with 3d-var

• Conclusions

Results will be mainly from the Canadian EnKF developed by:

Peter Houtekamer, Herschel Mitchell, Gérard Pellerin, Bjarne Hansen,
Lubos Spacek, Chantal Côté and Martin Charron.
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Kalman filter equations

The Kalman filter equations provide the optimal (minimum variance) solution
to the data assimilation problem in the case of linear dynamics and Gaussian
error statistics (Maybeck, 1979, Stochastic Models, Estimation and Control).

Ψa = Ψf + K(o − HΨf)

K = PfHT (HPfHT + R)−1

Pa = (I − KH)Pf

Pf(t + 6) = MPaMT + Q

o vector with observations, Ψf first guess field,
Ψa analysis, Pf Covariance of the forecast error,
Pa Covariance of the analysis error, H forward interpolation matrix,
R Covariance of the observational error, K Gain-matrix,
M tangent linear operator, Q Covariance of the model error.
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Sequential Assimilation
Example:

f : N(0,1), o1 : N(0,1), o2 : N(0,1)

a = kff + k1o1 + k2o2

kf =
σ−2

f

σ−2
f + σ−2

o1 + σ−2
o2

, kf = k1 = k2 =
1

3

Step 1 of the sequential assimilation:

f1 : N(0,1), o1 : N(0,1)

f2 = kf1f1 + k1o1, kf1 = k1 =
1

2

f2 : N(0,
1

2
)

Step 2 of the sequential assimilation:

f2 : N(0,
1

2
), o2 : N(0,1)

a = kf2f2 + k2o2, kf2 =
2

2 + 1
, k2 =

1

3

a =
1

3
(f1 + o1 + o2)
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Differences with the Kalman filter: evaluation of matrices

Pf =
1

N − 1

N∑
i=1

(Ψ
f
i − Ψ

f
i )(Ψ

f
i − Ψ

f
i )

T

PfHT =
1

N − 1

N∑
i=1

(Ψ
f
i − Ψ

f
i )(HΨ

f
i − HΨ

f
i )

T

HPfHT ≡
1

N − 1

N∑
i=1

(H(Ψ
f
i ) − H(Ψ

f
i ))(H(Ψ

f
i ) − H(Ψ

f
i ))

T

A random ensemble is used to estimate error covariances.

The dimension of the full matrix, used in the Kalman filter, will be the size of
the phase space (order 1 000 000).

The dimension of the ensemble-based matrix is identical to N−1 (order 100).
The analysis increment will be in the space of dimension N − 1. The of order
100 000 observations will thus be projected to a very low-dimensional space.

One may use covariance localization to deal with the dimensionality problem.
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Differences with the Kalman filter: transport equation

In the Kalman filter, the covariances are transported using:

Pf(t + 6) = MPaMT + Q

In the EnKF, one uses the full model to integrate an ensemble of analyses:

Ψ
f
i (t + 6) = M(Ψa

i ) + qi

The replacement of the tangent linear model by a model with full physics
would seem to be an improvement. The full model will properly deal with
saturation of errors. One also has additional flexibility to deal with model error.
It can be sampled from a covariance matrix or also using for instance different
realizations of the model error.

With a sample one may in principle transport information on higher moments
that is lost when covariance matrices are used as in the Kalman filter.
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Setting up the experimental environment

The operational implementation of a new data-assimilation methodology is a
complex project. It is necessary to interact with the people working on the
forecast model and on the data-assimilation system. This concerns both the
exchange of experience, the brainstorming of new ideas and the transfer and
adaptation of software.

We acknowledge help from:

• Luc Fillion (early development of the algorithm),

• Richard Ménard (localization operator),

• Gilles Verner and Pierre Koclas (treatment of observations),

• Josée Morneau (validation software),

• Stéphane Laroche and Jacques Hallé (interpolation operators),

• Mark Buehner (model error description),

• Michel Roch (use of the forecast model),

• Our computer support group (an excellent computational environment).
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Experimental environment: the model

We use the Global Environmental Model (GEM) of MSC. The model is much
like the version used to produce the higher resolution medium-range deter-
ministic forecast at our centre.

The poles of the model are located at the geographical poles.

Grid: 240 × 120.
vertical resolution: 28 levels.

top of the model: 10 hPa.

vertical coordinate: η ≡
p−ptop

psurface−ptop
.

timestep: 60 minutes.

model variables: u, v, T, q, and psurface.

ensemble size: 2 × 48 members and 2 × 64 members.
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Experimental environment: observations

We try to use all observations that are assimilated by the deterministic analy-
sis (3d-var) at our centre. We thus benefit from the operational quality control
procedure that consists of a “background check” and a “variational quality
control”.

Because we use a different lower resolution orography, we verify that surface
observations are not too far from the model surface and that upper air obser-
vations are not too close to the model surface.

We use the same error statistics for the observations as the 3d-var.

Currently we assimilate:

• radiosondes: u, v, T, q, psurface

• aircraft: u, v, T

• satellite: u, v,TOVS 1b radiances

• surface observations: T, psurface

We do NOT YET assimilate surface observations of wind and humidity.
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Localization

The EnKF will provide an analysis increment in those directions where the en-
semble indicates there is uncertainty. In the other directions there is no need
to use observational information. Consequently, if we have 100 ensemble
members, the analysis increment will be in this space only. If the atmosphere
has more than 100 degrees of freedom, as everyone believes, this will be a
problem.

Artificial measures, not suggested by the Kalman filter equations, will be nec-
essary to inflate the dimensionality of the ensemble.

The result will necessarily be that the analysis increment will no longer be in
the space spanned by the ensemble members.

One has a trade-off between producing nicely balanced analyses that remain
far from the O(100 000) observations and between having fairly unbalanced
analyses that fit all observations pretty well.
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Horizontal Hadamard product

Idea (obtained from Richard Ménard) (Gaspari & Cohn, 1999, QJRMS, 723-
757):

P f(ri, rj) = P
f
ensemble(ri, rj)ρ(r, L).

To filter covariances at long distances we use a Hadamard product (which
does a point-wise product of two matrices). This leads to a positive definite
matrix Pf .

As we get bigger ensembles, we can make L longer.
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Impact of the horizontal
Hadamard product

In the reference experiment cor-
relations are forced to zero at a
distance of 3400 km.
Smaller errors are obtained when
forcing the errors to zero at a dis-
tance of 2300 km.
Based on these results one
would use a strong localiza-
tion with enforced zero-impact at
2300 km. Alternatively one could
consider using more than 2 × 48
members.
We now perform most experi-
ments with localization at 2800
km (quality is close to that using
2300 km).
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Example of narrow vertical correlations
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For a pair of 48 member ensembles the vertical correlations were computed
with respect to level 23 (at about 100 hPa). The global mean correlations are
negative at levels 22 and 24! Above level 26 and below level 19 the two 48
member ensembles tend to disagree. Estimated vertical correlations are at
the noise level and should therefore be filtered. This is done with a Hadamard
product in the vertical.

Paper by Houtekamer et al. to be submitted to Mon. Wea. Rev.
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Impact of the vertical
Hadamard product

The reference experiment has no
localization in the vertical

It is compared with an ex-
periment where correlations are
forced to zero in 2 units of ln

(pressure).

The impact is very positive for in
particular the upper levels where
vertical correlations were seen to
be very narrow.
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Impact of ensemble size

The reference experiment has 2
× 48 members.

It is compared with an experi-
ment using 2 × 64 members.

Results are slightly better with 2
× 64 members. It would appear
that the EnKF has converged
for ensemble size. Nevertheless
we would like to perform some
experiments with say O(1000)
members just to be sure.
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Model error simulation

Our current hypothesis is that the model error is similar in structure to the
forecast error as described in our centre’s 3d-var scheme.

Pf(t + 6) = MPaMT + Q

Pf(t + 6) = MPaMT + 0.25P3dvar

For each member we obtain a random model error field that has isotropic error
statistics as prescribed in the 3d-var (but smaller).

Currently the model error term includes:

• A balanced component that is introduced for streamfunction. After a
transformation of variables, we obtain a balanced model error on the wind
components (u, v), the temperature and the surface pressure.

• An unbalanced temperature component that is significant near the sur-
face, in the tropics and near the top of the model.
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Using innovations to tune the model error term Q

One may use innovation statistics to tune the model error term:

• Dee, 1995, On-line estimation of error covariance parameters for atmo-
spheric data assimilation. Mon. Wea. Rev. 1128-1145.

• Mitchell and Houtekamer, 2000, An adaptive ensemble Kalman filter.
Mon. Wea. Rev. 416-433.

Basic equation:

〈ννT 〉 = HPHT + HQHT + R

The innovation ν is computed as the difference between the interpolated en-
semble mean state and the observation. The interpolated forecast error co-
variance P is available from the ensemble. An estimate of the observation
error covariance R is available from the data assimilation algorithm. The re-
maining term Q can thus be estimated.

In the current study we only consider the diagonal of the basic equation.
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Quality of error statistics

The solid line is the rms ampli-
tude of the innovations for ra-
diosonde observations.

The dotted line is the ensemble
based prediction of the innova-
tion amplitude. It is the root of
the sum of the observational vari-
ance and the ensemble spread.

There is excellent agreement for
the temperature. For winds the
ensemble spread is too large
near the model top. The spread
is too small for humidity.
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Standard deviation in a background field

For the temperature at level η =

0.516, we look at the standard
deviation of the background field
(24 May 2002 18 UT).

The assimilation has managed to
reduce the errors over the conti-
nents.

One also notes dynamically look-
ing structures over the oceans.
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Error dynamics

To measure the growth of error structures one may use an energy norm
(Ehrendorfer and Errico, 1995, J. Atmos. Sci., 3475-3500):

E =
1

2S

∫
S

∫ 1

0
[u2 + v2 +

cp

Tr
T2 + RaTr(

ps

pr
)2]dηdS

The error norm is global and integrates over the depth of the atmosphere. We
will look separately at results for winds, temperature and surface pressure.
For winds and temperature one may also look at the contribution per level.
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Error dynamics during the data assimilation cycle
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Error amplitudes for winds and
temperature decay during the 6
hour integration with the forecast
model.

Error amplitudes subsequently
increase due to the addition of
parameterized model error.

Error amplitudes decrease
thanks to the assimilation of new
observations.

It would appear that the rapid growth of unstable perturbations is insignificant
in the experiments performed here. Instead, analysis errors seem to obtain
their amplitude due to “model error”.
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Error dynamics during a 120-h forecast

An ensemble of 120-h forecasts has been initiated from an ensemble of ini-
tial conditions provided by the EnKF. The ensemble spread decays for about
24 h. The ensemble mean forecasts are validated against the subsequently
performed ensemble mean analyses. The growth rate of the actual error is
higher than the growth rate of the simulated error.
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Results from Houtekamer et al. 2003. To be submitted to Mon. Wea. Rev.
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Error dynamics per level

To better understand the initial decrease of the ensemble spread we look at
the error energy at the levels η = 0.0 (model top), 0.101, 0.302 and 1.0
(model surface). The ensemble spread at the model top decreases for about
4 days (perhaps due to model diffusion). The true error increases at all levels.
This suggests that the model error is significant near the model top.
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Results from Houtekamer et al. 2003. To be submitted to Mon. Wea. Rev.
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Comparison of 3D-VAR and EnKF

A comparison of 3D-VAR and EnKF has been performed
(manuscript by Houtekamer et al. to be submitted to MWR).

The 3D-VAR and the EnKF have been used with exactly the same forecast
model (resolution, physical parameterizations, etc) and with exactly the same
observational network. The same data are assimilated. The same error statis-
tics are used for the observations. The same quality control procedure (back-
ground check and variational quality control) is used.

Data assimilation cycles were started on 00 UTC May 19 2002.

The innovation statistics are compared for the period 00 UTC May 24 - 12
UTC June 2 2002 (a 10 day period). Innovation statistics were computed with
respect to an extremely reliable subset of the radiosonde network.
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Agreement between the
EnKF and the 3D-VAR

3D-VAR is in blue.

EnKF is in red.

For winds and temperature the
EnKF and the 3D-VAR have
remarkably similar innovation
statistics.

For humidity the EnKF has a big-
ger bias but a smaller rms error.

Generally the scores are very
similar. It would appear that the
impact of the 4D aspect is small.
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Difference between the
EnKF and the 3D-VAR

3D-VAR is in blue.

EnKF is in red.

The 3D-VAR analysis draws
much closer to the observations
than the EnKF analyses. How-
ever, at the time of the 6 hour
forecasts the two systems are of
about the same quality.
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Comparison of the EnKF and the 3D-VAR

A detailed comparison of 3D-VAR and the EnKF is currently in progress at
MSC.

Innovation statistics with respect to independent radiosonde observations are
fairly similar. This implies that the quality of the two analysis systems is fairly
similar.

The Observation-Analysis statistics are fairly different. Apparently the schemes
give different weights to the observations in spite of the similar quality of the
background fields. This implies that either the 3D-VAR or the EnKF can be
improved by means of a retuning of some of its parameters.

The comparison is not just of academic interest. It is also a means to validate
the new EnKF algorithm.

As we look in more different ways at the EnKF results the quality of these
results tends to improve. The extension of the diagnostic package for the
EnKF is currently a priority.
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Conclusion

The EnKF can be used for atmospheric data-assimilation.

Suggested areas for research:

• Formulation of the model error,

• Dynamics of errors in the data-assimilation cycle,

• Choice between high horizontal or vertical resolution or large ensemble
size and less severe localization.
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